From d675c74d14f9e7f7046ee7b383e41868782ab5bd Mon Sep 17 00:00:00 2001 From: Andy Polyakov Date: Fri, 26 Nov 2004 15:07:50 +0000 Subject: [PATCH] RC4 IA-64 assembler implementation. --- crypto/rc4/asm/rc4-ia64.S | 148 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 148 insertions(+) create mode 100644 crypto/rc4/asm/rc4-ia64.S diff --git a/crypto/rc4/asm/rc4-ia64.S b/crypto/rc4/asm/rc4-ia64.S new file mode 100644 index 0000000000..4af7fba7b3 --- /dev/null +++ b/crypto/rc4/asm/rc4-ia64.S @@ -0,0 +1,148 @@ +// ==================================================================== +// Written by Andy Polyakov for the OpenSSL +// project. +// +// Rights for redistribution and usage in source and binary forms are +// granted according to the OpenSSL license. Warranty of any kind is +// disclaimed. +// ==================================================================== + +.ident "rc4-ia64.S, Version 1.0" +.ident "IA-64 ISA artwork by Andy Polyakov " + +// What's wrong with compiler generated code? Because of the nature of +// C language, compiler doesn't [dare to] reorder load and stores. But +// being memory-bound, RC4 should benefit from reorder [on in-order- +// execution core such as IA-64]. But what can we reorder? At the very +// least we can safely reorder references to key schedule in respect +// to input and output streams. Secondly, less obvious, it's possible +// to pull up some references to elements of the key schedule itself. +// Fact is that such prior loads are not safe only for "degenerated" +// key schedule, when all elements equal to the same value, which is +// never the case [key schedule setup routine makes sure it's not]. +// Furthermore. In order to compress loop body to the minimum, I chose +// to deploy deposit instruction, which substitutes for the whole +// key->data+((x&255)<data[0]))). This unfortunately +// requires key->data to be aligned at sizeof(key->data) boundary. +// This is why you'll find "RC4_INT pad[512-256-2];" addenum to RC4_KEY +// and "d=(RC4_INT *)(((size_t)(d+255))&~(sizeof(key->data)-1));" in +// rc4_skey.c [and rc4_enc.c, where it's retained for debugging +// purposes]. Throughput is ~210MBps on 900MHz CPU, which is is >3x +// faster than gcc generated code and +30% - if compared to HP-UX C. +// Unrolling loop below should give >30% on top of that... + +.text +.explicit + +#if defined(_HPUX_SOURCE) && !defined(_LP64) +# define ADDP addp4 +#else +# define ADDP add +#endif + +#define SZ 4 // this is set to sizeof(RC4_INT) +// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for +// assembler implementation, while SZ==1 code is ~30% slower. +#if SZ==1 // RC4_INT is unsigned char +# define LDKEY ld1 +# define STKEY st1 +# define OFF 0 +#elif SZ==4 // RC4_INT is unsigned int +# define LDKEY ld4 +# define STKEY st4 +# define OFF 2 +#elif SZ==8 // RC4_INT is unsigned long +# define LDKEY ld8 +# define STKEY st8 +# define OFF 3 +#endif + +out=r8; // [expanded] output pointer +inp=r9; // [expanded] output pointer +prsave=r10; +key=r28; // [expanded] pointer to RC4_KEY +ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)] +xx=r30; +yy=r31; + +// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out); +.global RC4# +.proc RC4# +.align 32 +.skip 16 +RC4: + .prologue + .fframe 0 + .save ar.pfs,r2 + .save ar.lc,r3 + .save pr,prsave +{ .mii; alloc r2=ar.pfs,4,12,0,16 + mov prsave=pr + ADDP key=0,in0 };; +{ .mib; cmp.eq p6,p0=0,in1 // len==0? + mov r3=ar.lc +(p6) br.ret.spnt.many b0 };; // emergency exit + + .body + .rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1]; + +{ .mib; LDKEY xx=[key],SZ // load key->x + add in1=-1,in1 // adjust len for loop counter + nop.b 0 } +{ .mib; ADDP inp=0,in2 + ADDP out=0,in3 + brp.loop.imp .Ltop,.Lexit-16 };; +{ .mmi; LDKEY yy=[key] // load key->y + add ksch=(255+1)*SZ,key // as ksch will be used with + // deposit instruction only, + // I don't have to &~255... + mov ar.lc=in1 } +{ .mmi; nop.m 0 + add xx=1,xx + mov pr.rot=1<<16 };; +{ .mii; nop.m 0 + dep key_x[1]=xx,ksch,OFF,8 + mov ar.ec=3 };; // note that epilogue counter + // is off by 1. I compensate + // for this at exit... +.Ltop: +// The loop is scheduled for 3*(n+2) spin-rate on Itanium 2, which +// theoretically gives asymptotic performance of clock frequency +// divided by 3 bytes per seconds, or 500MBps on 1.5GHz CPU. Measured +// performance however is distinctly lower than 1/4:-( The culplrit +// seems to be *(out++)=dat, which inadvertently splits the bundle, +// even though there is M-unit available... Unrolling is due... +// Unrolled loop should collect output with variable shift instruction +// in order to avoid starvation for integer shifter... Only output +// pointer has to be aligned... It should be possible to get pretty +// close to theoretical peak... +{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx] + (p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy] + (p18) dep rnd[1]=rnd[1],ksch,OFF,8} // &key[(tx+ty)&255] +{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat + (p16) add xx=1,xx // x++ + (p0) nop.i 0 };; +{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255] + (p16) ld1 dat[0]=[inp],1 // dat=*(inp++) + (p16) dep key_x[0]=xx,ksch,OFF,8 } // &key[xx&255] +{ .mmi; (p0) nop.m 0 + (p16) add yy=yy,tx[0] // y+=tx + (p0) nop.i 0 };; +{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx + (p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty + (p16) dep key_y[0]=yy,ksch,OFF,8 } // &key[yy&255] +{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty + (p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd + br.ctop.sptk .Ltop };; +.Lexit: +{ .mib; STKEY [key]=yy,-SZ // save key->y + mov pr=prsave,0x1ffff + nop.b 0 } +{ .mib; st1 [out]=dat[3],1 // compensate for truncated + // epilogue counter + add xx=-1,xx + nop.b 0 };; +{ .mib; STKEY [key]=xx // save key->x + mov ar.lc=r3 + br.ret.sptk.many b0 };; +.endp RC4# -- 2.40.0