From a34ae664d3617dcc98cf6feae1cff4d843b78a4d Mon Sep 17 00:00:00 2001
From: Peter Johnson <peter@tortall.net>
Date: Sun, 9 Feb 2003 19:36:34 +0000
Subject: [PATCH] Initial revision

svn path=/trunk/yasm/; revision=827
---
 float/softfloat/processors/386-GCC.h          |   68 +
 float/softfloat/processors/SPARC-GCC.h        |   68 +
 float/softfloat/softfloat/README.txt          |   72 +
 .../softfloat/softfloat/SoftFloat-history.txt |   57 +
 .../softfloat/softfloat/SoftFloat-source.txt  |  390 ++
 float/softfloat/softfloat/SoftFloat.txt       |  374 ++
 .../softfloat/bits32/386-Win32-GCC/milieu.h   |   45 +
 .../bits32/386-Win32-GCC/softfloat-specialize |  258 +
 .../bits32/386-Win32-GCC/softfloat.h          |  134 +
 .../bits32/SPARC-Solaris-GCC/milieu.h         |   45 +
 .../SPARC-Solaris-GCC/softfloat-specialize    |  232 +
 .../bits32/SPARC-Solaris-GCC/softfloat.h      |  134 +
 .../softfloat/bits32/softfloat-macros         |  627 ++
 float/softfloat/softfloat/bits32/softfloat.c  | 2270 ++++++++
 .../softfloat/bits32/templates/milieu.h       |   45 +
 .../bits32/templates/softfloat-specialize     |  242 +
 .../softfloat/bits32/templates/softfloat.h    |  134 +
 .../softfloat/bits32/timesoftfloat.c          | 1050 ++++
 .../softfloat/bits64/386-Win32-GCC/milieu.h   |   45 +
 .../bits64/386-Win32-GCC/softfloat-specialize |  464 ++
 .../bits64/386-Win32-GCC/softfloat.h          |  259 +
 .../bits64/SPARC-Solaris-GCC/milieu.h         |   45 +
 .../SPARC-Solaris-GCC/softfloat-specialize    |  412 ++
 .../bits64/SPARC-Solaris-GCC/softfloat.h      |  259 +
 .../softfloat/bits64/softfloat-macros         |  720 +++
 float/softfloat/softfloat/bits64/softfloat.c  | 5188 +++++++++++++++++
 .../softfloat/bits64/templates/milieu.h       |   45 +
 .../bits64/templates/softfloat-specialize     |  432 ++
 .../softfloat/bits64/templates/softfloat.h    |  259 +
 .../softfloat/bits64/timesoftfloat.c          | 2628 +++++++++
 float/softfloat/softfloat/timesoftfloat.txt   |  151 +
 31 files changed, 17152 insertions(+)
 create mode 100644 float/softfloat/processors/386-GCC.h
 create mode 100644 float/softfloat/processors/SPARC-GCC.h
 create mode 100644 float/softfloat/softfloat/README.txt
 create mode 100644 float/softfloat/softfloat/SoftFloat-history.txt
 create mode 100644 float/softfloat/softfloat/SoftFloat-source.txt
 create mode 100644 float/softfloat/softfloat/SoftFloat.txt
 create mode 100644 float/softfloat/softfloat/bits32/386-Win32-GCC/milieu.h
 create mode 100644 float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat-specialize
 create mode 100644 float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat.h
 create mode 100644 float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h
 create mode 100644 float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize
 create mode 100644 float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h
 create mode 100644 float/softfloat/softfloat/bits32/softfloat-macros
 create mode 100644 float/softfloat/softfloat/bits32/softfloat.c
 create mode 100644 float/softfloat/softfloat/bits32/templates/milieu.h
 create mode 100644 float/softfloat/softfloat/bits32/templates/softfloat-specialize
 create mode 100644 float/softfloat/softfloat/bits32/templates/softfloat.h
 create mode 100644 float/softfloat/softfloat/bits32/timesoftfloat.c
 create mode 100644 float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h
 create mode 100644 float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize
 create mode 100644 float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h
 create mode 100644 float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h
 create mode 100644 float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize
 create mode 100644 float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h
 create mode 100644 float/softfloat/softfloat/bits64/softfloat-macros
 create mode 100644 float/softfloat/softfloat/bits64/softfloat.c
 create mode 100644 float/softfloat/softfloat/bits64/templates/milieu.h
 create mode 100644 float/softfloat/softfloat/bits64/templates/softfloat-specialize
 create mode 100644 float/softfloat/softfloat/bits64/templates/softfloat.h
 create mode 100644 float/softfloat/softfloat/bits64/timesoftfloat.c
 create mode 100644 float/softfloat/softfloat/timesoftfloat.txt

diff --git a/float/softfloat/processors/386-GCC.h b/float/softfloat/processors/386-GCC.h
new file mode 100644
index 00000000..d7e1d76d
--- /dev/null
+++ b/float/softfloat/processors/386-GCC.h
@@ -0,0 +1,68 @@
+
+/*----------------------------------------------------------------------------
+| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
+*----------------------------------------------------------------------------*/
+#define LITTLEENDIAN
+
+/*----------------------------------------------------------------------------
+| The macro `BITS64' can be defined to indicate that 64-bit integer types are
+| supported by the compiler.
+*----------------------------------------------------------------------------*/
+#define BITS64
+
+/*----------------------------------------------------------------------------
+| Each of the following `typedef's defines the most convenient type that holds
+| integers of at least as many bits as specified.  For example, `uint8' should
+| be the most convenient type that can hold unsigned integers of as many as
+| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
+| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
+| to the same as `int'.
+*----------------------------------------------------------------------------*/
+typedef char flag;
+typedef unsigned char uint8;
+typedef signed char int8;
+typedef int uint16;
+typedef int int16;
+typedef unsigned int uint32;
+typedef signed int int32;
+#ifdef BITS64
+typedef unsigned long long int uint64;
+typedef signed long long int int64;
+#endif
+
+/*----------------------------------------------------------------------------
+| Each of the following `typedef's defines a type that holds integers
+| of _exactly_ the number of bits specified.  For instance, for most
+| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
+| `unsigned short int' and `signed short int' (or `short int'), respectively.
+*----------------------------------------------------------------------------*/
+typedef unsigned char bits8;
+typedef signed char sbits8;
+typedef unsigned short int bits16;
+typedef signed short int sbits16;
+typedef unsigned int bits32;
+typedef signed int sbits32;
+#ifdef BITS64
+typedef unsigned long long int bits64;
+typedef signed long long int sbits64;
+#endif
+
+#ifdef BITS64
+/*----------------------------------------------------------------------------
+| The `LIT64' macro takes as its argument a textual integer literal and
+| if necessary ``marks'' the literal as having a 64-bit integer type.
+| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
+| appended with the letters `LL' standing for `long long', which is `gcc's
+| name for the 64-bit integer type.  Some compilers may allow `LIT64' to be
+| defined as the identity macro:  `#define LIT64( a ) a'.
+*----------------------------------------------------------------------------*/
+#define LIT64( a ) a##LL
+#endif
+
+/*----------------------------------------------------------------------------
+| The macro `INLINE' can be used before functions that should be inlined.  If
+| a compiler does not support explicit inlining, this macro should be defined
+| to be `static'.
+*----------------------------------------------------------------------------*/
+#define INLINE extern inline
+
diff --git a/float/softfloat/processors/SPARC-GCC.h b/float/softfloat/processors/SPARC-GCC.h
new file mode 100644
index 00000000..ab3d3719
--- /dev/null
+++ b/float/softfloat/processors/SPARC-GCC.h
@@ -0,0 +1,68 @@
+
+/*----------------------------------------------------------------------------
+| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
+*----------------------------------------------------------------------------*/
+#define BIGENDIAN
+
+/*----------------------------------------------------------------------------
+| The macro `BITS64' can be defined to indicate that 64-bit integer types are
+| supported by the compiler.
+*----------------------------------------------------------------------------*/
+#define BITS64
+
+/*----------------------------------------------------------------------------
+| Each of the following `typedef's defines the most convenient type that holds
+| integers of at least as many bits as specified.  For example, `uint8' should
+| be the most convenient type that can hold unsigned integers of as many as
+| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
+| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
+| to the same as `int'.
+*----------------------------------------------------------------------------*/
+typedef int flag;
+typedef int uint8;
+typedef int int8;
+typedef int uint16;
+typedef int int16;
+typedef unsigned int uint32;
+typedef signed int int32;
+#ifdef BITS64
+typedef unsigned long long int uint64;
+typedef signed long long int int64;
+#endif
+
+/*----------------------------------------------------------------------------
+| Each of the following `typedef's defines a type that holds integers
+| of _exactly_ the number of bits specified.  For instance, for most
+| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
+| `unsigned short int' and `signed short int' (or `short int'), respectively.
+*----------------------------------------------------------------------------*/
+typedef unsigned char bits8;
+typedef signed char sbits8;
+typedef unsigned short int bits16;
+typedef signed short int sbits16;
+typedef unsigned int bits32;
+typedef signed int sbits32;
+#ifdef BITS64
+typedef unsigned long long int bits64;
+typedef signed long long int sbits64;
+#endif
+
+#ifdef BITS64
+/*----------------------------------------------------------------------------
+| The `LIT64' macro takes as its argument a textual integer literal and
+| if necessary ``marks'' the literal as having a 64-bit integer type.
+| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
+| appended with the letters `LL' standing for `long long', which is `gcc's
+| name for the 64-bit integer type.  Some compilers may allow `LIT64' to be
+| defined as the identity macro:  `#define LIT64( a ) a'.
+*----------------------------------------------------------------------------*/
+#define LIT64( a ) a##LL
+#endif
+
+/*----------------------------------------------------------------------------
+| The macro `INLINE' can be used before functions that should be inlined.  If
+| a compiler does not support explicit inlining, this macro should be defined
+| to be `static'.
+*----------------------------------------------------------------------------*/
+#define INLINE extern inline
+
diff --git a/float/softfloat/softfloat/README.txt b/float/softfloat/softfloat/README.txt
new file mode 100644
index 00000000..6fa43b45
--- /dev/null
+++ b/float/softfloat/softfloat/README.txt
@@ -0,0 +1,72 @@
+
+Package Overview for SoftFloat Release 2b
+
+John R. Hauser
+2002 May 27
+
+
+----------------------------------------------------------------------------
+Overview
+
+SoftFloat is a software implementation of floating-point that conforms to
+the IEC/IEEE Standard for Binary Floating-Point Arithmetic.  SoftFloat is
+distributed in the form of C source code.  Compiling the SoftFloat sources
+generates two things:
+
+-- A SoftFloat object file (typically `softfloat.o') containing the complete
+   set of IEC/IEEE floating-point routines.
+
+-- A `timesoftfloat' program for evaluating the speed of the SoftFloat
+   routines.  (The SoftFloat module is linked into this program.)
+
+The SoftFloat package is documented in four text files:
+
+   SoftFloat.txt          Documentation for using the SoftFloat functions.
+   SoftFloat-source.txt   Documentation for compiling SoftFloat.
+   SoftFloat-history.txt  History of major changes to SoftFloat.
+   timesoftfloat.txt      Documentation for using `timesoftfloat'.
+
+Other files in the package comprise the source code for SoftFloat.
+
+Please be aware that some work is involved in porting this software to other
+targets.  It is not just a matter of getting `make' to complete without
+error messages.  I would have written the code that way if I could, but
+there are fundamental differences between systems that can't be hidden.
+You should not attempt to compile SoftFloat without first reading both
+`SoftFloat.txt' and `SoftFloat-source.txt'.
+
+
+----------------------------------------------------------------------------
+Legal Notice
+
+SoftFloat was written by me, John R. Hauser.  This work was made possible in
+part by the International Computer Science Institute, located at Suite 600,
+1947 Center Street, Berkeley, California 94704.  Funding was partially
+provided by the National Science Foundation under grant MIP-9311980.  The
+original version of this code was written as part of a project to build
+a fixed-point vector processor in collaboration with the University of
+California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
+LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
+FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
+SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
+COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
+SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, provided
+that the minimal documentation requirements stated in the source code are
+satisfied.
+
+
+----------------------------------------------------------------------------
+Contact Information
+
+At the time of this writing, the most up-to-date information about
+SoftFloat and the latest release can be found at the Web page `http://
+www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
+
+
diff --git a/float/softfloat/softfloat/SoftFloat-history.txt b/float/softfloat/softfloat/SoftFloat-history.txt
new file mode 100644
index 00000000..f58687d7
--- /dev/null
+++ b/float/softfloat/softfloat/SoftFloat-history.txt
@@ -0,0 +1,57 @@
+
+History of Major Changes to SoftFloat, up to Release 2b
+
+John R. Hauser
+2002 May 27
+
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Release 2b (2002 May)
+
+-- Made minor updates to the documentation, including improved wording of
+   the legal restrictions on using SoftFloat.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Release 2a (1998 December)
+
+-- Added functions to convert between 64-bit integers (int64) and all
+   supported floating-point formats.
+
+-- Fixed a bug in all 64-bit-version square root functions except
+   `float32_sqrt' that caused the result sometimes to be off by 1 unit in
+   the last place (1 ulp) from what it should be.  (Bug discovered by Paul
+   Donahue.)
+
+-- Improved the makefiles.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Release 2 (1997 June)
+
+-- Created the 64-bit (bits64) version, adding the floatx80 and float128
+   formats.
+
+-- Changed the source directory structure, splitting the sources into a
+   `bits32' and a `bits64' version.  Renamed `environment.h' to `milieu.h'
+   to avoid confusion with environment variables.
+
+-- Fixed a small error that caused `float64_round_to_int' often to round the
+   wrong way in nearest/even mode when the operand was between 2^20 and 2^21
+   and halfway between two integers.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Release 1a (1996 July)
+
+-- Corrected a mistake that caused borderline underflow cases not to raise
+   the underflow flag when they should have.  (Problem reported by Doug
+   Priest.)
+
+-- Added the `float_detect_tininess' variable to control whether tininess is
+   detected before or after rounding.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Release 1 (1996 July)
+
+-- Original release.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
diff --git a/float/softfloat/softfloat/SoftFloat-source.txt b/float/softfloat/softfloat/SoftFloat-source.txt
new file mode 100644
index 00000000..4099a553
--- /dev/null
+++ b/float/softfloat/softfloat/SoftFloat-source.txt
@@ -0,0 +1,390 @@
+
+SoftFloat Release 2b Source Documentation
+
+John R. Hauser
+2002 May 27
+
+
+----------------------------------------------------------------------------
+Introduction
+
+SoftFloat is a software implementation of floating-point that conforms to
+the IEC/IEEE Standard for Binary Floating-Point Arithmetic.  SoftFloat can
+support four floating-point formats:  single precision, double precision,
+extended double precision, and quadruple precision.  All operations required
+by the IEEE Standard are implemented, except for conversions to and from
+decimal.  SoftFloat is distributed in the form of C source code, so a
+C compiler is needed to compile the code.  Support for the extended double-
+precision and quadruple-precision formats is dependent on the C compiler
+implementing a 64-bit integer type.
+
+This document gives information needed for compiling and/or porting
+SoftFloat.
+
+The source code for SoftFloat is intended to be relatively machine-
+independent and should be compilable using most any ISO/ANSI C compiler.  At
+the time of this writing, SoftFloat has been successfully compiled with the
+GNU C Compiler (`gcc') for several platforms.
+
+
+----------------------------------------------------------------------------
+Limitations
+
+As supplied, SoftFloat requires an ISO/ANSI-style C compiler.  No attempt
+has been made to accomodate compilers that are not ISO-conformant.  Older
+``K&R-style'' compilers are not adequate for compiling SoftFloat.  All
+testing I have done so far has been with the GNU C Compiler.  Compilation
+with other compilers should be possible but has not been tested by me.
+
+The SoftFloat sources assume that source code file names can be longer than
+8 characters.  In order to compile under an MS-DOS-type system, many of the
+source files will need to be renamed, and the source and makefiles edited
+appropriately.  Once compiled, the SoftFloat binary does not depend on the
+existence of long file names.
+
+The underlying machine is assumed to be binary with a word size that is a
+power of 2.  Bytes are 8 bits.  Arithmetic on signed integers must modularly
+wrap around on overflows (as is already required for unsigned integers
+in C).
+
+Support for the extended double-precision and quadruple-precision formats
+depends on the C compiler implementing a 64-bit integer type.  If the
+largest integer type supported by the C compiler is 32 bits, SoftFloat is
+limited to the single- and double-precision formats.
+
+
+----------------------------------------------------------------------------
+Contents
+
+    Introduction
+    Limitations
+    Contents
+    Legal Notice
+    SoftFloat Source Directory Structure
+    SoftFloat Source Files
+        processors/*.h
+        softfloat/bits*/*/softfloat.h
+        softfloat/bits*/*/milieu.h
+        softfloat/bits*/*/softfloat-specialize
+        softfloat/bits*/softfloat-macros
+        softfloat/bits*/softfloat.c
+    Steps to Creating a `softfloat.o'
+    Making `softfloat.o' a Library
+    Testing SoftFloat
+    Timing SoftFloat
+    Compiler Options and Efficiency
+    Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'
+    Contact Information
+
+
+
+----------------------------------------------------------------------------
+Legal Notice
+
+SoftFloat was written by John R. Hauser.  This work was made possible in
+part by the International Computer Science Institute, located at Suite 600,
+1947 Center Street, Berkeley, California 94704.  Funding was partially
+provided by the National Science Foundation under grant MIP-9311980.  The
+original version of this code was written as part of a project to build
+a fixed-point vector processor in collaboration with the University of
+California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
+LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
+FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
+SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
+COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
+SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, provided
+that the minimal documentation requirements stated in the source code are
+satisfied.
+
+
+----------------------------------------------------------------------------
+SoftFloat Source Directory Structure
+
+Because SoftFloat is targeted to multiple platforms, its source code
+is slightly scattered between target-specific and target-independent
+directories and files.  The directory structure is as follows:
+
+    processors
+    softfloat
+        bits64
+            templates
+            386-Win32-GCC
+            SPARC-Solaris-GCC
+        bits32
+            templates
+            386-Win32-GCC
+            SPARC-Solaris-GCC
+
+The two topmost directories and their contents are:
+
+    softfloat    - Most of the source code needed for SoftFloat.
+    processors   - Target-specific header files that are not specific to
+                       SoftFloat.
+
+The `softfloat' directory is further split into two parts:
+
+    bits64       - SoftFloat implementation using 64-bit integers.
+    bits32       - SoftFloat implementation using only 32-bit integers.
