From e09bd44a40b5ffeab2f4085aa34672bded608cd1 Mon Sep 17 00:00:00 2001 From: Hans Wennborg Date: Tue, 14 Jun 2016 16:05:12 +0000 Subject: [PATCH] Fix some typos in the Kaleidoscope tutorial (PR28120) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272681 91177308-0d34-0410-b5e6-96231b3b80d8 --- docs/tutorial/LangImpl1.rst | 2 +- docs/tutorial/LangImpl6.rst | 14 +++++++------- docs/tutorial/OCamlLangImpl6.rst | 14 +++++++------- 3 files changed, 15 insertions(+), 15 deletions(-) diff --git a/docs/tutorial/LangImpl1.rst b/docs/tutorial/LangImpl1.rst index b04cde10274..0b8ed7b1b6c 100644 --- a/docs/tutorial/LangImpl1.rst +++ b/docs/tutorial/LangImpl1.rst @@ -80,7 +80,7 @@ in the various pieces. The structure of the tutorial is: information will allow you to set breakpoints in Kaleidoscope functions, print out argument variables, and call functions - all from within the debugger! -- `Chapter #9 `_: Conclusion and other useful LLVM +- `Chapter #9 `_: Conclusion and other useful LLVM tidbits - This chapter wraps up the series by talking about potential ways to extend the language, but also includes a bunch of pointers to info about "special topics" like adding garbage diff --git a/docs/tutorial/LangImpl6.rst b/docs/tutorial/LangImpl6.rst index 2b6c2b117e0..c30eaedad12 100644 --- a/docs/tutorial/LangImpl6.rst +++ b/docs/tutorial/LangImpl6.rst @@ -546,17 +546,17 @@ converge: # Determine whether the specific location diverges. # Solve for z = z^2 + c in the complex plane. - def mandleconverger(real imag iters creal cimag) + def mandelconverger(real imag iters creal cimag) if iters > 255 | (real*real + imag*imag > 4) then iters else - mandleconverger(real*real - imag*imag + creal, + mandelconverger(real*real - imag*imag + creal, 2*real*imag + cimag, iters+1, creal, cimag); # Return the number of iterations required for the iteration to escape - def mandleconverge(real imag) - mandleconverger(real, imag, 0, real, imag); + def mandelconverge(real imag) + mandelconverger(real, imag, 0, real, imag); This "``z = z2 + c``" function is a beautiful little creature that is the basis for computation of the `Mandelbrot @@ -570,12 +570,12 @@ but we can whip together something using the density plotter above: :: - # Compute and plot the mandlebrot set with the specified 2 dimensional range + # Compute and plot the mandelbrot set with the specified 2 dimensional range # info. def mandelhelp(xmin xmax xstep ymin ymax ystep) for y = ymin, y < ymax, ystep in ( (for x = xmin, x < xmax, xstep in - printdensity(mandleconverge(x,y))) + printdensity(mandelconverge(x,y))) : putchard(10) ) @@ -585,7 +585,7 @@ but we can whip together something using the density plotter above: mandelhelp(realstart, realstart+realmag*78, realmag, imagstart, imagstart+imagmag*40, imagmag); -Given this, we can try plotting out the mandlebrot set! Lets try it out: +Given this, we can try plotting out the mandelbrot set! Lets try it out: :: diff --git a/docs/tutorial/OCamlLangImpl6.rst b/docs/tutorial/OCamlLangImpl6.rst index a3ae11fd7e5..2fa25f5c22f 100644 --- a/docs/tutorial/OCamlLangImpl6.rst +++ b/docs/tutorial/OCamlLangImpl6.rst @@ -496,17 +496,17 @@ converge: # determine whether the specific location diverges. # Solve for z = z^2 + c in the complex plane. - def mandleconverger(real imag iters creal cimag) + def mandelconverger(real imag iters creal cimag) if iters > 255 | (real*real + imag*imag > 4) then iters else - mandleconverger(real*real - imag*imag + creal, + mandelconverger(real*real - imag*imag + creal, 2*real*imag + cimag, iters+1, creal, cimag); # return the number of iterations required for the iteration to escape - def mandleconverge(real imag) - mandleconverger(real, imag, 0, real, imag); + def mandelconverge(real imag) + mandelconverger(real, imag, 0, real, imag); This "z = z\ :sup:`2`\ + c" function is a beautiful little creature that is the basis for computation of the `Mandelbrot @@ -520,12 +520,12 @@ but we can whip together something using the density plotter above: :: - # compute and plot the mandlebrot set with the specified 2 dimensional range + # compute and plot the mandelbrot set with the specified 2 dimensional range # info. def mandelhelp(xmin xmax xstep ymin ymax ystep) for y = ymin, y < ymax, ystep in ( (for x = xmin, x < xmax, xstep in - printdensity(mandleconverge(x,y))) + printdensity(mandelconverge(x,y))) : putchard(10) ) @@ -535,7 +535,7 @@ but we can whip together something using the density plotter above: mandelhelp(realstart, realstart+realmag*78, realmag, imagstart, imagstart+imagmag*40, imagmag); -Given this, we can try plotting out the mandlebrot set! Lets try it out: +Given this, we can try plotting out the mandelbrot set! Lets try it out: :: -- 2.50.1