From c129203f7e5e20f5d67f92c27c65f7d5e362aa7a Mon Sep 17 00:00:00 2001 From: Christian Duvivier Date: Wed, 27 Feb 2013 12:29:06 -0800 Subject: [PATCH] Faster vp9_short_fdct8x8. Scalar path is about 1.4x faster (4% overall encoder speedup). SSE2 path is about 7x faster (13% overall encoder speedup). Change-Id: I7e85d8225a914a74c61ea370210414696560094d --- vp9/common/vp9_idct.h | 3 + vp9/common/vp9_rtcd_defs.sh | 2 +- vp9/encoder/vp9_dct.c | 155 ++++++++++++------- vp9/encoder/x86/vp9_dct_sse2.c | 272 +++++++++++++++++++++++++++++++++ vp9/vp9cx.mk | 6 + 5 files changed, 386 insertions(+), 52 deletions(-) create mode 100644 vp9/encoder/x86/vp9_dct_sse2.c diff --git a/vp9/common/vp9_idct.h b/vp9/common/vp9_idct.h index 95028997b..17d0134fa 100644 --- a/vp9/common/vp9_idct.h +++ b/vp9/common/vp9_idct.h @@ -11,7 +11,10 @@ #ifndef VP9_COMMON_VP9_IDCT_H_ #define VP9_COMMON_VP9_IDCT_H_ +#include + #include "./vpx_config.h" +#include "vpx/vpx_integer.h" #define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n) - 1))) >> (n)) diff --git a/vp9/common/vp9_rtcd_defs.sh b/vp9/common/vp9_rtcd_defs.sh index c10495362..bdeea3fd6 100644 --- a/vp9/common/vp9_rtcd_defs.sh +++ b/vp9/common/vp9_rtcd_defs.sh @@ -555,7 +555,7 @@ prototype void vp9_short_fht16x16 "int16_t *InputData, int16_t *OutputData, int specialize vp9_short_fht16x16 prototype void vp9_short_fdct8x8 "int16_t *InputData, int16_t *OutputData, int pitch" -specialize vp9_short_fdct8x8 +specialize vp9_short_fdct8x8 sse2 prototype void vp9_short_fdct4x4 "int16_t *InputData, int16_t *OutputData, int pitch" specialize vp9_short_fdct4x4 diff --git a/vp9/encoder/vp9_dct.c b/vp9/encoder/vp9_dct.c index cf7e39e4f..e4ac2ce36 100644 --- a/vp9/encoder/vp9_dct.c +++ b/vp9/encoder/vp9_dct.c @@ -146,73 +146,126 @@ void vp9_short_fdct8x4_c(int16_t *input, int16_t *output, int pitch) { } static void fdct8_1d(int16_t *input, int16_t *output) { - int16_t step[8]; - int temp1, temp2; + /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; + /*needs32*/ int t0, t1, t2, t3; + /*canbe16*/ int x0, x1, x2, x3; // stage 1 - step[0] = input[0] + input[7]; - step[1] = input[1] + input[6]; - step[2] = input[2] + input[5]; - step[3] = input[3] + input[4]; - step[4] = input[3] - input[4]; - step[5] = input[2] - input[5]; - step[6] = input[1] - input[6]; - step[7] = input[0] - input[7]; - - fdct4_1d(step, step); + s0 = input[0] + input[7]; + s1 = input[1] + input[6]; + s2 = input[2] + input[5]; + s3 = input[3] + input[4]; + s4 = input[3] - input[4]; + s5 = input[2] - input[5]; + s6 = input[1] - input[6]; + s7 = input[0] - input[7]; + + // fdct4_1d(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0] = dct_const_round_shift(t0); + output[2] = dct_const_round_shift(t2); + output[4] = dct_const_round_shift(t1); + output[6] = dct_const_round_shift(t3); // Stage 2 - output[4] = step[4]; - temp1 = (-step[5] + step[6]) * cospi_16_64; - temp2 = (step[6] + step[5]) * cospi_16_64; - output[5] = dct_const_round_shift(temp1); - output[6] = dct_const_round_shift(temp2); - output[7] = step[7]; + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = dct_const_round_shift(t0); + t3 = dct_const_round_shift(t1); // Stage 3 - step[4] = output[4] + output[5]; - step[5] = -output[5] + output[4]; - step[6] = -output[6] + output[7]; - step[7] = output[7] + output[6]; + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; // Stage 