+
+Within these directories are subdirectories for each of the targeted
+platforms.  The SoftFloat source code is distributed with targets
+`386-Win32-GCC' and `SPARC-Solaris-GCC' (and perhaps others) already
+prepared for both the 32-bit and 64-bit implementations.  Source files that
+are not within these target-specific subdirectories are intended to be
+target-independent.
+
+The naming convention used for the target-specific directories is
+`<processor>-<executable-type>-<compiler>'.  The names of the supplied
+target directories should be interpreted as follows:
+
+  <processor>:
+    386          - Intel 386-compatible processor.
+    SPARC        - SPARC processor (as used by Sun computers).
+  <executable-type>:
+    Win32        - Microsoft Win32 executable.
+    Solaris      - Sun Solaris executable.
+  <compiler>:
+    GCC          - GNU C Compiler.
+
+You do not need to maintain this convention if you do not want to.
+
+Alongside the supplied target-specific directories is a `templates'
+directory containing a set of ``generic'' target-specific source files.  A
+new target directory can be created by copying the `templates' directory and
+editing the files inside.  (Complete instructions for porting SoftFloat to a
+new target are in the section _Steps to Creating a `softfloat.o'_.)  Note
+that the `templates' directory will not work as a target directory without
+some editing.  To avoid confusion, it would be wise to refrain from editing
+the files inside `templates' directly.
+
+
+----------------------------------------------------------------------------
+SoftFloat Source Files
+
+The purpose of each source file is described below.  In the following,
+the `*' symbol is used in place of the name of a specific target, such as
+`386-Win32-GCC' or `SPARC-Solaris-GCC', or in place of some other text, as
+in `bits*' for either `bits32' or `bits64'.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+processors/*.h
+
+The target-specific `processors' header file defines integer types
+of various sizes, and also defines certain C preprocessor macros that
+characterize the target.  The two examples supplied are `386-GCC.h' and
+`SPARC-GCC.h'.  The naming convention used for processor header files is
+`<processor>-<compiler>.h'.
+
+If 64-bit integers are supported by the compiler, the macro name `BITS64'
+should be defined here along with the corresponding 64-bit integer
+types.  In addition, the function-like macro `LIT64' must be defined for
+constructing 64-bit integer literals (constants).  The `LIT64' macro is used
+consistently in the SoftFloat code to annotate 64-bit literals.
+
+If `BITS64' is not defined, only the 32-bit version of SoftFloat can be
+compiled.  If `BITS64' _is_ defined, either can be compiled.
+
+If an inlining attribute (such as an `inline' keyword) is provided by the
+compiler, the macro `INLINE' should be defined to the appropriate keyword.
+If not, `INLINE' can be set to the keyword `static'.  The `INLINE' macro
+appears in the SoftFloat source code before every function that should
+be inlined by the compiler.  SoftFloat depends on inlining to obtain
+good speed.  Even if inlining cannot be forced with a language keyword,
+the compiler may still be able to perform inlining on its own as an
+optimization.  If a command-line option is needed to convince the compiler
+to perform this optimization, this should be assured in the makefile.  (See
+the section _Compiler Options and Efficiency_ below.)
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+softfloat/bits*/*/softfloat.h
+
+The target-specific `softfloat.h' header file defines the SoftFloat
+interface as seen by clients.
+
+Unlike the actual function definitions in `softfloat.c', the declarations
+in `softfloat.h' do not use any of the types defined by the `processors'
+header file.  This is done so that clients will not have to include the
+`processors' header file in order to use SoftFloat.  Nevertheless, the
+target-specific declarations in `softfloat.h' must match what `softfloat.c'
+expects.  For example, if `int32' is defined as `int' in the `processors'
+header file, then in `softfloat.h' the output of `float32_to_int32' should
+be stated as `int', although in `softfloat.c' it is given in target-
+independent form as `int32'.
+
+For the `bits64' implementation of SoftFloat, the macro names `FLOATX80' and
+`FLOAT128' must be defined in order for the extended double-precision and
+quadruple-precision formats to be enabled in the code.  Conversely, either
+or both of the extended formats can be disabled by simply removing the
+`#define' of the respective macro.  When an extended format is not enabled,
+none of the functions that either input or output the format are defined,
+and no space is taken up in `softfloat.o' by such functions.  There is no
+provision for disabling the usual single- and double-precision formats.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+softfloat/bits*/*/milieu.h
+
+The target-specific `milieu.h' header file provides declarations that are
+needed to compile SoftFloat.  In addition, deviations from ISO/ANSI C by
+the compiler (such as names not properly declared in system header files)
+are corrected in this header if possible.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+softfloat/bits*/*/softfloat-specialize
+
+This target-specific C source fragment defines:
+
+-- whether tininess for underflow is detected before or after rounding by
+       default;
+-- what (if anything) special happens when exceptions are raised;
+-- how signaling NaNs are distinguished from quiet NaNs;
+-- the default generated quiet NaNs; and
+-- how NaNs are propagated from function inputs to output.
+
+These details are not decided by the IEC/IEEE Standard.  This fragment is
+included verbatim within `softfloat.c' when SoftFloat is compiled.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+softfloat/bits*/softfloat-macros
+
+This target-independent C source fragment defines a number of arithmetic
+functions used as primitives within the `softfloat.c' source.  Most of
+the functions defined here are intended to be inlined for efficiency.
+This fragment is included verbatim within `softfloat.c' when SoftFloat is
+compiled.
+
+Target-specific variations on this file are possible.  See the section
+_Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'_
+below.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+softfloat/bits*/softfloat.c
+
+The target-independent `softfloat.c' source file contains the body of the
+SoftFloat implementation.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
+The inclusion of the files above within each other (using `#include') can be
+shown graphically as follows:
+
+    softfloat/bits*/softfloat.c
+        softfloat/bits*/*/milieu.h
+            processors/*.h
+        softfloat/bits*/*/softfloat.h
+        softfloat/bits*/*/softfloat-specialize
+        softfloat/bits*/softfloat-macros
+
+Note in particular that `softfloat.c' does not include the `processors'
+header file directly.  Rather, `softfloat.c' includes the target-specific
+`milieu.h' header file, which in turn includes the appropriate processor
+header file.
+
+
+----------------------------------------------------------------------------
+Steps to Creating a `softfloat.o'
+
+Porting and/or compiling SoftFloat involves the following steps:
+
+1. If one does not already exist, create an appropriate `.h' file in the
+   `processors' directory.
+
+2. If `BITS64' is defined in the `processors' header file, choose whether
+   to compile the 32-bit or 64-bit implementation of SoftFloat.  If
+   `BITS64' is not defined, your only choice is the 32-bit implementation.
+   The remaining steps occur within either the `bits32' or `bits64'
+   subdirectories.
+
+3. If one does not already exist, create an appropriate target-specific
+   subdirectory by copying the given `templates' directory.
+
+4. In the target-specific subdirectory, edit the files `softfloat-specialize'
+   and `softfloat.h' to define the desired exception handling functions
+   and mode control values.  In the `softfloat.h' header file, ensure also
+   that all declarations give the proper target-specific type (such as
+   `int' or `long') corresponding to the target-independent type used in
+   `softfloat.c' (such as `int32').  None of the type names declared in the
+   `processors' header file should appear in `softfloat.h'.
+
+5. In the target-specific subdirectory, edit the files `milieu.h' and
+   `Makefile' to reflect the current environment.
+
+6. In the target-specific subdirectory, execute `make'.
+
+For the targets that are supplied, if the expected compiler is available
+(usually `gcc'), it should only be necessary to execute `make' in the
+target-specific subdirectory.
+
+
+----------------------------------------------------------------------------
+Making `softfloat.o' a Library
+
+SoftFloat is not made into a software library by the supplied makefile.
+If desired, `softfloat.o' can easily be put into its own library (in Unix,
+`softfloat.a') using the usual system tool (in Unix, `ar').
+
+
+----------------------------------------------------------------------------
+Testing SoftFloat
+
+SoftFloat can be tested using the `testsoftfloat' program by the same
+author.  The `testsoftfloat' program is part of the TestFloat package
+available at the Web page `http://www.cs.berkeley.edu/~jhauser/arithmetic/
+TestFloat.html'.
+
+
+----------------------------------------------------------------------------
+Timing SoftFloat
+
+A program called `timesoftfloat' for timing the SoftFloat functions is
+included with the SoftFloat source code.  Compiling `timesoftfloat' should
+pose no difficulties once `softfloat.o' exists.  The supplied makefile
+will create a `timesoftfloat' executable by default after generating
+`softfloat.o'.  See `timesoftfloat.txt' for documentation about using
+`timesoftfloat'.
+
+
+----------------------------------------------------------------------------
+Compiler Options and Efficiency
+
+In order to get good speed with SoftFloat, it is important that the compiler
+inline the routines that have been marked `INLINE' in the code.  Even if
+inlining cannot be forced by an appropriate definition of the `INLINE'
+macro, the compiler may still be able to perform inlining on its own as
+an optimization.  In that case, the makefile should be edited to give the
+compiler whatever option is required to cause it to inline small functions.
+
+
+----------------------------------------------------------------------------
+Processor-Specific Optimization of `softfloat.c' Using `softfloat-macros'
+
+The `softfloat-macros' source fragment defines arithmetic functions used
+as primitives by `softfloat.c'.  This file has been written in a target-
+independent form.  For a given target, it may be possible to improve on
+these functions using target-specific and/or non-ISO-C features (such
+as `asm' statements).  For example, one of the ``macro'' functions takes
+two word-size integers and returns their full product in two words.
+This operation can be done directly in hardware on many processors; but
+because it is not available through standard C, the function defined in
+`softfloat-macros' uses four multiplications to achieve the same result.
+
+To address these shortcomings, a customized version of `softfloat-macros'
+can be created in any of the target-specific subdirectories.  A simple
+modification to the target's makefile should be sufficient to ensure that
+the custom version is used instead of the generic one.
+
+
+----------------------------------------------------------------------------
+Contact Information
+
+At the time of this writing, the most up-to-date information about
+SoftFloat and the latest release can be found at the Web page `http://
+www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
+
+
diff --git a/float/softfloat/softfloat/SoftFloat.txt b/float/softfloat/softfloat/SoftFloat.txt
new file mode 100644
index 00000000..59555a05
--- /dev/null
+++ b/float/softfloat/softfloat/SoftFloat.txt
@@ -0,0 +1,374 @@
+
+SoftFloat Release 2b General Documentation
+
+John R. Hauser
+2002 May 27
+
+
+----------------------------------------------------------------------------
+Introduction
+
+SoftFloat is a software implementation of floating-point that conforms to
+the IEC/IEEE Standard for Binary Floating-Point Arithmetic.  As many as four
+formats are supported:  single precision, double precision, extended double
+precision, and quadruple precision.  All operations required by the standard
+are implemented, except for conversions to and from decimal.
+
+This document gives information about the types defined and the routines
+implemented by SoftFloat.  It does not attempt to define or explain the
+IEC/IEEE Floating-Point Standard.  Details about the standard are available
+elsewhere.
+
+
+----------------------------------------------------------------------------
+Limitations
+
+SoftFloat is written in C and is designed to work with other C code.  The
+SoftFloat header files assume an ISO/ANSI-style C compiler.  No attempt
+has been made to accomodate compilers that are not ISO-conformant.  In
+particular, the distributed header files will not be acceptable to any
+compiler that does not recognize function prototypes.
+
+Support for the extended double-precision and quadruple-precision formats
+depends on a C compiler that implements 64-bit integer arithmetic.  If the
+largest integer format supported by the C compiler is 32 bits, SoftFloat
+is limited to only single and double precisions.  When that is the case,
+all references in this document to extended double precision, quadruple
+precision, and 64-bit integers should be ignored.
+
+
+----------------------------------------------------------------------------
+Contents
+
+    Introduction
+    Limitations
+    Contents
+    Legal Notice
+    Types and Functions
+    Rounding Modes
+    Extended Double-Precision Rounding Precision
+    Exceptions and Exception Flags
+    Function Details
+        Conversion Functions
+        Standard Arithmetic Functions
+        Remainder Functions
+        Round-to-Integer Functions
+        Comparison Functions
+        Signaling NaN Test Functions
+        Raise-Exception Function
+    Contact Information
+
+
+
+----------------------------------------------------------------------------
+Legal Notice
+
+SoftFloat was written by John R. Hauser.  This work was made possible in
+part by the International Computer Science Institute, located at Suite 600,
+1947 Center Street, Berkeley, California 94704.  Funding was partially
+provided by the National Science Foundation under grant MIP-9311980.  The
+original version of this code was written as part of a project to build
+a fixed-point vector processor in collaboration with the University of
+California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
+LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
+FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
+SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
+COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
+SOFTWARE.
+
+
+----------------------------------------------------------------------------
+Types and Functions
+
+When 64-bit integers are supported by the compiler, the `softfloat.h'
+header file defines four types:  `float32' (single precision), `float64'
+(double precision), `floatx80' (extended double precision), and `float128'
+(quadruple precision).  The `float32' and `float64' types are defined in
+terms of 32-bit and 64-bit integer types, respectively, while the `float128'
+type is defined as a structure of two 64-bit integers, taking into account
+the byte order of the particular machine being used.  The `floatx80' type
+is defined as a structure containing one 16-bit and one 64-bit integer, with
+the machine's byte order again determining the order within the structure.
+
+When 64-bit integers are _not_ supported by the compiler, the `softfloat.h'
+header file defines only two types:  `float32' and `float64'.  Because
+ISO/ANSI C guarantees at least one built-in integer type of 32 bits,
+the `float32' type is identified with an appropriate integer type.  The
+`float64' type is defined as a structure of two 32-bit integers, with the
+machine's byte order determining the order of the fields.
+
+In either case, the types in `softfloat.h' are defined such that if a system
+implements the usual C `float' and `double' types according to the IEC/IEEE
+Standard, then the `float32' and `float64' types should be indistinguishable
+in memory from the native `float' and `double' types.  (On the other hand,
+when `float32' or `float64' values are placed in processor registers by
+the compiler, the type of registers used may differ from those used for the
+native `float' and `double' types.)
+
+SoftFloat implements the following arithmetic operations:
+
+-- Conversions among all the floating-point formats, and also between
+   integers (32-bit and 64-bit) and any of the floating-point formats.
+
+-- The usual add, subtract, multiply, divide, and square root operations
+   for all floating-point formats.
+
+-- For each format, the floating-point remainder operation defined by the
+   IEC/IEEE Standard.
+
+-- For each floating-point format, a ``round to integer'' operation that
+   rounds to the nearest integer value in the same format.  (The floating-
+   point formats can hold integer values, of course.)
+
+-- Comparisons between two values in the same floating-point format.
+
+The only functions required by the IEC/IEEE Standard that are not provided
+are conversions to and from decimal.
+
+
+----------------------------------------------------------------------------
+Rounding Modes
+
+All four rounding modes prescribed by the IEC/IEEE Standard are implemented
+for all operations that require rounding.  The rounding mode is selected
+by the global variable `float_rounding_mode'.  This variable may be set
+to one of the values `float_round_nearest_even', `float_round_to_zero',
+`float_round_down', or `float_round_up'.  The rounding mode is initialized
+to nearest/even.
+
+
+----------------------------------------------------------------------------
+Extended Double-Precision Rounding Precision
+
+For extended double precision (`floatx80') only, the rounding precision
+of the standard arithmetic operations is controlled by the global variable
+`floatx80_rounding_precision'.  The operations affected are:
+
+   floatx80_add   floatx80_sub   floatx80_mul   floatx80_div   floatx80_sqrt
+
+When `floatx80_rounding_precision' is set to its default value of 80, these
+operations are rounded (as usual) to the full precision of the extended
+double-precision format.  Setting `floatx80_rounding_precision' to 32
+or to 64 causes the operations listed to be rounded to reduced precision
+equivalent to single precision (`float32') or to double precision
+(`float64'), respectively.  When rounding to reduced precision, additional
+bits in the result significand beyond the rounding point are set to zero.
+The consequences of setting `floatx80_rounding_precision' to a value other
+than 32, 64, or 80 is not specified.  Operations other than the ones listed
+above are not affected by `floatx80_rounding_precision'.
+
+
+----------------------------------------------------------------------------
+Exceptions and Exception Flags
+
+All five exception flags required by the IEC/IEEE Standard are
+implemented.  Each flag is stored as a unique bit in the global variable
+`float_exception_flags'.  The positions of the exception flag bits within
+this variable are determined by the bit masks `float_flag_inexact',
+`float_flag_underflow', `float_flag_overflow', `float_flag_divbyzero', and
+`float_flag_invalid'.  The exception flags variable is initialized to all 0,
+meaning no exceptions.
+
+An individual exception flag can be cleared with the statement
+
+    float_exception_flags &= ~ float_flag_<exception>;
+
+where `<exception>' is the appropriate name.  To raise a floating-point
+exception, the SoftFloat function `float_raise' should be used (see below).
+
+In the terminology of the IEC/IEEE Standard, SoftFloat can detect tininess
+for underflow either before or after rounding.  The choice is made by
+the global variable `float_detect_tininess', which can be set to either
+`float_tininess_before_rounding' or `float_tininess_after_rounding'.
+Detecting tininess after rounding is better because it results in fewer
+spurious underflow signals.  The other option is provided for compatibility
+with some systems.  Like most systems, SoftFloat always detects loss of
+accuracy for underflow as an inexact result.
+
+
+----------------------------------------------------------------------------
+Function Details
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Conversion Functions
+
+All conversions among the floating-point formats are supported, as are all
+conversions between a floating-point format and 32-bit and 64-bit signed
+integers.  The complete set of conversion functions is:
+
+   int32_to_float32      int64_to_float32
+   int32_to_float64      int64_to_float32
+   int32_to_floatx80     int64_to_floatx80
+   int32_to_float128     int64_to_float128
+
+   float32_to_int32      float32_to_int64
+   float32_to_int32      float64_to_int64
+   floatx80_to_int32     floatx80_to_int64
+   float128_to_int32     float128_to_int64
+
+   float32_to_float64    float32_to_floatx80   float32_to_float128
+   float64_to_float32    float64_to_floatx80   float64_to_float128
+   floatx80_to_float32   floatx80_to_float64   floatx80_to_float128
+   float128_to_float32   float128_to_float64   float128_to_floatx80
+
+Each conversion function takes one operand of the appropriate type and
+returns one result.  Conversions from a smaller to a larger floating-point
+format are always exact and so require no rounding.  Conversions from 32-bit
+integers to double precision and larger formats are also exact, and likewise
+for conversions from 64-bit integers to extended double and quadruple
+precisions.
+
+Conversions from floating-point to integer raise the invalid exception if
+the source value cannot be rounded to a representable integer of the desired
+size (32 or 64 bits).  If the floating-point operand is a NaN, the largest
+positive integer is returned.  Otherwise, if the conversion overflows, the
+largest integer with the same sign as the operand is returned.
+
+On conversions to integer, if the floating-point operand is not already
+an integer value, the operand is rounded according to the current rounding
+mode as specified by `float_rounding_mode'.  Because C (and perhaps other
+languages) require that conversions to integers be rounded toward zero, the
+following functions are provided for improved speed and convenience:
+
+   float32_to_int32_round_to_zero    float32_to_int64_round_to_zero
+   float64_to_int32_round_to_zero    float64_to_int64_round_to_zero
+   floatx80_to_int32_round_to_zero   floatx80_to_int64_round_to_zero
+   float128_to_int32_round_to_zero   float128_to_int64_round_to_zero
+
+These variant functions ignore `float_rounding_mode' and always round toward
+zero.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Standard Arithmetic Functions
+
+The following standard arithmetic functions are provided:
+
+   float32_add    float32_sub    float32_mul    float32_div    float32_sqrt
+   float64_add    float64_sub    float64_mul    float64_div    float64_sqrt
+   floatx80_add   floatx80_sub   floatx80_mul   floatx80_div   floatx80_sqrt
+   float128_add   float128_sub   float128_mul   float128_div   float128_sqrt
+
+Each function takes two operands, except for `sqrt' which takes only one.
+The operands and result are all of the same type.
+
+Rounding of the extended double-precision (`floatx80') functions is affected
+by the `floatx80_rounding_precision' variable, as explained above in the
+section _Extended Double-Precision Rounding Precision_.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Remainder Functions
+
+For each format, SoftFloat implements the remainder function according to
+the IEC/IEEE Standard.  The remainder functions are:
+
+   float32_rem
+   float64_rem
+   floatx80_rem
+   float128_rem
+
+Each remainder function takes two operands.  The operands and result are all
+of the same type.  Given operands x and y, the remainder functions return
+the value x - n*y, where n is the integer closest to x/y.  If x/y is exactly
+halfway between two integers, n is the even integer closest to x/y.  The
+remainder functions are always exact and so require no rounding.
+
+Depending on the relative magnitudes of the operands, the remainder
+functions can take considerably longer to execute than the other SoftFloat
+functions.  This is inherent in the remainder operation itself and is not a
+flaw in the SoftFloat implementation.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Round-to-Integer Functions
+
+For each format, SoftFloat implements the round-to-integer function
+specified by the IEC/IEEE Standard.  The functions are:
+
+   float32_round_to_int
+   float64_round_to_int
+   floatx80_round_to_int
+   float128_round_to_int
+
+Each function takes a single floating-point operand and returns a result of
+the same type.  (Note that the result is not an integer type.)  The operand
+is rounded to an exact integer according to the current rounding mode, and
+the resulting integer value is returned in the same floating-point format.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Comparison Functions
+
+The following floating-point comparison functions are provided:
+
+   float32_eq    float32_le    float32_lt
+   float64_eq    float64_le    float64_lt
+   floatx80_eq   floatx80_le   floatx80_lt
+   float128_eq   float128_le   float128_lt
+
+Each function takes two operands of the same type and returns a 1 or 0
+representing either _true_ or _false_.  The abbreviation `eq' stands for
+``equal'' (=); `le' stands for ``less than or equal'' (<=); and `lt' stands
+for ``less than'' (<).
+
+The standard greater-than (>), greater-than-or-equal (>=), and not-equal
+(!=) functions are easily obtained using the functions provided.  The
+not-equal function is just the logical complement of the equal function.
+The greater-than-or-equal function is identical to the less-than-or-equal
+function with the operands reversed, and the greater-than function is
+identical to the less-than function with the operands reversed.
+
+The IEC/IEEE Standard specifies that the less-than-or-equal and less-than
+functions raise the invalid exception if either input is any kind of NaN.
+The equal functions, on the other hand, are defined not to raise the invalid
+exception on quiet NaNs.  For completeness, SoftFloat provides the following
+additional functions:
+
+   float32_eq_signaling    float32_le_quiet    float32_lt_quiet
+   float64_eq_signaling    float64_le_quiet    float64_lt_quiet
+   floatx80_eq_signaling   floatx80_le_quiet   floatx80_lt_quiet
+   float128_eq_signaling   float128_le_quiet   float128_lt_quiet
+
+The `signaling' equal functions are identical to the standard functions
+except that the invalid exception is raised for any NaN input.  Likewise,
+the `quiet' comparison functions are identical to their counterparts except
+that the invalid exception is not raised for quiet NaNs.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Signaling NaN Test Functions
+
+The following functions test whether a floating-point value is a signaling
+NaN:
+
+   float32_is_signaling_nan
+   float64_is_signaling_nan
+   floatx80_is_signaling_nan
+   float128_is_signaling_nan
+
+The functions take one operand and return 1 if the operand is a signaling
+NaN and 0 otherwise.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+Raise-Exception Function
+
+SoftFloat provides a function for raising floating-point exceptions:
+
+    float_raise
+
+The function takes a mask indicating the set of exceptions to raise.  No
+result is returned.  In addition to setting the specified exception flags,
+this function may cause a trap or abort appropriate for the current system.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
+
+----------------------------------------------------------------------------
+Contact Information
+
+At the time of this writing, the most up-to-date information about
+SoftFloat and the latest release can be found at the Web page `http://
+www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
+
+
diff --git a/float/softfloat/softfloat/bits32/386-Win32-GCC/milieu.h b/float/softfloat/softfloat/bits32/386-Win32-GCC/milieu.h
new file mode 100644
index 00000000..2da74cd7
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/386-Win32-GCC/milieu.h
@@ -0,0 +1,45 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Include common integer types and flags.
+*----------------------------------------------------------------------------*/
+#include "../../../processors/386-GCC.h"
+
+/*----------------------------------------------------------------------------
+| Symbolic Boolean literals.
+*----------------------------------------------------------------------------*/
+enum {
+    FALSE = 0,
+    TRUE  = 1
+};
+
diff --git a/float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat-specialize b/float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat-specialize
new file mode 100644
index 00000000..7c360a0d
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat-specialize
@@ -0,0 +1,258 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Underflow tininess-detection mode, statically initialized to default value.
+| (The declaration in `softfloat.h' must match the `int8' type here.)
+*----------------------------------------------------------------------------*/
+int8 float_detect_tininess = float_tininess_after_rounding;
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'.  Floating-point traps can be
+| defined here if desired.  It is currently not possible for such a trap
+| to substitute a result value.  If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise( int8 flags )
+{
+
+    float_exception_flags |= flags;
+
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+    flag sign;
+    bits32 high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+enum {
+    float32_default_nan = 0xFFC00000
+};
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_nan( float32 a )
+{
+
+    return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_signaling_nan( float32 a )
+{
+
+    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+    commonNaNT z;
+
+    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>31;
+    z.low = 0;
+    z.high = a<<9;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float32_is_nan( a );
+    aIsSignalingNaN = float32_is_signaling_nan( a );
+    bIsNaN = float32_is_nan( b );
+    bIsSignalingNaN = float32_is_signaling_nan( b );
+    a |= 0x00400000;
+    b |= 0x00400000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsSignalingNaN ) {
+        if ( bIsSignalingNaN ) goto returnLargerSignificand;
+        return bIsNaN ? b : a;
+    }
+    else if ( aIsNaN ) {
+        if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+        if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
+        if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
+        return ( a < b ) ? a : b;
+    }
+    else {
+        return b;
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.  The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+enum {
+    float64_default_nan_high = 0xFFF80000,
+    float64_default_nan_low  = 0x00000000
+};
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_nan( float64 a )
+{
+
+    return
+           ( 0xFFE00000 <= (bits32) ( a.high<<1 ) )
+        && ( a.low || ( a.high & 0x000FFFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_signaling_nan( float64 a )
+{
+
+    return
+           ( ( ( a.high>>19 ) & 0xFFF ) == 0xFFE )
+        && ( a.low || ( a.high & 0x0007FFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+    commonNaNT z;
+
+    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>31;
+    shortShift64Left( a.high, a.low, 12, &z.high, &z.low );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+    float64 z;
+
+    shift64Right( a.high, a.low, 12, &z.high, &z.low );
+    z.high |= ( ( (bits32) a.sign )<<31 ) | 0x7FF80000;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float64_is_nan( a );
+    aIsSignalingNaN = float64_is_signaling_nan( a );
+    bIsNaN = float64_is_nan( b );
+    bIsSignalingNaN = float64_is_signaling_nan( b );
+    a.high |= 0x00080000;
+    b.high |= 0x00080000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsSignalingNaN ) {
+        if ( bIsSignalingNaN ) goto returnLargerSignificand;
+        return bIsNaN ? b : a;
+    }
+    else if ( aIsNaN ) {
+        if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+        if ( lt64( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
+        if ( lt64( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
+        return ( a.high < b.high ) ? a : b;
+    }
+    else {
+        return b;
+    }
+
+}
+
diff --git a/float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat.h b/float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat.h
new file mode 100644
index 00000000..89df732c
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/386-Win32-GCC/softfloat.h
@@ -0,0 +1,134 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+typedef unsigned int float32;
+typedef struct {
+    unsigned int low, high;
+} float64;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern signed char float_detect_tininess;
+enum {
+    float_tininess_after_rounding  = 0,
+    float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern signed char float_rounding_mode;
+enum {
+    float_round_nearest_even = 0,
+    float_round_down         = 1,
+    float_round_up           = 2,
+    float_round_to_zero      = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern signed char float_exception_flags;
+enum {
+    float_flag_invalid   =  1,
+    float_flag_divbyzero =  4,
+    float_flag_overflow  =  8,
+    float_flag_underflow = 16,
+    float_flag_inexact   = 32
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( signed char );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( int );
+float64 int32_to_float64( int );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float32_to_int32( float32 );
+int float32_to_int32_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+char float32_eq( float32, float32 );
+char float32_le( float32, float32 );
+char float32_lt( float32, float32 );
+char float32_eq_signaling( float32, float32 );
+char float32_le_quiet( float32, float32 );
+char float32_lt_quiet( float32, float32 );
+char float32_is_signaling_nan( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float64_to_int32( float64 );
+int float64_to_int32_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+char float64_eq( float64, float64 );
+char float64_le( float64, float64 );
+char float64_lt( float64, float64 );
+char float64_eq_signaling( float64, float64 );
+char float64_le_quiet( float64, float64 );
+char float64_lt_quiet( float64, float64 );
+char float64_is_signaling_nan( float64 );
+
diff --git a/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h b/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h
new file mode 100644
index 00000000..9c753384
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/milieu.h
@@ -0,0 +1,45 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Include common integer types and flags.
+*----------------------------------------------------------------------------*/
+#include "../../../processors/SPARC-GCC.h"
+
+/*----------------------------------------------------------------------------
+| Symbolic Boolean literals.
+*----------------------------------------------------------------------------*/
+enum {
+    FALSE = 0,
+    TRUE  = 1
+};
+
diff --git a/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize b/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize
new file mode 100644
index 00000000..946e7001
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat-specialize
@@ -0,0 +1,232 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Underflow tininess-detection mode, statically initialized to default value.
+| (The declaration in `softfloat.h' must match the `int8' type here.)
+*----------------------------------------------------------------------------*/
+int8 float_detect_tininess = float_tininess_before_rounding;
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'.  Floating-point traps can be
+| defined here if desired.  It is currently not possible for such a trap
+| to substitute a result value.  If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise( int8 flags )
+{
+
+    float_exception_flags |= flags;
+
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+    flag sign;
+    bits32 high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+enum {
+    float32_default_nan = 0x7FFFFFFF
+};
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_nan( float32 a )
+{
+
+    return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_signaling_nan( float32 a )
+{
+
+    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+    commonNaNT z;
+
+    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>31;
+    z.low = 0;
+    z.high = a<<9;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float32_is_nan( a );
+    aIsSignalingNaN = float32_is_signaling_nan( a );
+    bIsNaN = float32_is_nan( b );
+    bIsSignalingNaN = float32_is_signaling_nan( b );
+    a |= 0x00400000;
+    b |= 0x00400000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
+
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.  The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+enum {
+    float64_default_nan_high = 0x7FFFFFFF,
+    float64_default_nan_low  = 0xFFFFFFFF
+};
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_nan( float64 a )
+{
+
+    return
+           ( 0xFFE00000 <= (bits32) ( a.high<<1 ) )
+        && ( a.low || ( a.high & 0x000FFFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_signaling_nan( float64 a )
+{
+
+    return
+           ( ( ( a.high>>19 ) & 0xFFF ) == 0xFFE )
+        && ( a.low || ( a.high & 0x0007FFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+    commonNaNT z;
+
+    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>31;
+    shortShift64Left( a.high, a.low, 12, &z.high, &z.low );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+    float64 z;
+
+    shift64Right( a.high, a.low, 12, &z.high, &z.low );
+    z.high |= ( ( (bits32) a.sign )<<31 ) | 0x7FF80000;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float64_is_nan( a );
+    aIsSignalingNaN = float64_is_signaling_nan( a );
+    bIsNaN = float64_is_nan( b );
+    bIsSignalingNaN = float64_is_signaling_nan( b );
+    a.high |= 0x00080000;
+    b.high |= 0x00080000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
+
+}
+
diff --git a/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h b/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h
new file mode 100644
index 00000000..d86d2ecb
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/SPARC-Solaris-GCC/softfloat.h
@@ -0,0 +1,134 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+typedef unsigned int float32;
+typedef struct {
+    unsigned int high, low;
+} float64;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern int float_detect_tininess;
+enum {
+    float_tininess_after_rounding  = 0,
+    float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern int float_rounding_mode;
+enum {
+    float_round_nearest_even = 0,
+    float_round_to_zero      = 1,
+    float_round_up           = 2,
+    float_round_down         = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern int float_exception_flags;
+enum {
+    float_flag_inexact   =  1,
+    float_flag_divbyzero =  2,
+    float_flag_underflow =  4,
+    float_flag_overflow  =  8,
+    float_flag_invalid   = 16
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( int );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( int );
+float64 int32_to_float64( int );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float32_to_int32( float32 );
+int float32_to_int32_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+int float32_eq( float32, float32 );
+int float32_le( float32, float32 );
+int float32_lt( float32, float32 );
+int float32_eq_signaling( float32, float32 );
+int float32_le_quiet( float32, float32 );
+int float32_lt_quiet( float32, float32 );
+int float32_is_signaling_nan( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float64_to_int32( float64 );
+int float64_to_int32_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+int float64_eq( float64, float64 );
+int float64_le( float64, float64 );
+int float64_lt( float64, float64 );
+int float64_eq_signaling( float64, float64 );
+int float64_le_quiet( float64, float64 );
+int float64_lt_quiet( float64, float64 );
+int float64_is_signaling_nan( float64 );
+
diff --git a/float/softfloat/softfloat/bits32/softfloat-macros b/float/softfloat/softfloat/bits32/softfloat-macros
new file mode 100644
index 00000000..b4f74486
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/softfloat-macros
@@ -0,0 +1,627 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Shifts `a' right by the number of bits given in `count'.  If any nonzero
+| bits are shifted off, they are ``jammed'' into the least significant bit of
+| the result by setting the least significant bit to 1.  The value of `count'
+| can be arbitrarily large; in particular, if `count' is greater than 32, the
+| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+| The result is stored in the location pointed to by `zPtr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
+{
+    bits32 z;
+
+    if ( count == 0 ) {
+        z = a;
+    }
+    else if ( count < 32 ) {
+        z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
+    }
+    else {
+        z = ( a != 0 );
+    }
+    *zPtr = z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
+| number of bits given in `count'.  Any bits shifted off are lost.  The value
+| of `count' can be arbitrarily large; in particular, if `count' is greater
+| than 64, the result will be 0.  The result is broken into two 32-bit pieces
+| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift64Right(
+     bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+    bits32 z0, z1;
+    int8 negCount = ( - count ) & 31;
+
+    if ( count == 0 ) {
+        z1 = a1;
+        z0 = a0;
+    }
+    else if ( count < 32 ) {
+        z1 = ( a0<<negCount ) | ( a1>>count );
+        z0 = a0>>count;
+    }
+    else {
+        z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
+        z0 = 0;
+    }
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
+| number of bits given in `count'.  If any nonzero bits are shifted off, they
+| are ``jammed'' into the least significant bit of the result by setting the
+| least significant bit to 1.  The value of `count' can be arbitrarily large;
+| in particular, if `count' is greater than 64, the result will be either 0
+| or 1, depending on whether the concatenation of `a0' and `a1' is zero or
+| nonzero.  The result is broken into two 32-bit pieces which are stored at
+| the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift64RightJamming(
+     bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+    bits32 z0, z1;
+    int8 negCount = ( - count ) & 31;
+
+    if ( count == 0 ) {
+        z1 = a1;
+        z0 = a0;
+    }
+    else if ( count < 32 ) {
+        z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
+        z0 = a0>>count;
+    }
+    else {
+        if ( count == 32 ) {
+            z1 = a0 | ( a1 != 0 );
+        }
+        else if ( count < 64 ) {
+            z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
+        }
+        else {
+            z1 = ( ( a0 | a1 ) != 0 );
+        }
+        z0 = 0;
+    }
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
+| by 32 _plus_ the number of bits given in `count'.  The shifted result is
+| at most 64 nonzero bits; these are broken into two 32-bit pieces which are
+| stored at the locations pointed to by `z0Ptr' and `z1Ptr'.  The bits shifted
+| off form a third 32-bit result as follows:  The _last_ bit shifted off is
+| the most-significant bit of the extra result, and the other 31 bits of the
+| extra result are all zero if and only if _all_but_the_last_ bits shifted off
+| were all zero.  This extra result is stored in the location pointed to by
+| `z2Ptr'.  The value of `count' can be arbitrarily large.
+|     (This routine makes more sense if `a0', `a1', and `a2' are considered
+| to form a fixed-point value with binary point between `a1' and `a2'.  This
+| fixed-point value is shifted right by the number of bits given in `count',
+| and the integer part of the result is returned at the locations pointed to
+| by `z0Ptr' and `z1Ptr'.  The fractional part of the result may be slightly
+| corrupted as described above, and is returned at the location pointed to by
+| `z2Ptr'.)