4 - output[0] = step[0]; - output[4] = step[2]; - output[2] = step[1]; - output[6] = step[3]; - - temp1 = step[4] * cospi_28_64 + step[7] * cospi_4_64; - temp2 = step[5] * cospi_12_64 + step[6] * cospi_20_64; - output[1] = dct_const_round_shift(temp1); - output[5] = dct_const_round_shift(temp2); - temp1 = step[6] * cospi_12_64 + step[5] * -cospi_20_64; - temp2 = step[7] * cospi_28_64 + step[4] * -cospi_4_64; - output[3] = dct_const_round_shift(temp1); - output[7] = dct_const_round_shift(temp2); + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1] = dct_const_round_shift(t0); + output[3] = dct_const_round_shift(t2); + output[5] = dct_const_round_shift(t1); + output[7] = dct_const_round_shift(t3); } -void vp9_short_fdct8x8_c(int16_t *input, int16_t *output, int pitch) { - int shortpitch = pitch >> 1; +void vp9_short_fdct8x8_c(int16_t *input, int16_t *final_output, int pitch) { + const int stride = pitch >> 1; int i, j; - int16_t out[64]; - int16_t temp_in[8], temp_out[8]; - - // Columns - for (i = 0; i < 8; i++) { - for (j = 0; j < 8; j++) - temp_in[j] = input[j * shortpitch + i] << 2; - fdct8_1d(temp_in, temp_out); - for (j = 0; j < 8; j++) - out[j * 8 + i] = temp_out[j]; + int16_t intermediate[64]; + + // Transform columns + { + int16_t *output = intermediate; + /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; + /*needs32*/ int t0, t1, t2, t3; + /*canbe16*/ int x0, x1, x2, x3; + + int i; + for (i = 0; i < 8; i++) { + // stage 1 + s0 = (input[0 * stride] + input[7 * stride]) << 2; + s1 = (input[1 * stride] + input[6 * stride]) << 2; + s2 = (input[2 * stride] + input[5 * stride]) << 2; + s3 = (input[3 * stride] + input[4 * stride]) << 2; + s4 = (input[3 * stride] - input[4 * stride]) << 2; + s5 = (input[2 * stride] - input[5 * stride]) << 2; + s6 = (input[1 * stride] - input[6 * stride]) << 2; + s7 = (input[0 * stride] - input[7 * stride]) << 2; + + // fdct4_1d(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0 * 8] = dct_const_round_shift(t0); + output[2 * 8] = dct_const_round_shift(t2); + output[4 * 8] = dct_const_round_shift(t1); + output[6 * 8] = dct_const_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = dct_const_round_shift(t0); + t3 = dct_const_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1 * 8] = dct_const_round_shift(t0); + output[3 * 8] = dct_const_round_shift(t2); + output[5 * 8] = dct_const_round_shift(t1); + output[7 * 8] = dct_const_round_shift(t3); + input++; + output++; + } } // Rows for (i = 0; i < 8; ++i) { + fdct8_1d(&intermediate[i * 8], &final_output[i * 8]); for (j = 0; j < 8; ++j) - temp_in[j] = out[j + i * 8]; - fdct8_1d(temp_in, temp_out); - for (j = 0; j < 8; ++j) - output[j + i * 8] = temp_out[j] / 2; + final_output[j + i * 8] /= 2; } } diff --git a/vp9/encoder/x86/vp9_dct_sse2.c b/vp9/encoder/x86/vp9_dct_sse2.c new file mode 100644 index 000000000..ff884d999 --- /dev/null +++ b/vp9/encoder/x86/vp9_dct_sse2.c @@ -0,0 +1,272 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 +#include "vp9/common/vp9_idct.h" // for cospi constants + +#define pair_set_epi16(a, b) \ + _mm_set1_epi32(((uint16_t)(a)) + (((uint16_t)(b)) << 16)) + +void vp9_short_fdct8x8_sse2(int16_t *input, int16_t *output, int pitch) { + const int stride = pitch >> 1; + int pass; + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + // Load input + __m128i in0 = _mm_loadu_si128((const __m128i *)(input + 0 * stride)); + __m128i in1 = _mm_loadu_si128((const __m128i *)(input + 1 * stride)); + __m128i in2 = _mm_loadu_si128((const __m128i *)(input + 2 * stride)); + __m128i in3 = _mm_loadu_si128((const __m128i *)(input + 3 * stride)); + __m128i in4 = _mm_loadu_si128((const __m128i *)(input + 4 * stride)); + __m128i in5 = _mm_loadu_si128((const __m128i *)(input + 5 * stride)); + __m128i in6 = _mm_loadu_si128((const __m128i *)(input + 6 * stride)); + __m128i in7 = _mm_loadu_si128((const __m128i *)(input + 7 * stride)); + // Pre-condition input (shift by two) + in0 = _mm_slli_epi16(in0, 2); + in1 = _mm_slli_epi16(in1, 2); + in2 = _mm_slli_epi16(in2, 2); + in3 = _mm_slli_epi16(in3, 2); + in4 = _mm_slli_epi16(in4, 2); + in5 = _mm_slli_epi16(in5, 2); + in6 = _mm_slli_epi16(in6, 2); + in7 = _mm_slli_epi16(in7, 2); + + // We do two passes, first the columns, then the rows. The results of the + // first pass are transposed so that the same column code can be reused. The + // results of the second pass are also transposed so that the rows (processed + // as columns) are put back in row positions. + for (pass = 0; pass < 2; pass++) { + // To store results of each pass before the transpose. + __m128i res0, res1, res2, res3, res4, res5, res6, res7; + // Add/substract + const __m128i q0 = _mm_add_epi16(in0, in7); + const __m128i q1 = _mm_add_epi16(in1, in6); + const __m128i q2 = _mm_add_epi16(in2, in5); + const __m128i q3 = _mm_add_epi16(in3, in4); + const __m128i q4 = _mm_sub_epi16(in3, in4); + const __m128i q5 = _mm_sub_epi16(in2, in5); + const __m128i q6 = _mm_sub_epi16(in1, in6); + const __m128i q7 = _mm_sub_epi16(in0, in7); + // Work on first four results + { + // Add/substract + const __m128i r0 = _mm_add_epi16(q0, q3); + const __m128i r1 = _mm_add_epi16(q1, q2); + const __m128i r2 = _mm_sub_epi16(q1, q2); + const __m128i r3 = _mm_sub_epi16(q0, q3); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(r0, r1); + const __m128i t1 = _mm_unpackhi_epi16(r0, r1); + const __m128i t2 = _mm_unpacklo_epi16(r2, r3); + const __m128i t3 = _mm_unpackhi_epi16(r2, r3); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res0 = _mm_packs_epi32(w0, w1); + res4 = _mm_packs_epi32(w2, w3); + res2 = _mm_packs_epi32(w4, w5); + res6 = _mm_packs_epi32(w6, w7); + } + // Work on next four results + { + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i d0 = _mm_unpacklo_epi16(q6, q5); + const __m128i d1 = _mm_unpackhi_epi16(q6, q5); + const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); + const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); + const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); + const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); + const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); + const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); + const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); + const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); + const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); + const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); + const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); + // Combine + const __m128i r0 = _mm_packs_epi32(s0, s1); + const __m128i r1 = _mm_packs_epi32(s2, s3); + // Add/substract + const __m128i x0 = _mm_add_epi16(q4, r0); + const __m128i x1 = _mm_sub_epi16(q4, r0); + const __m128i x2 = _mm_sub_epi16(q7, r1); + const __m128i x3 = _mm_add_epi16(q7, r1); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(x0, x3); + const __m128i t1 = _mm_unpackhi_epi16(x0, x3); + const __m128i t2 = _mm_unpacklo_epi16(x1, x2); + const __m128i t3 = _mm_unpackhi_epi16(x1, x2); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res1 = _mm_packs_epi32(w0, w1); + res7 = _mm_packs_epi32(w2, w3); + res5 = _mm_packs_epi32(w4, w5); + res3 = _mm_packs_epi32(w6, w7); + } + // Transpose the 8x8. + { + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); + const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); + const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); + const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); + const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); + const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); + const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); + const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + } + } + // Post-condition output and store it + { + // Post-condition (division by two) + // division of two 16 bits signed numbers using shifts + // n / 2 = (n - (n >> 15)) >> 1 + const __m128i sign_in0 = _mm_srai_epi16(in0, 15); + const __m128i sign_in1 = _mm_srai_epi16(in1, 15); + const __m128i sign_in2 = _mm_srai_epi16(in2, 15); + const __m128i sign_in3 = _mm_srai_epi16(in3, 15); + const __m128i sign_in4 = _mm_srai_epi16(in4, 15); + const __m128i sign_in5 = _mm_srai_epi16(in5, 15); + const __m128i sign_in6 = _mm_srai_epi16(in6, 15); + const __m128i sign_in7 = _mm_srai_epi16(in7, 15); + in0 = _mm_sub_epi16(in0, sign_in0); + in1 = _mm_sub_epi16(in1, sign_in1); + in2 = _mm_sub_epi16(in2, sign_in2); + in3 = _mm_sub_epi16(in3, sign_in3); + in4 = _mm_sub_epi16(in4, sign_in4); + in5 = _mm_sub_epi16(in5, sign_in5); + in6 = _mm_sub_epi16(in6, sign_in6); + in7 = _mm_sub_epi16(in7, sign_in7); + in0 = _mm_srai_epi16(in0, 1); + in1 = _mm_srai_epi16(in1, 1); + in2 = _mm_srai_epi16(in2, 1); + in3 = _mm_srai_epi16(in3, 1); + in4 = _mm_srai_epi16(in4, 1); + in5 = _mm_srai_epi16(in5, 1); + in6 = _mm_srai_epi16(in6, 1); + in7 = _mm_srai_epi16(in7, 1); + // store results + _mm_storeu_si128 ((__m128i *)(output + 0 * 8), in0); + _mm_storeu_si128 ((__m128i *)(output + 1 * 8), in1); + _mm_storeu_si128 ((__m128i *)(output + 2 * 8), in2); + _mm_storeu_si128 ((__m128i *)(output + 3 * 8), in3); + _mm_storeu_si128 ((__m128i *)(output + 4 * 8), in4); + _mm_storeu_si128 ((__m128i *)(output + 5 * 8), in5); + _mm_storeu_si128 ((__m128i *)(output + 6 * 8), in6); + _mm_storeu_si128 ((__m128i *)(output + 7 * 8), in7); + } +} diff --git a/vp9/vp9cx.mk b/vp9/vp9cx.mk index 65401be3b..22fa565e5 100644 --- a/vp9/vp9cx.mk +++ b/vp9/vp9cx.mk @@ -110,6 +110,12 @@ VP9_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/vp9_quantize_mmx.asm VP9_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/vp9_encodeopt.asm VP9_CX_SRCS-$(ARCH_X86_64) += encoder/x86/vp9_ssim_opt.asm +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2.c +ifeq ($(HAVE_SSE2),yes) +vp9/encoder/x86/vp9_dct_sse2.c.d: CFLAGS += -msse2 +vp9/encoder/x86/vp9_dct_sse2.c.o: CFLAGS += -msse2 +endif + VP9_CX_SRCS-yes := $(filter-out $(VP9_CX_SRCS_REMOVE-yes),$(VP9_CX_SRCS-yes)) -- 2.40.0