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift64ExtraRightJamming(
+     bits32 a0,
+     bits32 a1,
+     bits32 a2,
+     int16 count,
+     bits32 *z0Ptr,
+     bits32 *z1Ptr,
+     bits32 *z2Ptr
+ )
+{
+    bits32 z0, z1, z2;
+    int8 negCount = ( - count ) & 31;
+
+    if ( count == 0 ) {
+        z2 = a2;
+        z1 = a1;
+        z0 = a0;
+    }
+    else {
+        if ( count < 32 ) {
+            z2 = a1<<negCount;
+            z1 = ( a0<<negCount ) | ( a1>>count );
+            z0 = a0>>count;
+        }
+        else {
+            if ( count == 32 ) {
+                z2 = a1;
+                z1 = a0;
+            }
+            else {
+                a2 |= a1;
+                if ( count < 64 ) {
+                    z2 = a0<<negCount;
+                    z1 = a0>>( count & 31 );
+                }
+                else {
+                    z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
+                    z1 = 0;
+                }
+            }
+            z0 = 0;
+        }
+        z2 |= ( a2 != 0 );
+    }
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
+| number of bits given in `count'.  Any bits shifted off are lost.  The value
+| of `count' must be less than 32.  The result is broken into two 32-bit
+| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shortShift64Left(
+     bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+
+    *z1Ptr = a1<<count;
+    *z0Ptr =
+        ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
+| by the number of bits given in `count'.  Any bits shifted off are lost.
+| The value of `count' must be less than 32.  The result is broken into three
+| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
+| `z1Ptr', and `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shortShift96Left(
+     bits32 a0,
+     bits32 a1,
+     bits32 a2,
+     int16 count,
+     bits32 *z0Ptr,
+     bits32 *z1Ptr,
+     bits32 *z2Ptr
+ )
+{
+    bits32 z0, z1, z2;
+    int8 negCount;
+
+    z2 = a2<<count;
+    z1 = a1<<count;
+    z0 = a0<<count;
+    if ( 0 < count ) {
+        negCount = ( ( - count ) & 31 );
+        z1 |= a2>>negCount;
+        z0 |= a1>>negCount;
+    }
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
+| value formed by concatenating `b0' and `b1'.  Addition is modulo 2^64, so
+| any carry out is lost.  The result is broken into two 32-bit pieces which
+| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ add64(
+     bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+    bits32 z1;
+
+    z1 = a1 + b1;
+    *z1Ptr = z1;
+    *z0Ptr = a0 + b0 + ( z1 < a1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
+| 96-bit value formed by concatenating `b0', `b1', and `b2'.  Addition is
+| modulo 2^96, so any carry out is lost.  The result is broken into three
+| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
+| `z1Ptr', and `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ add96(
+     bits32 a0,
+     bits32 a1,
+     bits32 a2,
+     bits32 b0,
+     bits32 b1,
+     bits32 b2,
+     bits32 *z0Ptr,
+     bits32 *z1Ptr,
+     bits32 *z2Ptr
+ )
+{
+    bits32 z0, z1, z2;
+    int8 carry0, carry1;
+
+    z2 = a2 + b2;
+    carry1 = ( z2 < a2 );
+    z1 = a1 + b1;
+    carry0 = ( z1 < a1 );
+    z0 = a0 + b0;
+    z1 += carry1;
+    z0 += ( z1 < carry1 );
+    z0 += carry0;
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
+| 64-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
+| 2^64, so any borrow out (carry out) is lost.  The result is broken into two
+| 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
+| `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ sub64(
+     bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+
+    *z1Ptr = a1 - b1;
+    *z0Ptr = a0 - b0 - ( a1 < b1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
+| the 96-bit value formed by concatenating `a0', `a1', and `a2'.  Subtraction
+| is modulo 2^96, so any borrow out (carry out) is lost.  The result is broken
+| into three 32-bit pieces which are stored at the locations pointed to by
+| `z0Ptr', `z1Ptr', and `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ sub96(
+     bits32 a0,
+     bits32 a1,
+     bits32 a2,
+     bits32 b0,
+     bits32 b1,
+     bits32 b2,
+     bits32 *z0Ptr,
+     bits32 *z1Ptr,
+     bits32 *z2Ptr
+ )
+{
+    bits32 z0, z1, z2;
+    int8 borrow0, borrow1;
+
+    z2 = a2 - b2;
+    borrow1 = ( a2 < b2 );
+    z1 = a1 - b1;
+    borrow0 = ( a1 < b1 );
+    z0 = a0 - b0;
+    z0 -= ( z1 < borrow1 );
+    z1 -= borrow1;
+    z0 -= borrow0;
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Multiplies `a' by `b' to obtain a 64-bit product.  The product is broken
+| into two 32-bit pieces which are stored at the locations pointed to by
+| `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+    bits16 aHigh, aLow, bHigh, bLow;
+    bits32 z0, zMiddleA, zMiddleB, z1;
+
+    aLow = a;
+    aHigh = a>>16;
+    bLow = b;
+    bHigh = b>>16;
+    z1 = ( (bits32) aLow ) * bLow;
+    zMiddleA = ( (bits32) aLow ) * bHigh;
+    zMiddleB = ( (bits32) aHigh ) * bLow;
+    z0 = ( (bits32) aHigh ) * bHigh;
+    zMiddleA += zMiddleB;
+    z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
+    zMiddleA <<= 16;
+    z1 += zMiddleA;
+    z0 += ( z1 < zMiddleA );
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
+| to obtain a 96-bit product.  The product is broken into three 32-bit pieces
+| which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
+| `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ mul64By32To96(
+     bits32 a0,
+     bits32 a1,
+     bits32 b,
+     bits32 *z0Ptr,
+     bits32 *z1Ptr,
+     bits32 *z2Ptr
+ )
+{
+    bits32 z0, z1, z2, more1;
+
+    mul32To64( a1, b, &z1, &z2 );
+    mul32To64( a0, b, &z0, &more1 );
+    add64( z0, more1, 0, z1, &z0, &z1 );
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
+| 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
+| product.  The product is broken into four 32-bit pieces which are stored at
+| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ mul64To128(
+     bits32 a0,
+     bits32 a1,
+     bits32 b0,
+     bits32 b1,
+     bits32 *z0Ptr,
+     bits32 *z1Ptr,
+     bits32 *z2Ptr,
+     bits32 *z3Ptr
+ )
+{
+    bits32 z0, z1, z2, z3;
+    bits32 more1, more2;
+
+    mul32To64( a1, b1, &z2, &z3 );
+    mul32To64( a1, b0, &z1, &more2 );
+    add64( z1, more2, 0, z2, &z1, &z2 );
+    mul32To64( a0, b0, &z0, &more1 );
+    add64( z0, more1, 0, z1, &z0, &z1 );
+    mul32To64( a0, b1, &more1, &more2 );
+    add64( more1, more2, 0, z2, &more1, &z2 );
+    add64( z0, z1, 0, more1, &z0, &z1 );
+    *z3Ptr = z3;
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns an approximation to the 32-bit integer quotient obtained by dividing
+| `b' into the 64-bit value formed by concatenating `a0' and `a1'.  The
+| divisor `b' must be at least 2^31.  If q is the exact quotient truncated
+| toward zero, the approximation returned lies between q and q + 2 inclusive.
+| If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
+| unsigned integer is returned.
+*----------------------------------------------------------------------------*/
+
+static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
+{
+    bits32 b0, b1;
+    bits32 rem0, rem1, term0, term1;
+    bits32 z;
+
+    if ( b <= a0 ) return 0xFFFFFFFF;
+    b0 = b>>16;
+    z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
+    mul32To64( b, z, &term0, &term1 );
+    sub64( a0, a1, term0, term1, &rem0, &rem1 );
+    while ( ( (sbits32) rem0 ) < 0 ) {
+        z -= 0x10000;
+        b1 = b<<16;
+        add64( rem0, rem1, b0, b1, &rem0, &rem1 );
+    }
+    rem0 = ( rem0<<16 ) | ( rem1>>16 );
+    z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns an approximation to the square root of the 32-bit significand given
+| by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
+| `aExp' (the least significant bit) is 1, the integer returned approximates
+| 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
+| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
+| case, the approximation returned lies strictly within +/-2 of the exact
+| value.
+*----------------------------------------------------------------------------*/
+
+static bits32 estimateSqrt32( int16 aExp, bits32 a )
+{
+    static const bits16 sqrtOddAdjustments[] = {
+        0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
+        0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
+    };
+    static const bits16 sqrtEvenAdjustments[] = {
+        0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
+        0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
+    };
+    int8 index;
+    bits32 z;
+
+    index = ( a>>27 ) & 15;
+    if ( aExp & 1 ) {
+        z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
+        z = ( ( a / z )<<14 ) + ( z<<15 );
+        a >>= 1;
+    }
+    else {
+        z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
+        z = a / z + z;
+        z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
+        if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
+    }
+    return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the number of leading 0 bits before the most-significant 1 bit of
+| `a'.  If `a' is zero, 32 is returned.
+*----------------------------------------------------------------------------*/
+
+static int8 countLeadingZeros32( bits32 a )
+{
+    static const int8 countLeadingZerosHigh[] = {
+        8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
+        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+    };
+    int8 shiftCount;
+
+    shiftCount = 0;
+    if ( a < 0x10000 ) {
+        shiftCount += 16;
+        a <<= 16;
+    }
+    if ( a < 0x1000000 ) {
+        shiftCount += 8;
+        a <<= 8;
+    }
+    shiftCount += countLeadingZerosHigh[ a>>24 ];
+    return shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
+| equal to the 64-bit value formed by concatenating `b0' and `b1'.  Otherwise,
+| returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+    return ( a0 == b0 ) && ( a1 == b1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
+| than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
+| Otherwise, returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
+| than the 64-bit value formed by concatenating `b0' and `b1'.  Otherwise,
+| returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
+| equal to the 64-bit value formed by concatenating `b0' and `b1'.  Otherwise,
+| returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+    return ( a0 != b0 ) || ( a1 != b1 );
+
+}
+
diff --git a/float/softfloat/softfloat/bits32/softfloat.c b/float/softfloat/softfloat/bits32/softfloat.c
new file mode 100644
index 00000000..e715ac60
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/softfloat.c
@@ -0,0 +1,2270 @@
+
+/*============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#include "milieu.h"
+#include "softfloat.h"
+
+/*----------------------------------------------------------------------------
+| Floating-point rounding mode and exception flags.
+*----------------------------------------------------------------------------*/
+int8 float_rounding_mode = float_round_nearest_even;
+int8 float_exception_flags = 0;
+
+/*----------------------------------------------------------------------------
+| Primitive arithmetic functions, including multi-word arithmetic, and
+| division and square root approximations.  (Can be specialized to target if
+| desired.)
+*----------------------------------------------------------------------------*/
+#include "softfloat-macros"
+
+/*----------------------------------------------------------------------------
+| Functions and definitions to determine:  (1) whether tininess for underflow
+| is detected before or after rounding by default, (2) what (if anything)
+| happens when exceptions are raised, (3) how signaling NaNs are distinguished
+| from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
+| are propagated from function inputs to output.  These details are target-
+| specific.
+*----------------------------------------------------------------------------*/
+#include "softfloat-specialize"
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits32 extractFloat32Frac( float32 a )
+{
+
+    return a & 0x007FFFFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int16 extractFloat32Exp( float32 a )
+{
+
+    return ( a>>23 ) & 0xFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat32Sign( float32 a )
+{
+
+    return a>>31;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal single-precision floating-point value represented
+| by the denormalized significand `aSig'.  The normalized exponent and
+| significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros32( aSig ) - 8;
+    *zSigPtr = aSig<<shiftCount;
+    *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+| single-precision floating-point value, returning the result.  After being
+| shifted into the proper positions, the three fields are simply added
+| together to form the result.  This means that any integer portion of `zSig'
+| will be added into the exponent.  Since a properly normalized significand
+| will have an integer portion equal to 1, the `zExp' input should be 1 less
+| than the desired result exponent whenever `zSig' is a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+
+    return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper single-precision floating-
+| point value corresponding to the abstract input.  Ordinarily, the abstract
+| value is simply rounded and packed into the single-precision format, with
+| the inexact exception raised if the abstract input cannot be represented
+| exactly.  However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned.  If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal single-
+| precision floating-point number.
+|     The input significand `zSig' has its binary point between bits 30
+| and 29, which is 7 bits to the left of the usual location.  This shifted
+| significand must be normalized or smaller.  If `zSig' is not normalized,
+| `zExp' must be 0; in that case, the result returned is a subnormal number,
+| and it must not require rounding.  In the usual case that `zSig' is
+| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+| The handling of underflow and overflow follows the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+    int8 roundingMode;
+    flag roundNearestEven;
+    int8 roundIncrement, roundBits;
+    flag isTiny;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = roundingMode == float_round_nearest_even;
+    roundIncrement = 0x40;
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            roundIncrement = 0;
+        }
+        else {
+            roundIncrement = 0x7F;
+            if ( zSign ) {
+                if ( roundingMode == float_round_up ) roundIncrement = 0;
+            }
+            else {
+                if ( roundingMode == float_round_down ) roundIncrement = 0;
+            }
+        }
+    }
+    roundBits = zSig & 0x7F;
+    if ( 0xFD <= (bits16) zExp ) {
+        if (    ( 0xFD < zExp )
+             || (    ( zExp == 0xFD )
+                  && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
+           ) {
+            float_raise( float_flag_overflow | float_flag_inexact );
+            return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
+        }
+        if ( zExp < 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < -1 )
+                || ( zSig + roundIncrement < 0x80000000 );
+            shift32RightJamming( zSig, - zExp, &zSig );
+            zExp = 0;
+            roundBits = zSig & 0x7F;
+            if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+        }
+    }
+    if ( roundBits ) float_exception_flags |= float_flag_inexact;
+    zSig = ( zSig + roundIncrement )>>7;
+    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+    if ( zSig == 0 ) zExp = 0;
+    return packFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper single-precision floating-
+| point value corresponding to the abstract input.  This routine is just like
+| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
+| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+| floating-point exponent.
+*----------------------------------------------------------------------------*/
+
+static float32
+ normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros32( zSig ) - 1;
+    return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the least-significant 32 fraction bits of the double-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits32 extractFloat64Frac1( float64 a )
+{
+
+    return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the most-significant 20 fraction bits of the double-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits32 extractFloat64Frac0( float64 a )
+{
+
+    return a.high & 0x000FFFFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int16 extractFloat64Exp( float64 a )
+{
+
+    return ( a.high>>20 ) & 0x7FF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat64Sign( float64 a )
+{
+
+    return a.high>>31;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal double-precision floating-point value represented
+| by the denormalized significand formed by the concatenation of `aSig0' and
+| `aSig1'.  The normalized exponent is stored at the location pointed to by
+| `zExpPtr'.  The most significant 21 bits of the normalized significand are
+| stored at the location pointed to by `zSig0Ptr', and the least significant
+| 32 bits of the normalized significand are stored at the location pointed to
+| by `zSig1Ptr'.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat64Subnormal(
+     bits32 aSig0,
+     bits32 aSig1,
+     int16 *zExpPtr,
+     bits32 *zSig0Ptr,
+     bits32 *zSig1Ptr
+ )
+{
+    int8 shiftCount;
+
+    if ( aSig0 == 0 ) {
+        shiftCount = countLeadingZeros32( aSig1 ) - 11;
+        if ( shiftCount < 0 ) {
+            *zSig0Ptr = aSig1>>( - shiftCount );
+            *zSig1Ptr = aSig1<<( shiftCount & 31 );
+        }
+        else {
+            *zSig0Ptr = aSig1<<shiftCount;
+            *zSig1Ptr = 0;
+        }
+        *zExpPtr = - shiftCount - 31;
+    }
+    else {
+        shiftCount = countLeadingZeros32( aSig0 ) - 11;
+        shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
+        *zExpPtr = 1 - shiftCount;
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', the exponent `zExp', and the significand formed by
+| the concatenation of `zSig0' and `zSig1' into a double-precision floating-
+| point value, returning the result.  After being shifted into the proper
+| positions, the three fields `zSign', `zExp', and `zSig0' are simply added
+| together to form the most significant 32 bits of the result.  This means
+| that any integer portion of `zSig0' will be added into the exponent.  Since
+| a properly normalized significand will have an integer portion equal to 1,
+| the `zExp' input should be 1 less than the desired result exponent whenever
+| `zSig0' and `zSig1' concatenated form a complete, normalized significand.
+*----------------------------------------------------------------------------*/
+
+INLINE float64
+ packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
+{
+    float64 z;
+
+    z.low = zSig1;
+    z.high = ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<20 ) + zSig0;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0', `zSig1',
+| and `zSig2', and returns the proper double-precision floating-point value
+| corresponding to the abstract input.  Ordinarily, the abstract value is
+| simply rounded and packed into the double-precision format, with the inexact
+| exception raised if the abstract input cannot be represented exactly.
+| However, if the abstract value is too large, the overflow and inexact
+| exceptions are raised and an infinity or maximal finite value is returned.
+| If the abstract value is too small, the input value is rounded to a
+| subnormal number, and the underflow and inexact exceptions are raised if the
+| abstract input cannot be represented exactly as a subnormal double-precision
+| floating-point number.
+|     The input significand must be normalized or smaller.  If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding.  In the
+| usual case that the input significand is normalized, `zExp' must be 1 less
+| than the ``true'' floating-point exponent.  The handling of underflow and
+| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64
+ roundAndPackFloat64(
+     flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )
+{
+    int8 roundingMode;
+    flag roundNearestEven, increment, isTiny;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    increment = ( (sbits32) zSig2 < 0 );
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            increment = 0;
+        }
+        else {
+            if ( zSign ) {
+                increment = ( roundingMode == float_round_down ) && zSig2;
+            }
+            else {
+                increment = ( roundingMode == float_round_up ) && zSig2;
+            }
+        }
+    }
+    if ( 0x7FD <= (bits16) zExp ) {
+        if (    ( 0x7FD < zExp )
+             || (    ( zExp == 0x7FD )
+                  && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )
+                  && increment
+                )
+           ) {
+            float_raise( float_flag_overflow | float_flag_inexact );
+            if (    ( roundingMode == float_round_to_zero )
+                 || ( zSign && ( roundingMode == float_round_up ) )
+                 || ( ! zSign && ( roundingMode == float_round_down ) )
+               ) {
+                return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );
+            }
+            return packFloat64( zSign, 0x7FF, 0, 0 );
+        }
+        if ( zExp < 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < -1 )
+                || ! increment
+                || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );
+            shift64ExtraRightJamming(
+                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
+            zExp = 0;
+            if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
+            if ( roundNearestEven ) {
+                increment = ( (sbits32) zSig2 < 0 );
+            }
+            else {
+                if ( zSign ) {
+                    increment = ( roundingMode == float_round_down ) && zSig2;
+                }
+                else {
+                    increment = ( roundingMode == float_round_up ) && zSig2;
+                }
+            }
+        }
+    }
+    if ( zSig2 ) float_exception_flags |= float_flag_inexact;
+    if ( increment ) {
+        add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
+        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
+    }
+    else {
+        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
+    }
+    return packFloat64( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand formed by the concatenation of `zSig0' and `zSig1', and
+| returns the proper double-precision floating-point value corresponding
+| to the abstract input.  This routine is just like `roundAndPackFloat64'
+| except that the input significand has fewer bits and does not have to be
+| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
+| point exponent.
+*----------------------------------------------------------------------------*/
+
+static float64
+ normalizeRoundAndPackFloat64(
+     flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
+{
+    int8 shiftCount;
+    bits32 zSig2;
+
+    if ( zSig0 == 0 ) {
+        zSig0 = zSig1;
+        zSig1 = 0;
+        zExp -= 32;
+    }
+    shiftCount = countLeadingZeros32( zSig0 ) - 11;
+    if ( 0 <= shiftCount ) {
+        zSig2 = 0;
+        shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+    }
+    else {
+        shift64ExtraRightJamming(
+            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
+    }
+    zExp -= shiftCount;
+    return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a' to
+| the single-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 int32_to_float32( int32 a )
+{
+    flag zSign;
+
+    if ( a == 0 ) return 0;
+    if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+    zSign = ( a < 0 );
+    return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a' to
+| the double-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 int32_to_float64( int32 a )
+{
+    flag zSign;
+    bits32 absA;
+    int8 shiftCount;
+    bits32 zSig0, zSig1;
+
+    if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros32( absA ) - 11;
+    if ( 0 <= shiftCount ) {
+        zSig0 = absA<<shiftCount;
+        zSig1 = 0;
+    }
+    else {
+        shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );
+    }
+    return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float32_to_int32( float32 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig, aSigExtra;
+    int32 z;
+    int8 roundingMode;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    shiftCount = aExp - 0x96;
+    if ( 0 <= shiftCount ) {
+        if ( 0x9E <= aExp ) {
+            if ( a != 0xCF000000 ) {
+                float_raise( float_flag_invalid );
+                if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+                    return 0x7FFFFFFF;
+                }
+            }
+            return (sbits32) 0x80000000;
+        }
+        z = ( aSig | 0x00800000 )<<shiftCount;
+        if ( aSign ) z = - z;
+    }
+    else {
+        if ( aExp < 0x7E ) {
+            aSigExtra = aExp | aSig;
+            z = 0;
+        }
+        else {
+            aSig |= 0x00800000;
+            aSigExtra = aSig<<( shiftCount & 31 );
+            z = aSig>>( - shiftCount );
+        }
+        if ( aSigExtra ) float_exception_flags |= float_flag_inexact;
+        roundingMode = float_rounding_mode;
+        if ( roundingMode == float_round_nearest_even ) {
+            if ( (sbits32) aSigExtra < 0 ) {
+                ++z;
+                if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;
+            }
+            if ( aSign ) z = - z;
+        }
+        else {
+            aSigExtra = ( aSigExtra != 0 );
+            if ( aSign ) {
+                z += ( roundingMode == float_round_down ) & aSigExtra;
+                z = - z;
+            }
+            else {
+                z += ( roundingMode == float_round_up ) & aSigExtra;
+            }
+        }
+    }
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float32_to_int32_round_to_zero( float32 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig;
+    int32 z;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    shiftCount = aExp - 0x9E;
+    if ( 0 <= shiftCount ) {
+        if ( a != 0xCF000000 ) {
+            float_raise( float_flag_invalid );
+            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
+        }
+        return (sbits32) 0x80000000;
+    }
+    else if ( aExp <= 0x7E ) {
+        if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    aSig = ( aSig | 0x00800000 )<<8;
+    z = aSig>>( - shiftCount );
+    if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    if ( aSign ) z = - z;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the double-precision floating-point format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float32_to_float64( float32 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 aSig, zSig0, zSig1;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
+        return packFloat64( aSign, 0x7FF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+        --aExp;
+    }
+    shift64Right( aSig, 0, 3, &zSig0, &zSig1 );
+    return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Rounds the single-precision floating-point value `a' to an integer,
+| and returns the result as a single-precision floating-point value.  The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_round_to_int( float32 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 lastBitMask, roundBitsMask;
+    int8 roundingMode;
+    float32 z;
+
+    aExp = extractFloat32Exp( a );
+    if ( 0x96 <= aExp ) {
+        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
+            return propagateFloat32NaN( a, a );
+        }
+        return a;
+    }
+    if ( aExp <= 0x7E ) {
+        if ( (bits32) ( a<<1 ) == 0 ) return a;
+        float_exception_flags |= float_flag_inexact;
+        aSign = extractFloat32Sign( a );
+        switch ( float_rounding_mode ) {
+         case float_round_nearest_even:
+            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
+                return packFloat32( aSign, 0x7F, 0 );
+            }
+            break;
+         case float_round_down:
+            return aSign ? 0xBF800000 : 0;
+         case float_round_up:
+            return aSign ? 0x80000000 : 0x3F800000;
+        }
+        return packFloat32( aSign, 0, 0 );
+    }
+    lastBitMask = 1;
+    lastBitMask <<= 0x96 - aExp;
+    roundBitsMask = lastBitMask - 1;
+    z = a;
+    roundingMode = float_rounding_mode;
+    if ( roundingMode == float_round_nearest_even ) {
+        z += lastBitMask>>1;
+        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+    }
+    else if ( roundingMode != float_round_to_zero ) {
+        if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+            z += roundBitsMask;
+        }
+    }
+    z &= ~ roundBitsMask;
+    if ( z != a ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the single-precision
+| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
+| before being returned.  `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig;
+    int16 expDiff;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    expDiff = aExp - bExp;
+    aSig <<= 6;
+    bSig <<= 6;
+    if ( 0 < expDiff ) {
+        if ( aExp == 0xFF ) {
+            if ( aSig ) return propagateFloat32NaN( a, b );
+            return a;
+        }
+        if ( bExp == 0 ) {
+            --expDiff;
+        }
+        else {
+            bSig |= 0x20000000;
+        }
+        shift32RightJamming( bSig, expDiff, &bSig );
+        zExp = aExp;
+    }
+    else if ( expDiff < 0 ) {
+        if ( bExp == 0xFF ) {
+            if ( bSig ) return propagateFloat32NaN( a, b );
+            return packFloat32( zSign, 0xFF, 0 );
+        }
+        if ( aExp == 0 ) {
+            ++expDiff;
+        }
+        else {
+            aSig |= 0x20000000;
+        }
+        shift32RightJamming( aSig, - expDiff, &aSig );
+        zExp = bExp;
+    }
+    else {
+        if ( aExp == 0xFF ) {
+            if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+            return a;
+        }
+        if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
+        zSig = 0x40000000 + aSig + bSig;
+        zExp = aExp;
+        goto roundAndPack;
+    }
+    aSig |= 0x20000000;
+    zSig = ( aSig + bSig )<<1;
+    --zExp;
+    if ( (sbits32) zSig < 0 ) {
+        zSig = aSig + bSig;
+        ++zExp;
+    }
+ roundAndPack:
+    return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the single-
+| precision floating-point values `a' and `b'.  If `zSign' is 1, the
+| difference is negated before being returned.  `zSign' is ignored if the
+| result is a NaN.  The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig;
+    int16 expDiff;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    expDiff = aExp - bExp;
+    aSig <<= 7;
+    bSig <<= 7;
+    if ( 0 < expDiff ) goto aExpBigger;
+    if ( expDiff < 0 ) goto bExpBigger;
+    if ( aExp == 0xFF ) {
+        if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( aExp == 0 ) {
+        aExp = 1;
+        bExp = 1;
+    }
+    if ( bSig < aSig ) goto aBigger;
+    if ( aSig < bSig ) goto bBigger;
+    return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        return packFloat32( zSign ^ 1, 0xFF, 0 );
+    }
+    if ( aExp == 0 ) {
+        ++expDiff;
+    }
+    else {
+        aSig |= 0x40000000;
+    }
+    shift32RightJamming( aSig, - expDiff, &aSig );
+    bSig |= 0x40000000;
+ bBigger:
+    zSig = bSig - aSig;
+    zExp = bExp;
+    zSign ^= 1;
+    goto normalizeRoundAndPack;
+ aExpBigger:
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return propagateFloat32NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        --expDiff;
+    }
+    else {
+        bSig |= 0x40000000;
+    }
+    shift32RightJamming( bSig, expDiff, &bSig );
+    aSig |= 0x40000000;
+ aBigger:
+    zSig = aSig - bSig;
+    zExp = aExp;
+ normalizeRoundAndPack:
+    --zExp;
+    return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the single-precision floating-point values `a'
+| and `b'.  The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_add( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign == bSign ) {
+        return addFloat32Sigs( a, b, aSign );
+    }
+    else {
+        return subFloat32Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the single-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_sub( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign == bSign ) {
+        return subFloat32Sigs( a, b, aSign );
+    }
+    else {
+        return addFloat32Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the single-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_mul( float32 a, float32 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig0, zSig1;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    bSign = extractFloat32Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0xFF ) {
+        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+            return propagateFloat32NaN( a, b );
+        }
+        if ( ( bExp | bSig ) == 0 ) {
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        return packFloat32( zSign, 0xFF, 0 );
+    }
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        if ( ( aExp | aSig ) == 0 ) {
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        return packFloat32( zSign, 0xFF, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
+        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+    }
+    zExp = aExp + bExp - 0x7F;
+    aSig = ( aSig | 0x00800000 )<<7;
+    bSig = ( bSig | 0x00800000 )<<8;
+    mul32To64( aSig, bSig, &zSig0, &zSig1 );
+    zSig0 |= ( zSig1 != 0 );
+    if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
+        zSig0 <<= 1;
+        --zExp;
+    }
+    return roundAndPackFloat32( zSign, zExp, zSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the single-precision floating-point value `a'
+| by the corresponding value `b'.  The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_div( float32 a, float32 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    bSign = extractFloat32Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return propagateFloat32NaN( a, b );
+        if ( bExp == 0xFF ) {
+            if ( bSig ) return propagateFloat32NaN( a, b );
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        return packFloat32( zSign, 0xFF, 0 );
+    }
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        return packFloat32( zSign, 0, 0 );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            if ( ( aExp | aSig ) == 0 ) {
+                float_raise( float_flag_invalid );
+                return float32_default_nan;
+            }
+            float_raise( float_flag_divbyzero );
+            return packFloat32( zSign, 0xFF, 0 );
+        }
+        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = aExp - bExp + 0x7D;
+    aSig = ( aSig | 0x00800000 )<<7;
+    bSig = ( bSig | 0x00800000 )<<8;
+    if ( bSig <= ( aSig + aSig ) ) {
+        aSig >>= 1;
+        ++zExp;
+    }
+    zSig = estimateDiv64To32( aSig, 0, bSig );
+    if ( ( zSig & 0x3F ) <= 2 ) {
+        mul32To64( bSig, zSig, &term0, &term1 );
+        sub64( aSig, 0, term0, term1, &rem0, &rem1 );
+        while ( (sbits32) rem0 < 0 ) {
+            --zSig;
+            add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
+        }
+        zSig |= ( rem1 != 0 );
+    }
+    return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the single-precision floating-point value `a'
+| with respect to the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_rem( float32 a, float32 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, expDiff;
+    bits32 aSig, bSig, q, allZero, alternateASig;
+    sbits32 sigMean;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    bSign = extractFloat32Sign( b );
+    if ( aExp == 0xFF ) {
+        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+            return propagateFloat32NaN( a, b );
+        }
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return a;
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    expDiff = aExp - bExp;
+    aSig = ( aSig | 0x00800000 )<<8;
+    bSig = ( bSig | 0x00800000 )<<8;
+    if ( expDiff < 0 ) {
+        if ( expDiff < -1 ) return a;
+        aSig >>= 1;
+    }
+    q = ( bSig <= aSig );
+    if ( q ) aSig -= bSig;
+    expDiff -= 32;
+    while ( 0 < expDiff ) {
+        q = estimateDiv64To32( aSig, 0, bSig );
+        q = ( 2 < q ) ? q - 2 : 0;
+        aSig = - ( ( bSig>>2 ) * q );
+        expDiff -= 30;
+    }
+    expDiff += 32;
+    if ( 0 < expDiff ) {
+        q = estimateDiv64To32( aSig, 0, bSig );
+        q = ( 2 < q ) ? q - 2 : 0;
+        q >>= 32 - expDiff;
+        bSig >>= 2;
+        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+    }
+    else {
+        aSig >>= 2;
+        bSig >>= 2;
+    }
+    do {
+        alternateASig = aSig;
+        ++q;
+        aSig -= bSig;
+    } while ( 0 <= (sbits32) aSig );
+    sigMean = aSig + alternateASig;
+    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+        aSig = alternateASig;
+    }
+    zSign = ( (sbits32) aSig < 0 );
+    if ( zSign ) aSig = - aSig;
+    return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the single-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_sqrt( float32 a )
+{
+    flag aSign;
+    int16 aExp, zExp;
+    bits32 aSig, zSig, rem0, rem1, term0, term1;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return propagateFloat32NaN( a, 0 );
+        if ( ! aSign ) return a;
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( aSign ) {
+        if ( ( aExp | aSig ) == 0 ) return a;
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return 0;
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
+    aSig = ( aSig | 0x00800000 )<<8;
+    zSig = estimateSqrt32( aExp, aSig ) + 2;
+    if ( ( zSig & 0x7F ) <= 5 ) {
+        if ( zSig < 2 ) {
+            zSig = 0x7FFFFFFF;
+            goto roundAndPack;
+        }
+        else {
+            aSig >>= aExp & 1;
+            mul32To64( zSig, zSig, &term0, &term1 );
+            sub64( aSig, 0, term0, term1, &rem0, &rem1 );
+            while ( (sbits32) rem0 < 0 ) {
+                --zSig;
+                shortShift64Left( 0, zSig, 1, &term0, &term1 );
+                term1 |= 1;
+                add64( rem0, rem1, term0, term1, &rem0, &rem1 );
+            }
+            zSig |= ( ( rem0 | rem1 ) != 0 );
+        }
+    }
+    shift32RightJamming( zSig, 1, &zSig );
+ roundAndPack:
+    return roundAndPackFloat32( 0, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_eq( float32 a, float32 b )
+{
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise.  The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_le( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+    return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_lt( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+    return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The invalid exception is
+| raised if either operand is a NaN.  Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_eq_signaling( float32 a, float32 b )
+{
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
+| cause an exception.  Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_le_quiet( float32 a, float32 b )
+{
+    flag aSign, bSign;
+    int16 aExp, bExp;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+    return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
+| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_lt_quiet( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+    return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float64_to_int32( float64 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig0, aSig1, absZ, aSigExtra;
+    int32 z;
+    int8 roundingMode;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    shiftCount = aExp - 0x413;
+    if ( 0 <= shiftCount ) {
+        if ( 0x41E < aExp ) {
+            if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+            goto invalid;
+        }
+        shortShift64Left(
+            aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
+        if ( 0x80000000 < absZ ) goto invalid;
+    }
+    else {
+        aSig1 = ( aSig1 != 0 );
+        if ( aExp < 0x3FE ) {
+            aSigExtra = aExp | aSig0 | aSig1;
+            absZ = 0;
+        }
+        else {
+            aSig0 |= 0x00100000;
+            aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
+            absZ = aSig0>>( - shiftCount );
+        }
+    }
+    roundingMode = float_rounding_mode;
+    if ( roundingMode == float_round_nearest_even ) {
+        if ( (sbits32) aSigExtra < 0 ) {
+            ++absZ;
+            if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;
+        }
+        z = aSign ? - absZ : absZ;
+    }
+    else {
+        aSigExtra = ( aSigExtra != 0 );
+        if ( aSign ) {
+            z = - (   absZ
+                    + ( ( roundingMode == float_round_down ) & aSigExtra ) );
+        }
+        else {
+            z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );
+        }
+    }
+    if ( ( aSign ^ ( z < 0 ) ) && z ) {
+ invalid:
+        float_raise( float_flag_invalid );
+        return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+    }
+    if ( aSigExtra ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float64_to_int32_round_to_zero( float64 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig0, aSig1, absZ, aSigExtra;
+    int32 z;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    shiftCount = aExp - 0x413;
+    if ( 0 <= shiftCount ) {
+        if ( 0x41E < aExp ) {
+            if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+            goto invalid;
+        }
+        shortShift64Left(
+            aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
+    }
+    else {
+        if ( aExp < 0x3FF ) {
+            if ( aExp | aSig0 | aSig1 ) {
+                float_exception_flags |= float_flag_inexact;
+            }
+            return 0;
+        }
+        aSig0 |= 0x00100000;
+        aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
+        absZ = aSig0>>( - shiftCount );
+    }
+    z = aSign ? - absZ : absZ;
+    if ( ( aSign ^ ( z < 0 ) ) && z ) {
+ invalid:
+        float_raise( float_flag_invalid );
+        return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+    }
+    if ( aSigExtra ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the single-precision floating-point format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float64_to_float32( float64 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 aSig0, aSig1, zSig;
+    bits32 allZero;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp == 0x7FF ) {
+        if ( aSig0 | aSig1 ) {
+            return commonNaNToFloat32( float64ToCommonNaN( a ) );
+        }
+        return packFloat32( aSign, 0xFF, 0 );
+    }
+    shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );
+    if ( aExp ) zSig |= 0x40000000;
+    return roundAndPackFloat32( aSign, aExp - 0x381, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Rounds the double-precision floating-point value `a' to an integer,
+| and returns the result as a double-precision floating-point value.  The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_round_to_int( float64 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 lastBitMask, roundBitsMask;
+    int8 roundingMode;
+    float64 z;
+
+    aExp = extractFloat64Exp( a );
+    if ( 0x413 <= aExp ) {
+        if ( 0x433 <= aExp ) {
+            if (    ( aExp == 0x7FF )
+                 && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {
+                return propagateFloat64NaN( a, a );
+            }
+            return a;
+        }
+        lastBitMask = 1;
+        lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;
+        roundBitsMask = lastBitMask - 1;
+        z = a;
+        roundingMode = float_rounding_mode;
+        if ( roundingMode == float_round_nearest_even ) {
+            if ( lastBitMask ) {
+                add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
+                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+            }
+            else {
+                if ( (sbits32) z.low < 0 ) {
+                    ++z.high;
+                    if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;
+                }
+            }
+        }
+        else if ( roundingMode != float_round_to_zero ) {
+            if (   extractFloat64Sign( z )
+                 ^ ( roundingMode == float_round_up ) ) {
+                add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
+            }
+        }
+        z.low &= ~ roundBitsMask;
+    }
+    else {
+        if ( aExp <= 0x3FE ) {
+            if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+            float_exception_flags |= float_flag_inexact;
+            aSign = extractFloat64Sign( a );
+            switch ( float_rounding_mode ) {
+             case float_round_nearest_even:
+                if (    ( aExp == 0x3FE )
+                     && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )
+                   ) {
+                    return packFloat64( aSign, 0x3FF, 0, 0 );
+                }
+                break;
+             case float_round_down:
+                return
+                      aSign ? packFloat64( 1, 0x3FF, 0, 0 )
+                    : packFloat64( 0, 0, 0, 0 );
+             case float_round_up:
+                return
+                      aSign ? packFloat64( 1, 0, 0, 0 )
+                    : packFloat64( 0, 0x3FF, 0, 0 );
+            }
+            return packFloat64( aSign, 0, 0, 0 );
+        }
+        lastBitMask = 1;
+        lastBitMask <<= 0x413 - aExp;
+        roundBitsMask = lastBitMask - 1;
+        z.low = 0;
+        z.high = a.high;
+        roundingMode = float_rounding_mode;
+        if ( roundingMode == float_round_nearest_even ) {
+            z.high += lastBitMask>>1;
+            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
+                z.high &= ~ lastBitMask;
+            }
+        }
+        else if ( roundingMode != float_round_to_zero ) {
+            if (   extractFloat64Sign( z )
+                 ^ ( roundingMode == float_round_up ) ) {
+                z.high |= ( a.low != 0 );
+                z.high += roundBitsMask;
+            }
+        }
+        z.high &= ~ roundBitsMask;
+    }
+    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the double-precision
+| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
+| before being returned.  `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+    int16 expDiff;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    bSig1 = extractFloat64Frac1( b );
+    bSig0 = extractFloat64Frac0( b );
+    bExp = extractFloat64Exp( b );
+    expDiff = aExp - bExp;
+    if ( 0 < expDiff ) {
+        if ( aExp == 0x7FF ) {
+            if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
+            return a;
+        }
+        if ( bExp == 0 ) {
+            --expDiff;
+        }
+        else {
+            bSig0 |= 0x00100000;
+        }
+        shift64ExtraRightJamming(
+            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
+        zExp = aExp;
+    }
+    else if ( expDiff < 0 ) {
+        if ( bExp == 0x7FF ) {
+            if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+            return packFloat64( zSign, 0x7FF, 0, 0 );
+        }
+        if ( aExp == 0 ) {
+            ++expDiff;
+        }
+        else {
+            aSig0 |= 0x00100000;
+        }
+        shift64ExtraRightJamming(
+            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
+        zExp = bExp;
+    }
+    else {
+        if ( aExp == 0x7FF ) {
+            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+                return propagateFloat64NaN( a, b );
+            }
+            return a;
+        }
+        add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+        if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );
+        zSig2 = 0;
+        zSig0 |= 0x00200000;
+        zExp = aExp;
+        goto shiftRight1;
+    }
+    aSig0 |= 0x00100000;
+    add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+    --zExp;
+    if ( zSig0 < 0x00200000 ) goto roundAndPack;
+    ++zExp;
+ shiftRight1:
+    shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ roundAndPack:
+    return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the double-
+| precision floating-point values `a' and `b'.  If `zSign' is 1, the
+| difference is negated before being returned.  `zSign' is ignored if the
+| result is a NaN.  The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+    int16 expDiff;
+    float64 z;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    bSig1 = extractFloat64Frac1( b );
+    bSig0 = extractFloat64Frac0( b );
+    bExp = extractFloat64Exp( b );
+    expDiff = aExp - bExp;
+    shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );
+    shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );
+    if ( 0 < expDiff ) goto aExpBigger;
+    if ( expDiff < 0 ) goto bExpBigger;
+    if ( aExp == 0x7FF ) {
+        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+            return propagateFloat64NaN( a, b );
+        }
+        float_raise( float_flag_invalid );
+        z.low = float64_default_nan_low;
+        z.high = float64_default_nan_high;
+        return z;
+    }
+    if ( aExp == 0 ) {
+        aExp = 1;
+        bExp = 1;
+    }
+    if ( bSig0 < aSig0 ) goto aBigger;
+    if ( aSig0 < bSig0 ) goto bBigger;
+    if ( bSig1 < aSig1 ) goto aBigger;
+    if ( aSig1 < bSig1 ) goto bBigger;
+    return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );
+ bExpBigger:
+    if ( bExp == 0x7FF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+        return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        ++expDiff;
+    }
+    else {
+        aSig0 |= 0x40000000;
+    }
+    shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+    bSig0 |= 0x40000000;
+ bBigger:
+    sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
+    zExp = bExp;
+    zSign ^= 1;
+    goto normalizeRoundAndPack;
+ aExpBigger:
+    if ( aExp == 0x7FF ) {
+        if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        --expDiff;
+    }
+    else {
+        bSig0 |= 0x40000000;
+    }
+    shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
+    aSig0 |= 0x40000000;
+ aBigger:
+    sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+    zExp = aExp;
+ normalizeRoundAndPack:
+    --zExp;
+    return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the double-precision floating-point values `a'
+| and `b'.  The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_add( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign == bSign ) {
+        return addFloat64Sigs( a, b, aSign );
+    }
+    else {
+        return subFloat64Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the double-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_sub( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign == bSign ) {
+        return subFloat64Sigs( a, b, aSign );
+    }
+    else {
+        return addFloat64Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the double-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_mul( float64 a, float64 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+    float64 z;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    bSig1 = extractFloat64Frac1( b );
+    bSig0 = extractFloat64Frac0( b );
+    bExp = extractFloat64Exp( b );
+    bSign = extractFloat64Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FF ) {
+        if (    ( aSig0 | aSig1 )
+             || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
+            return propagateFloat64NaN( a, b );
+        }
+        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
+        return packFloat64( zSign, 0x7FF, 0, 0 );
+    }
+    if ( bExp == 0x7FF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+            float_raise( float_flag_invalid );
+            z.low = float64_default_nan_low;
+            z.high = float64_default_nan_high;
+            return z;
+        }
+        return packFloat64( zSign, 0x7FF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
+        normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    if ( bExp == 0 ) {
+        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
+        normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+    }
+    zExp = aExp + bExp - 0x400;
+    aSig0 |= 0x00100000;
+    shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );
+    mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
+    add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
+    zSig2 |= ( zSig3 != 0 );
+    if ( 0x00200000 <= zSig0 ) {
+        shift64ExtraRightJamming(
+            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+        ++zExp;
+    }
+    return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the double-precision floating-point value `a'
+| by the corresponding value `b'.  The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_div( float64 a, float64 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+    bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+    float64 z;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    bSig1 = extractFloat64Frac1( b );
+    bSig0 = extractFloat64Frac0( b );
+    bExp = extractFloat64Exp( b );
+    bSign = extractFloat64Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FF ) {
+        if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
+        if ( bExp == 0x7FF ) {
+            if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+            goto invalid;
+        }
+        return packFloat64( zSign, 0x7FF, 0, 0 );
+    }
+    if ( bExp == 0x7FF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+        return packFloat64( zSign, 0, 0, 0 );
+    }
+    if ( bExp == 0 ) {
+        if ( ( bSig0 | bSig1 ) == 0 ) {
+            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+                float_raise( float_flag_invalid );
+                z.low = float64_default_nan_low;
+                z.high = float64_default_nan_high;
+                return z;
+            }
+            float_raise( float_flag_divbyzero );
+            return packFloat64( zSign, 0x7FF, 0, 0 );
+        }
+        normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
+        normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    zExp = aExp - bExp + 0x3FD;
+    shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );
+    shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
+    if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {
+        shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
+        ++zExp;
+    }
+    zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );
+    mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
+    sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
+    while ( (sbits32) rem0 < 0 ) {
+        --zSig0;
+        add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
+    }
+    zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );
+    if ( ( zSig1 & 0x3FF ) <= 4 ) {
+        mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
+        sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
+        while ( (sbits32) rem1 < 0 ) {
+            --zSig1;
+            add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
+        }
+        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+    }
+    shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );
+    return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the double-precision floating-point value `a'
+| with respect to the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_rem( float64 a, float64 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, expDiff;
+    bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+    bits32 allZero, alternateASig0, alternateASig1, sigMean1;
+    sbits32 sigMean0;
+    float64 z;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    bSig1 = extractFloat64Frac1( b );
+    bSig0 = extractFloat64Frac0( b );
+    bExp = extractFloat64Exp( b );
+    bSign = extractFloat64Sign( b );
+    if ( aExp == 0x7FF ) {
+        if (    ( aSig0 | aSig1 )
+             || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
+            return propagateFloat64NaN( a, b );
+        }
+        goto invalid;
+    }
+    if ( bExp == 0x7FF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        if ( ( bSig0 | bSig1 ) == 0 ) {
+ invalid:
+            float_raise( float_flag_invalid );
+            z.low = float64_default_nan_low;
+            z.high = float64_default_nan_high;
+            return z;
+        }
+        normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return a;
+        normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    expDiff = aExp - bExp;
+    if ( expDiff < -1 ) return a;
+    shortShift64Left(
+        aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );
+    shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
+    q = le64( bSig0, bSig1, aSig0, aSig1 );
+    if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+    expDiff -= 32;
+    while ( 0 < expDiff ) {
+        q = estimateDiv64To32( aSig0, aSig1, bSig0 );
+        q = ( 4 < q ) ? q - 4 : 0;
+        mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
+        shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );
+        shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );
+        sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );
+        expDiff -= 29;
+    }
+    if ( -32 < expDiff ) {
+        q = estimateDiv64To32( aSig0, aSig1, bSig0 );
+        q = ( 4 < q ) ? q - 4 : 0;
+        q >>= - expDiff;
+        shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
+        expDiff += 24;
+        if ( expDiff < 0 ) {
+            shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+        }
+        else {
+            shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
+        }
+        mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
+        sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
+    }
+    else {
+        shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );
+        shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
+    }
+    do {
+        alternateASig0 = aSig0;
+        alternateASig1 = aSig1;
+        ++q;
+        sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+    } while ( 0 <= (sbits32) aSig0 );
+    add64(
+        aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
+    if (    ( sigMean0 < 0 )
+         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
+        aSig0 = alternateASig0;
+        aSig1 = alternateASig1;
+    }
+    zSign = ( (sbits32) aSig0 < 0 );
+    if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
+    return
+        normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the double-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_sqrt( float64 a )
+{
+    flag aSign;
+    int16 aExp, zExp;
+    bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+    bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+    float64 z;
+
+    aSig1 = extractFloat64Frac1( a );
+    aSig0 = extractFloat64Frac0( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp == 0x7FF ) {
+        if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );
+        if ( ! aSign ) return a;
+        goto invalid;
+    }
+    if ( aSign ) {
+        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
+ invalid:
+        float_raise( float_flag_invalid );
+        z.low = float64_default_nan_low;
+        z.high = float64_default_nan_high;
+        return z;
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );
+        normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
+    aSig0 |= 0x00100000;
+    shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );
+    zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;
+    if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;
+    doubleZSig0 = zSig0 + zSig0;
+    shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );
+    mul32To64( zSig0, zSig0, &term0, &term1 );
+    sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+    while ( (sbits32) rem0 < 0 ) {
+        --zSig0;
+        doubleZSig0 -= 2;
+        add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );
+    }
+    zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );
+    if ( ( zSig1 & 0x1FF ) <= 5 ) {
+        if ( zSig1 == 0 ) zSig1 = 1;
+        mul32To64( doubleZSig0, zSig1, &term1, &term2 );
+        sub64( rem1, 0, term1, term2, &rem1, &rem2 );
+        mul32To64( zSig1, zSig1, &term2, &term3 );
+        sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+        while ( (sbits32) rem1 < 0 ) {
+            --zSig1;
+            shortShift64Left( 0, zSig1, 1, &term2, &term3 );
+            term3 |= 1;
+            term2 |= doubleZSig0;
+            add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+        }
+        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+    }
+    shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );
+    return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_eq( float64 a, float64 b )
+{
+
+    if (    (    ( extractFloat64Exp( a ) == 0x7FF )
+              && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+         || (    ( extractFloat64Exp( b ) == 0x7FF )
+              && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+       ) {
+        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    return
+           ( a.low == b.low )
+        && (    ( a.high == b.high )
+             || (    ( a.low == 0 )
+                  && ( (bits32) ( ( a.high | b.high )<<1 ) == 0 ) )
+           );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise.  The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_le( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat64Exp( a ) == 0x7FF )
+              && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+         || (    ( extractFloat64Exp( b ) == 0x7FF )
+              && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            || (    ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 == 0 );
+    }
+    return
+          aSign ? le64( b.high, b.low, a.high, a.low )
+        : le64( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_lt( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat64Exp( a ) == 0x7FF )
+              && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+         || (    ( extractFloat64Exp( b ) == 0x7FF )
+              && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            && (    ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 != 0 );
+    }
+    return
+          aSign ? lt64( b.high, b.low, a.high, a.low )
+        : lt64( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The invalid exception is
+| raised if either operand is a NaN.  Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_eq_signaling( float64 a, float64 b )
+{
+
+    if (    (    ( extractFloat64Exp( a ) == 0x7FF )
+              && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+         || (    ( extractFloat64Exp( b ) == 0x7FF )
+              && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    return
+           ( a.low == b.low )
+        && (    ( a.high == b.high )
+             || (    ( a.low == 0 )
+                  && ( (bits32) ( ( a.high | b.high )<<1 ) == 0 ) )
+           );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
+| cause an exception.  Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_le_quiet( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat64Exp( a ) == 0x7FF )
+              && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+         || (    ( extractFloat64Exp( b ) == 0x7FF )
+              && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+       ) {
+        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            || (    ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 == 0 );
+    }
+    return
+          aSign ? le64( b.high, b.low, a.high, a.low )
+        : le64( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
+| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_lt_quiet( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat64Exp( a ) == 0x7FF )
+              && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+         || (    ( extractFloat64Exp( b ) == 0x7FF )
+              && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+       ) {
+        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            && (    ( ( (bits32) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 != 0 );
+    }
+    return
+          aSign ? lt64( b.high, b.low, a.high, a.low )
+        : lt64( a.high, a.low, b.high, b.low );
+
+}
+
diff --git a/float/softfloat/softfloat/bits32/templates/milieu.h b/float/softfloat/softfloat/bits32/templates/milieu.h
new file mode 100644
index 00000000..02da6e87
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/templates/milieu.h
@@ -0,0 +1,45 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Include common integer types and flags.
+*----------------------------------------------------------------------------*/
+#include "../../../processors/!!!processor.h"
+
+/*----------------------------------------------------------------------------
+| Symbolic Boolean literals.
+*----------------------------------------------------------------------------*/
+enum {
+    FALSE = 0,
+    TRUE  = 1
+};
+
diff --git a/float/softfloat/softfloat/bits32/templates/softfloat-specialize b/float/softfloat/softfloat/bits32/templates/softfloat-specialize
new file mode 100644
index 00000000..03ea8d27
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/templates/softfloat-specialize
@@ -0,0 +1,242 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Underflow tininess-detection mode, statically initialized to default value.
+| (The declaration in `softfloat.h' must match the `int8' type here.)
+*----------------------------------------------------------------------------*/
+int8 float_detect_tininess = float_tininess_after_rounding;
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'.  Floating-point traps can be
+| defined here if desired.  It is currently not possible for such a trap
+| to substitute a result value.  If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise( int8 flags )
+{
+
+    float_exception_flags |= flags;
+
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+    flag sign;
+    bits32 high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+enum {
+    float32_default_nan = 0xFFFFFFFF
+};
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_nan( float32 a )
+{
+
+    return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_signaling_nan( float32 a )
+{
+
+    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+    commonNaNT z;
+
+    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>31;
+    z.low = 0;
+    z.high = a<<9;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>9 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float32_is_nan( a );
+    aIsSignalingNaN = float32_is_signaling_nan( a );
+    bIsNaN = float32_is_nan( b );
+    bIsSignalingNaN = float32_is_signaling_nan( b );
+    a |= 0x00400000;
+    b |= 0x00400000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsNaN ) {
+        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+    }
+    else {
+        return b;
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.  The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+enum {
+    float64_default_nan_high = 0xFFFFFFFF,
+    float64_default_nan_low  = 0xFFFFFFFF
+};
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_nan( float64 a )
+{
+
+    return
+           ( 0xFFE00000 <= (bits32) ( a.high<<1 ) )
+        && ( a.low || ( a.high & 0x000FFFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_signaling_nan( float64 a )
+{
+
+    return
+           ( ( ( a.high>>19 ) & 0xFFF ) == 0xFFE )
+        && ( a.low || ( a.high & 0x0007FFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+    commonNaNT z;
+
+    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>31;
+    shortShift64Left( a.high, a.low, 12, &z.high, &z.low );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+    float64 z;
+
+    shift64Right( a.high, a.low, 12, &z.high, &z.low );
+    z.high |= ( ( (bits32) a.sign )<<31 ) | 0x7FF80000;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float64_is_nan( a );
+    aIsSignalingNaN = float64_is_signaling_nan( a );
+    bIsNaN = float64_is_nan( b );
+    bIsSignalingNaN = float64_is_signaling_nan( b );
+    a.high |= 0x00080000;
+    b.high |= 0x00080000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsNaN ) {
+        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+    }
+    else {
+        return b;
+    }
+
+}
+
diff --git a/float/softfloat/softfloat/bits32/templates/softfloat.h b/float/softfloat/softfloat/bits32/templates/softfloat.h
new file mode 100644
index 00000000..53413009
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/templates/softfloat.h
@@ -0,0 +1,134 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+typedef !!!bits32 float32;
+typedef struct {
+    !!!bits32 high, low;
+} float64;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern !!!int8 float_detect_tininess;
+enum {
+    float_tininess_after_rounding  = 0,
+    float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern !!!int8 float_rounding_mode;
+enum {
+    float_round_nearest_even = 0,
+    float_round_to_zero      = 1,
+    float_round_down         = 2,
+    float_round_up           = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern !!!int8 float_exception_flags;
+enum {
+    float_flag_inexact   =  1,
+    float_flag_underflow =  2,
+    float_flag_overflow  =  4,
+    float_flag_divbyzero =  8,
+    float_flag_invalid   = 16
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( !!!int8 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( !!!int32 );
+float64 int32_to_float64( !!!int32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+!!!int32 float32_to_int32( float32 );
+!!!int32 float32_to_int32_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+!!!flag float32_eq( float32, float32 );
+!!!flag float32_le( float32, float32 );
+!!!flag float32_lt( float32, float32 );
+!!!flag float32_eq_signaling( float32, float32 );
+!!!flag float32_le_quiet( float32, float32 );
+!!!flag float32_lt_quiet( float32, float32 );
+!!!flag float32_is_signaling_nan( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+!!!int32 float64_to_int32( float64 );
+!!!int32 float64_to_int32_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+!!!flag float64_eq( float64, float64 );
+!!!flag float64_le( float64, float64 );
+!!!flag float64_lt( float64, float64 );
+!!!flag float64_eq_signaling( float64, float64 );
+!!!flag float64_le_quiet( float64, float64 );
+!!!flag float64_lt_quiet( float64, float64 );
+!!!flag float64_is_signaling_nan( float64 );
+
diff --git a/float/softfloat/softfloat/bits32/timesoftfloat.c b/float/softfloat/softfloat/bits32/timesoftfloat.c
new file mode 100644
index 00000000..016cc2fc
--- /dev/null
+++ b/float/softfloat/softfloat/bits32/timesoftfloat.c
@@ -0,0 +1,1050 @@
+
+/*============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#include <stdlib.h>
+#include <stdarg.h>
+#include <string.h>
+#include <stdio.h>
+#include <time.h>
+#include "milieu.h"
+#include "softfloat.h"
+
+enum {
+    minIterations = 1000
+};
+
+void fail( const char *message, ... )
+{
+    va_list varArgs;
+
+    fputs( "timesoftfloat: ", stderr );
+    va_start( varArgs, message );
+    vfprintf( stderr, message, varArgs );
+    va_end( varArgs );
+    fputs( ".\n", stderr );
+    exit( EXIT_FAILURE );
+
+}
+
+static char *functionName, *roundingModeName, *tininessModeName;
+
+static void reportTime( int32 count, long clocks )
+{
+
+    printf(
+        "%8.1f kops/s: %s",
+        ( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000,
+        functionName
+    );
+    if ( roundingModeName ) {
+        fputs( ", rounding ", stdout );
+        fputs( roundingModeName, stdout );
+        if ( tininessModeName ) {
+            fputs( ", tininess ", stdout );
+            fputs( tininessModeName, stdout );
+            fputs( " rounding", stdout );
+        }
+    }
+    fputc( '\n', stdout );
+
+}
+
+enum {
+    numInputs_int32 = 32
+};
+
+static const int32 inputs_int32[ numInputs_int32 ] = {
+    0xFFFFBB79, 0x405CF80F, 0x00000000, 0xFFFFFD04,
+    0xFFF20002, 0x0C8EF795, 0xF00011FF, 0x000006CA,
+    0x00009BFE, 0xFF4862E3, 0x9FFFEFFE, 0xFFFFFFB7,
+    0x0BFF7FFF, 0x0000F37A, 0x0011DFFE, 0x00000006,
+    0xFFF02006, 0xFFFFF7D1, 0x10200003, 0xDE8DF765,
+    0x00003E02, 0x000019E8, 0x0008FFFE, 0xFFFFFB5C,
+    0xFFDF7FFE, 0x07C42FBF, 0x0FFFE3FF, 0x040B9F13,
+    0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A
+};
+
+static void time_a_int32_z_float32( float32 function( int32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_int32_z_float64( float64 function( int32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+enum {
+    numInputs_float32 = 32
+};
+
+static const float32 inputs_float32[ numInputs_float32 ] = {
+    0x4EFA0000, 0xC1D0B328, 0x80000000, 0x3E69A31E,
+    0xAF803EFF, 0x3F800000, 0x17BF8000, 0xE74A301A,
+    0x4E010003, 0x7EE3C75D, 0xBD803FE0, 0xBFFEFF00,
+    0x7981F800, 0x431FFFFC, 0xC100C000, 0x3D87EFFF,
+    0x4103FEFE, 0xBC000007, 0xBF01F7FF, 0x4E6C6B5C,
+    0xC187FFFE, 0xC58B9F13, 0x4F88007F, 0xDF004007,
+    0xB7FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000,
+    0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE
+};
+
+static void time_a_float32_z_int32( int32 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float32_z_float64( float64 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_az_float32( float32 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_ab_float32_z_flag( flag function( float32, float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_abz_float32( float32 function( float32, float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static const float32 inputs_float32_pos[ numInputs_float32 ] = {
+    0x4EFA0000, 0x41D0B328, 0x00000000, 0x3E69A31E,
+    0x2F803EFF, 0x3F800000, 0x17BF8000, 0x674A301A,
+    0x4E010003, 0x7EE3C75D, 0x3D803FE0, 0x3FFEFF00,
+    0x7981F800, 0x431FFFFC, 0x4100C000, 0x3D87EFFF,
+    0x4103FEFE, 0x3C000007, 0x3F01F7FF, 0x4E6C6B5C,
+    0x4187FFFE, 0x458B9F13, 0x4F88007F, 0x5F004007,
+    0x37FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000,
+    0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE
+};
+
+static void time_az_float32_pos( float32 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32_pos[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32_pos[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+enum {
+    numInputs_float64 = 32
+};
+
+static const struct {
+    bits32 high, low;
+} inputs_float64[ numInputs_float64 ] = {
+    { 0x422FFFC0, 0x08000000 },
+    { 0xB7E00004, 0x80000000 },
+    { 0xF3FD2546, 0x120B7935 },
+    { 0x3FF00000, 0x00000000 },
+    { 0xCE07F766, 0xF09588D6 },
+    { 0x80000000, 0x00000000 },
+    { 0x3FCE0004, 0x00000000 },
+    { 0x8313B60F, 0x0032BED8 },
+    { 0xC1EFFFFF, 0xC0002000 },
+    { 0x3FB3C75D, 0x224F2B0F },
+    { 0x7FD00000, 0x004000FF },
+    { 0xA12FFF80, 0x00001FFF },
+    { 0x3EE00000, 0x00FE0000 },
+    { 0x00100000, 0x80000004 },
+    { 0x41CFFFFE, 0x00000020 },
+    { 0x40303FFF, 0xFFFFFFFD },
+    { 0x3FD00000, 0x3FEFFFFF },
+    { 0xBFD00000, 0x10000000 },
+    { 0xB7FC6B5C, 0x16CA55CF },
+    { 0x413EEB94, 0x0B9D1301 },
+    { 0xC7E00200, 0x001FFFFF },
+    { 0x47F00021, 0xFFFFFFFE },
+    { 0xBFFFFFFF, 0xF80000FF },
+    { 0xC07FFFFF, 0xE00FFFFF },
+    { 0x001497A6, 0x3740C5E8 },
+    { 0xC4BFFFE0, 0x001FFFFF },
+    { 0x96FFDFFE, 0xFFFFFFFF },
+    { 0x403FC000, 0x000001FE },
+    { 0xFFD00000, 0x000001F6 },
+    { 0x06404000, 0x02000000 },
+    { 0x479CEE1E, 0x4F789FE0 },
+    { 0xC237FFFF, 0xFFFFFDFE }
+};
+
+static void time_a_float64_z_int32( int32 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float64 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float64[ inputNum ].low;
+            a.high = inputs_float64[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float64[ inputNum ].low;
+        a.high = inputs_float64[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float64_z_float32( float32 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float64 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float64[ inputNum ].low;
+            a.high = inputs_float64[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float64[ inputNum ].low;
+        a.high = inputs_float64[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_az_float64( float64 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float64 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float64[ inputNum ].low;
+            a.high = inputs_float64[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float64[ inputNum ].low;
+        a.high = inputs_float64[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_ab_float64_z_flag( flag function( float64, float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+    float64 a, b;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float64[ inputNumA ].low;
+            a.high = inputs_float64[ inputNumA ].high;
+            b.low = inputs_float64[ inputNumB ].low;
+            b.high = inputs_float64[ inputNumB ].high;
+            function( a, b );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float64[ inputNumA ].low;
+        a.high = inputs_float64[ inputNumA ].high;
+        b.low = inputs_float64[ inputNumB ].low;
+        b.high = inputs_float64[ inputNumB ].high;
+        function( a, b );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_abz_float64( float64 function( float64, float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+    float64 a, b;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float64[ inputNumA ].low;
+            a.high = inputs_float64[ inputNumA ].high;
+            b.low = inputs_float64[ inputNumB ].low;
+            b.high = inputs_float64[ inputNumB ].high;
+            function( a, b );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float64[ inputNumA ].low;
+        a.high = inputs_float64[ inputNumA ].high;
+        b.low = inputs_float64[ inputNumB ].low;
+        b.high = inputs_float64[ inputNumB ].high;
+        function( a, b );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static const struct {
+    bits32 high, low;
+} inputs_float64_pos[ numInputs_float64 ] = {
+    { 0x422FFFC0, 0x08000000 },
+    { 0x37E00004, 0x80000000 },
+    { 0x73FD2546, 0x120B7935 },
+    { 0x3FF00000, 0x00000000 },
+    { 0x4E07F766, 0xF09588D6 },
+    { 0x00000000, 0x00000000 },
+    { 0x3FCE0004, 0x00000000 },
+    { 0x0313B60F, 0x0032BED8 },
+    { 0x41EFFFFF, 0xC0002000 },
+    { 0x3FB3C75D, 0x224F2B0F },
+    { 0x7FD00000, 0x004000FF },
+    { 0x212FFF80, 0x00001FFF },
+    { 0x3EE00000, 0x00FE0000 },
+    { 0x00100000, 0x80000004 },
+    { 0x41CFFFFE, 0x00000020 },
+    { 0x40303FFF, 0xFFFFFFFD },
+    { 0x3FD00000, 0x3FEFFFFF },
+    { 0x3FD00000, 0x10000000 },
+    { 0x37FC6B5C, 0x16CA55CF },
+    { 0x413EEB94, 0x0B9D1301 },
+    { 0x47E00200, 0x001FFFFF },
+    { 0x47F00021, 0xFFFFFFFE },
+    { 0x3FFFFFFF, 0xF80000FF },
+    { 0x407FFFFF, 0xE00FFFFF },
+    { 0x001497A6, 0x3740C5E8 },
+    { 0x44BFFFE0, 0x001FFFFF },
+    { 0x16FFDFFE, 0xFFFFFFFF },
+    { 0x403FC000, 0x000001FE },
+    { 0x7FD00000, 0x000001F6 },
+    { 0x06404000, 0x02000000 },
+    { 0x479CEE1E, 0x4F789FE0 },
+    { 0x4237FFFF, 0xFFFFFDFE }
+};
+
+static void time_az_float64_pos( float64 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float64 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float64_pos[ inputNum ].low;
+            a.high = inputs_float64_pos[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float64_pos[ inputNum ].low;
+        a.high = inputs_float64_pos[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+enum {
+    INT32_TO_FLOAT32 = 1,
+    INT32_TO_FLOAT64,
+    FLOAT32_TO_INT32,
+    FLOAT32_TO_INT32_ROUND_TO_ZERO,
+    FLOAT32_TO_FLOAT64,
+    FLOAT32_ROUND_TO_INT,
+    FLOAT32_ADD,
+    FLOAT32_SUB,
+    FLOAT32_MUL,
+    FLOAT32_DIV,
+    FLOAT32_REM,
+    FLOAT32_SQRT,
+    FLOAT32_EQ,
+    FLOAT32_LE,
+    FLOAT32_LT,
+    FLOAT32_EQ_SIGNALING,
+    FLOAT32_LE_QUIET,
+    FLOAT32_LT_QUIET,
+    FLOAT64_TO_INT32,
+    FLOAT64_TO_INT32_ROUND_TO_ZERO,
+    FLOAT64_TO_FLOAT32,
+    FLOAT64_ROUND_TO_INT,
+    FLOAT64_ADD,
+    FLOAT64_SUB,
+    FLOAT64_MUL,
+    FLOAT64_DIV,
+    FLOAT64_REM,
+    FLOAT64_SQRT,
+    FLOAT64_EQ,
+    FLOAT64_LE,
+    FLOAT64_LT,
+    FLOAT64_EQ_SIGNALING,
+    FLOAT64_LE_QUIET,
+    FLOAT64_LT_QUIET,
+    NUM_FUNCTIONS
+};
+
+static struct {
+    char *name;
+    int8 numInputs;
+    flag roundingMode, tininessMode;
+} functions[ NUM_FUNCTIONS ] = {
+    { 0, 0, 0, 0 },
+    { "int32_to_float32",                1, TRUE,  FALSE },
+    { "int32_to_float64",                1, FALSE, FALSE },
+    { "float32_to_int32",                1, TRUE,  FALSE },
+    { "float32_to_int32_round_to_zero",  1, FALSE, FALSE },
+    { "float32_to_float64",              1, FALSE, FALSE },
+    { "float32_round_to_int",            1, TRUE,  FALSE },
+    { "float32_add",                     2, TRUE,  FALSE },
+    { "float32_sub",                     2, TRUE,  FALSE },
+    { "float32_mul",                     2, TRUE,  TRUE, },
+    { "float32_div",                     2, TRUE,  FALSE },
+    { "float32_rem",                     2, FALSE, FALSE },
+    { "float32_sqrt",                    1, TRUE,  FALSE },
+    { "float32_eq",                      2, FALSE, FALSE },
+    { "float32_le",                      2, FALSE, FALSE },
+    { "float32_lt",                      2, FALSE, FALSE },
+    { "float32_eq_signaling",            2, FALSE, FALSE },
+    { "float32_le_quiet",                2, FALSE, FALSE },
+    { "float32_lt_quiet",                2, FALSE, FALSE },
+    { "float64_to_int32",                1, TRUE,  FALSE },
+    { "float64_to_int32_round_to_zero",  1, FALSE, FALSE },
+    { "float64_to_float32",              1, TRUE,  TRUE, },
+    { "float64_round_to_int",            1, TRUE,  FALSE },
+    { "float64_add",                     2, TRUE,  FALSE },
+    { "float64_sub",                     2, TRUE,  FALSE },
+    { "float64_mul",                     2, TRUE,  TRUE, },
+    { "float64_div",                     2, TRUE,  FALSE },
+    { "float64_rem",                     2, FALSE, FALSE },
+    { "float64_sqrt",                    1, TRUE,  FALSE },
+    { "float64_eq",                      2, FALSE, FALSE },
+    { "float64_le",                      2, FALSE, FALSE },
+    { "float64_lt",                      2, FALSE, FALSE },
+    { "float64_eq_signaling",            2, FALSE, FALSE },
+    { "float64_le_quiet",                2, FALSE, FALSE },
+    { "float64_lt_quiet",                2, FALSE, FALSE }
+};
+
+enum {
+    ROUND_NEAREST_EVEN = 1,
+    ROUND_TO_ZERO,
+    ROUND_DOWN,
+    ROUND_UP,
+    NUM_ROUNDINGMODES
+};
+enum {
+    TININESS_BEFORE_ROUNDING = 1,
+    TININESS_AFTER_ROUNDING,
+    NUM_TININESSMODES
+};
+
+static void
+ timeFunctionVariety(
+     uint8 functionCode, int8 roundingMode, int8 tininessMode )
+{
+    uint8 roundingCode;
+    int8 tininessCode;
+
+    functionName = functions[ functionCode ].name;
+    switch ( roundingMode ) {
+     case 0:
+        roundingModeName = 0;
+        roundingCode = float_round_nearest_even;
+        break;
+     case ROUND_NEAREST_EVEN:
+        roundingModeName = "nearest_even";
+        roundingCode = float_round_nearest_even;
+        break;
+     case ROUND_TO_ZERO:
+        roundingModeName = "to_zero";
+        roundingCode = float_round_to_zero;
+        break;
+     case ROUND_DOWN:
+        roundingModeName = "down";
+        roundingCode = float_round_down;
+        break;
+     case ROUND_UP:
+        roundingModeName = "up";
+        roundingCode = float_round_up;
+        break;
+    }
+    float_rounding_mode = roundingCode;
+    switch ( tininessMode ) {
+     case 0:
+        tininessModeName = 0;
+        tininessCode = float_tininess_after_rounding;
+        break;
+     case TININESS_BEFORE_ROUNDING:
+        tininessModeName = "before";
+        tininessCode = float_tininess_before_rounding;
+        break;
+     case TININESS_AFTER_ROUNDING:
+        tininessModeName = "after";
+        tininessCode = float_tininess_after_rounding;
+        break;
+    }
+    float_detect_tininess = tininessCode;
+    switch ( functionCode ) {
+     case INT32_TO_FLOAT32:
+        time_a_int32_z_float32( int32_to_float32 );
+        break;
+     case INT32_TO_FLOAT64:
+        time_a_int32_z_float64( int32_to_float64 );
+        break;
+     case FLOAT32_TO_INT32:
+        time_a_float32_z_int32( float32_to_int32 );
+        break;
+     case FLOAT32_TO_INT32_ROUND_TO_ZERO:
+        time_a_float32_z_int32( float32_to_int32_round_to_zero );
+        break;
+     case FLOAT32_TO_FLOAT64:
+        time_a_float32_z_float64( float32_to_float64 );
+        break;
+     case FLOAT32_ROUND_TO_INT:
+        time_az_float32( float32_round_to_int );
+        break;
+     case FLOAT32_ADD:
+        time_abz_float32( float32_add );
+        break;
+     case FLOAT32_SUB:
+        time_abz_float32( float32_sub );
+        break;
+     case FLOAT32_MUL:
+        time_abz_float32( float32_mul );
+        break;
+     case FLOAT32_DIV:
+        time_abz_float32( float32_div );
+        break;
+     case FLOAT32_REM:
+        time_abz_float32( float32_rem );
+        break;
+     case FLOAT32_SQRT:
+        time_az_float32_pos( float32_sqrt );
+        break;
+     case FLOAT32_EQ:
+        time_ab_float32_z_flag( float32_eq );
+        break;
+     case FLOAT32_LE:
+        time_ab_float32_z_flag( float32_le );
+        break;
+     case FLOAT32_LT:
+        time_ab_float32_z_flag( float32_lt );
+        break;
+     case FLOAT32_EQ_SIGNALING:
+        time_ab_float32_z_flag( float32_eq_signaling );
+        break;
+     case FLOAT32_LE_QUIET:
+        time_ab_float32_z_flag( float32_le_quiet );
+        break;
+     case FLOAT32_LT_QUIET:
+        time_ab_float32_z_flag( float32_lt_quiet );
+        break;
+     case FLOAT64_TO_INT32:
+        time_a_float64_z_int32( float64_to_int32 );
+        break;
+     case FLOAT64_TO_INT32_ROUND_TO_ZERO:
+        time_a_float64_z_int32( float64_to_int32_round_to_zero );
+        break;
+     case FLOAT64_TO_FLOAT32:
+        time_a_float64_z_float32( float64_to_float32 );
+        break;
+     case FLOAT64_ROUND_TO_INT:
+        time_az_float64( float64_round_to_int );
+        break;
+     case FLOAT64_ADD:
+        time_abz_float64( float64_add );
+        break;
+     case FLOAT64_SUB:
+        time_abz_float64( float64_sub );
+        break;
+     case FLOAT64_MUL:
+        time_abz_float64( float64_mul );
+        break;
+     case FLOAT64_DIV:
+        time_abz_float64( float64_div );
+        break;
+     case FLOAT64_REM:
+        time_abz_float64( float64_rem );
+        break;
+     case FLOAT64_SQRT:
+        time_az_float64_pos( float64_sqrt );
+        break;
+     case FLOAT64_EQ:
+        time_ab_float64_z_flag( float64_eq );
+        break;
+     case FLOAT64_LE:
+        time_ab_float64_z_flag( float64_le );
+        break;
+     case FLOAT64_LT:
+        time_ab_float64_z_flag( float64_lt );
+        break;
+     case FLOAT64_EQ_SIGNALING:
+        time_ab_float64_z_flag( float64_eq_signaling );
+        break;
+     case FLOAT64_LE_QUIET:
+        time_ab_float64_z_flag( float64_le_quiet );
+        break;
+     case FLOAT64_LT_QUIET:
+        time_ab_float64_z_flag( float64_lt_quiet );
+        break;
+    }
+
+}
+
+static void
+ timeFunction( uint8 functionCode, int8 roundingModeIn, int8 tininessModeIn )
+{
+    int8 roundingMode, tininessMode;
+
+    for ( roundingMode = 1;
+          roundingMode < NUM_ROUNDINGMODES;
+          ++roundingMode
+        ) {
+        if ( ! functions[ functionCode ].roundingMode ) {
+            roundingMode = 0;
+        }
+        else if ( roundingModeIn ) {
+            roundingMode = roundingModeIn;
+        }
+        for ( tininessMode = 1;
+              tininessMode < NUM_TININESSMODES;
+              ++tininessMode
+            ) {
+            if ( ! functions[ functionCode ].tininessMode ) {
+                tininessMode = 0;
+            }
+            else if ( tininessModeIn ) {
+                tininessMode = tininessModeIn;
+            }
+            timeFunctionVariety( functionCode, roundingMode, tininessMode );
+            if ( tininessModeIn || ! tininessMode ) break;
+        }
+        if ( roundingModeIn || ! roundingMode ) break;
+    }
+
+}
+
+main( int argc, char **argv )
+{
+    char *argPtr;
+    flag functionArgument;
+    uint8 functionCode;
+    int8 operands, roundingMode, tininessMode;
+
+    if ( argc <= 1 ) goto writeHelpMessage;
+    functionArgument = FALSE;
+    functionCode = 0;
+    operands = 0;
+    roundingMode = 0;
+    tininessMode = 0;
+    --argc;
+    ++argv;
+    while ( argc && ( argPtr = argv[ 0 ] ) ) {
+        if ( argPtr[ 0 ] == '-' ) ++argPtr;
+        if ( strcmp( argPtr, "help" ) == 0 ) {
+ writeHelpMessage:
+            fputs(
+"timesoftfloat [<option>...] <function>\n"
+"  <option>:  (* is default)\n"
+"    -help            --Write this message and exit.\n"
+"    -nearesteven     --Only time rounding to nearest/even.\n"
+"    -tozero          --Only time rounding to zero.\n"
+"    -down            --Only time rounding down.\n"
+"    -up              --Only time rounding up.\n"
+"    -tininessbefore  --Only time underflow tininess before rounding.\n"
+"    -tininessafter   --Only time underflow tininess after rounding.\n"
+"  <function>:\n"
+"    int32_to_<float>                 <float>_add   <float>_eq\n"
+"    <float>_to_int32                 <float>_sub   <float>_le\n"
+"    <float>_to_int32_round_to_zero   <float>_mul   <float>_lt\n"
+"    <float>_to_<float>               <float>_div   <float>_eq_signaling\n"
+"    <float>_round_to_int             <float>_rem   <float>_le_quiet\n"
+"    <float>_sqrt                                   <float>_lt_quiet\n"
+"    -all1            --All 1-operand functions.\n"
+"    -all2            --All 2-operand functions.\n"
+"    -all             --All functions.\n"
+"  <float>:\n"
+"    float32          --Single precision.\n"
+"    float64          --Double precision.\n",
+                stdout
+            );
+            return EXIT_SUCCESS;
+        }
+        else if (    ( strcmp( argPtr, "nearesteven" ) == 0 )
+                  || ( strcmp( argPtr, "nearest_even" ) == 0 ) ) {
+            roundingMode = ROUND_NEAREST_EVEN;
+        }
+        else if (    ( strcmp( argPtr, "tozero" ) == 0 )
+                  || ( strcmp( argPtr, "to_zero" ) == 0 ) ) {
+            roundingMode = ROUND_TO_ZERO;
+        }
+        else if ( strcmp( argPtr, "down" ) == 0 ) {
+            roundingMode = ROUND_DOWN;
+        }
+        else if ( strcmp( argPtr, "up" ) == 0 ) {
+            roundingMode = ROUND_UP;
+        }
+        else if ( strcmp( argPtr, "tininessbefore" ) == 0 ) {
+            tininessMode = TININESS_BEFORE_ROUNDING;
+        }
+        else if ( strcmp( argPtr, "tininessafter" ) == 0 ) {
+            tininessMode = TININESS_AFTER_ROUNDING;
+        }
+        else if ( strcmp( argPtr, "all1" ) == 0 ) {
+            functionArgument = TRUE;
+            functionCode = 0;
+            operands = 1;
+        }
+        else if ( strcmp( argPtr, "all2" ) == 0 ) {
+            functionArgument = TRUE;
+            functionCode = 0;
+            operands = 2;
+        }
+        else if ( strcmp( argPtr, "all" ) == 0 ) {
+            functionArgument = TRUE;
+            functionCode = 0;
+            operands = 0;
+        }
+        else {
+            for ( functionCode = 1;
+                  functionCode < NUM_FUNCTIONS;
+                  ++functionCode 
+                ) {
+                if ( strcmp( argPtr, functions[ functionCode ].name ) == 0 ) {
+                    break;
+                }
+            }
+            if ( functionCode == NUM_FUNCTIONS ) {
+                fail( "Invalid option or function `%s'", argv[ 0 ] );
+            }
+            functionArgument = TRUE;
+        }
+        --argc;
+        ++argv;
+    }
+    if ( ! functionArgument ) fail( "Function argument required" );
+    if ( functionCode ) {
+        timeFunction( functionCode, roundingMode, tininessMode );
+    }
+    else if ( operands == 1 ) {
+        for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
+            ) {
+            if ( functions[ functionCode ].numInputs == 1 ) {
+                timeFunction( functionCode, roundingMode, tininessMode );
+            }
+        }
+    }
+    else if ( operands == 2 ) {
+        for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
+            ) {
+            if ( functions[ functionCode ].numInputs == 2 ) {
+                timeFunction( functionCode, roundingMode, tininessMode );
+            }
+        }
+    }
+    else {
+        for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
+            ) {
+            timeFunction( functionCode, roundingMode, tininessMode );
+        }
+    }
+    return EXIT_SUCCESS;
+
+}
+
diff --git a/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h b/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h
new file mode 100644
index 00000000..2da74cd7
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/386-Win32-GCC/milieu.h
@@ -0,0 +1,45 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Include common integer types and flags.
+*----------------------------------------------------------------------------*/
+#include "../../../processors/386-GCC.h"
+
+/*----------------------------------------------------------------------------
+| Symbolic Boolean literals.
+*----------------------------------------------------------------------------*/
+enum {
+    FALSE = 0,
+    TRUE  = 1
+};
+
diff --git a/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize b/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize
new file mode 100644
index 00000000..7266bee9
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat-specialize
@@ -0,0 +1,464 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Underflow tininess-detection mode, statically initialized to default value.
+| (The declaration in `softfloat.h' must match the `int8' type here.)
+*----------------------------------------------------------------------------*/
+int8 float_detect_tininess = float_tininess_after_rounding;
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'.  Floating-point traps can be
+| defined here if desired.  It is currently not possible for such a trap
+| to substitute a result value.  If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise( int8 flags )
+{
+
+    float_exception_flags |= flags;
+
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+    flag sign;
+    bits64 high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+#define float32_default_nan 0xFFC00000
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_nan( float32 a )
+{
+
+    return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_signaling_nan( float32 a )
+{
+
+    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+    commonNaNT z;
+
+    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>31;
+    z.low = 0;
+    z.high = ( (bits64) a )<<41;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float32_is_nan( a );
+    aIsSignalingNaN = float32_is_signaling_nan( a );
+    bIsNaN = float32_is_nan( b );
+    bIsSignalingNaN = float32_is_signaling_nan( b );
+    a |= 0x00400000;
+    b |= 0x00400000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsSignalingNaN ) {
+        if ( bIsSignalingNaN ) goto returnLargerSignificand;
+        return bIsNaN ? b : a;
+    }
+    else if ( aIsNaN ) {
+        if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+        if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
+        if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
+        return ( a < b ) ? a : b;
+    }
+    else {
+        return b;
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.
+*----------------------------------------------------------------------------*/
+#define float64_default_nan LIT64( 0xFFF8000000000000 )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_nan( float64 a )
+{
+
+    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_signaling_nan( float64 a )
+{
+
+    return
+           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
+        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+    commonNaNT z;
+
+    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>63;
+    z.low = 0;
+    z.high = a<<12;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+
+    return
+          ( ( (bits64) a.sign )<<63 )
+        | LIT64( 0x7FF8000000000000 )
+        | ( a.high>>12 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float64_is_nan( a );
+    aIsSignalingNaN = float64_is_signaling_nan( a );
+    bIsNaN = float64_is_nan( b );
+    bIsSignalingNaN = float64_is_signaling_nan( b );
+    a |= LIT64( 0x0008000000000000 );
+    b |= LIT64( 0x0008000000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsSignalingNaN ) {
+        if ( bIsSignalingNaN ) goto returnLargerSignificand;
+        return bIsNaN ? b : a;
+    }
+    else if ( aIsNaN ) {
+        if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+        if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
+        if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
+        return ( a < b ) ? a : b;
+    }
+    else {
+        return b;
+    }
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision NaN.  The
+| `high' and `low' values hold the most- and least-significant bits,
+| respectively.
+*----------------------------------------------------------------------------*/
+#define floatx80_default_nan_high 0xFFFF
+#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_is_nan( floatx80 a )
+{
+
+    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_is_signaling_nan( floatx80 a )
+{
+    bits64 aLow;
+
+    aLow = a.low & ~ LIT64( 0x4000000000000000 );
+    return
+           ( ( a.high & 0x7FFF ) == 0x7FFF )
+        && (bits64) ( aLow<<1 )
+        && ( a.low == aLow );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
+| invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT floatx80ToCommonNaN( floatx80 a )
+{
+    commonNaNT z;
+
+    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>15;
+    z.low = 0;
+    z.high = a.low<<1;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the extended
+| double-precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static floatx80 commonNaNToFloatx80( commonNaNT a )
+{
+    floatx80 z;
+
+    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
+    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two extended double-precision floating-point values `a' and `b', one
+| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = floatx80_is_nan( a );
+    aIsSignalingNaN = floatx80_is_signaling_nan( a );
+    bIsNaN = floatx80_is_nan( b );
+    bIsSignalingNaN = floatx80_is_signaling_nan( b );
+    a.low |= LIT64( 0xC000000000000000 );
+    b.low |= LIT64( 0xC000000000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsSignalingNaN ) {
+        if ( bIsSignalingNaN ) goto returnLargerSignificand;
+        return bIsNaN ? b : a;
+    }
+    else if ( aIsNaN ) {
+        if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+        if ( a.low < b.low ) return b;
+        if ( b.low < a.low ) return a;
+        return ( a.high < b.high ) ? a : b;
+    }
+    else {
+        return b;
+    }
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated quadruple-precision NaN.  The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
+#define float128_default_nan_low  LIT64( 0x0000000000000000 )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float128_is_nan( float128 a )
+{
+
+    return
+           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
+        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float128_is_signaling_nan( float128 a )
+{
+
+    return
+           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
+        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float128ToCommonNaN( float128 a )
+{
+    commonNaNT z;
+
+    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>63;
+    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the quadruple-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float128 commonNaNToFloat128( commonNaNT a )
+{
+    float128 z;
+
+    shift128Right( a.high, a.low, 16, &z.high, &z.low );
+    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two quadruple-precision floating-point values `a' and `b', one of
+| which is a NaN, and returns the appropriate NaN result.  If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float128 propagateFloat128NaN( float128 a, float128 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float128_is_nan( a );
+    aIsSignalingNaN = float128_is_signaling_nan( a );
+    bIsNaN = float128_is_nan( b );
+    bIsSignalingNaN = float128_is_signaling_nan( b );
+    a.high |= LIT64( 0x0000800000000000 );
+    b.high |= LIT64( 0x0000800000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsSignalingNaN ) {
+        if ( bIsSignalingNaN ) goto returnLargerSignificand;
+        return bIsNaN ? b : a;
+    }
+    else if ( aIsNaN ) {
+        if ( bIsSignalingNaN | ! bIsNaN ) return a;
+ returnLargerSignificand:
+        if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
+        if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
+        return ( a.high < b.high ) ? a : b;
+    }
+    else {
+        return b;
+    }
+
+}
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h b/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h
new file mode 100644
index 00000000..1658ad94
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/386-Win32-GCC/softfloat.h
@@ -0,0 +1,259 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| The macro `FLOATX80' must be defined to enable the extended double-precision
+| floating-point format `floatx80'.  If this macro is not defined, the
+| `floatx80' type will not be defined, and none of the functions that either
+| input or output the `floatx80' type will be defined.  The same applies to
+| the `FLOAT128' macro and the quadruple-precision format `float128'.
+*----------------------------------------------------------------------------*/
+#define FLOATX80
+#define FLOAT128
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+typedef unsigned int float32;
+typedef unsigned long long float64;
+#ifdef FLOATX80
+typedef struct {
+    unsigned long long low;
+    unsigned short high;
+} floatx80;
+#endif
+#ifdef FLOAT128
+typedef struct {
+    unsigned long long low, high;
+} float128;
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern signed char float_detect_tininess;
+enum {
+    float_tininess_after_rounding  = 0,
+    float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern signed char float_rounding_mode;
+enum {
+    float_round_nearest_even = 0,
+    float_round_down         = 1,
+    float_round_up           = 2,
+    float_round_to_zero      = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern signed char float_exception_flags;
+enum {
+    float_flag_invalid   =  1,
+    float_flag_divbyzero =  4,
+    float_flag_overflow  =  8,
+    float_flag_underflow = 16,
+    float_flag_inexact   = 32
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( signed char );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( int );
+float64 int32_to_float64( int );
+#ifdef FLOATX80
+floatx80 int32_to_floatx80( int );
+#endif
+#ifdef FLOAT128
+float128 int32_to_float128( int );
+#endif
+float32 int64_to_float32( long long );
+float64 int64_to_float64( long long );
+#ifdef FLOATX80
+floatx80 int64_to_floatx80( long long );
+#endif
+#ifdef FLOAT128
+float128 int64_to_float128( long long );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float32_to_int32( float32 );
+int float32_to_int32_round_to_zero( float32 );
+long long float32_to_int64( float32 );
+long long float32_to_int64_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+#ifdef FLOATX80
+floatx80 float32_to_floatx80( float32 );
+#endif
+#ifdef FLOAT128
+float128 float32_to_float128( float32 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+char float32_eq( float32, float32 );
+char float32_le( float32, float32 );
+char float32_lt( float32, float32 );
+char float32_eq_signaling( float32, float32 );
+char float32_le_quiet( float32, float32 );
+char float32_lt_quiet( float32, float32 );
+char float32_is_signaling_nan( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float64_to_int32( float64 );
+int float64_to_int32_round_to_zero( float64 );
+long long float64_to_int64( float64 );
+long long float64_to_int64_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+#ifdef FLOATX80
+floatx80 float64_to_floatx80( float64 );
+#endif
+#ifdef FLOAT128
+float128 float64_to_float128( float64 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+char float64_eq( float64, float64 );
+char float64_le( float64, float64 );
+char float64_lt( float64, float64 );
+char float64_eq_signaling( float64, float64 );
+char float64_le_quiet( float64, float64 );
+char float64_lt_quiet( float64, float64 );
+char float64_is_signaling_nan( float64 );
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int floatx80_to_int32( floatx80 );
+int floatx80_to_int32_round_to_zero( floatx80 );
+long long floatx80_to_int64( floatx80 );
+long long floatx80_to_int64_round_to_zero( floatx80 );
+float32 floatx80_to_float32( floatx80 );
+float64 floatx80_to_float64( floatx80 );
+#ifdef FLOAT128
+float128 floatx80_to_float128( floatx80 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision rounding precision.  Valid
+| values are 32, 64, and 80.
+*----------------------------------------------------------------------------*/
+extern signed char floatx80_rounding_precision;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision operations.
+*----------------------------------------------------------------------------*/
+floatx80 floatx80_round_to_int( floatx80 );
+floatx80 floatx80_add( floatx80, floatx80 );
+floatx80 floatx80_sub( floatx80, floatx80 );
+floatx80 floatx80_mul( floatx80, floatx80 );
+floatx80 floatx80_div( floatx80, floatx80 );
+floatx80 floatx80_rem( floatx80, floatx80 );
+floatx80 floatx80_sqrt( floatx80 );
+char floatx80_eq( floatx80, floatx80 );
+char floatx80_le( floatx80, floatx80 );
+char floatx80_lt( floatx80, floatx80 );
+char floatx80_eq_signaling( floatx80, floatx80 );
+char floatx80_le_quiet( floatx80, floatx80 );
+char floatx80_lt_quiet( floatx80, floatx80 );
+char floatx80_is_signaling_nan( floatx80 );
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float128_to_int32( float128 );
+int float128_to_int32_round_to_zero( float128 );
+long long float128_to_int64( float128 );
+long long float128_to_int64_round_to_zero( float128 );
+float32 float128_to_float32( float128 );
+float64 float128_to_float64( float128 );
+#ifdef FLOATX80
+floatx80 float128_to_floatx80( float128 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision operations.
+*----------------------------------------------------------------------------*/
+float128 float128_round_to_int( float128 );
+float128 float128_add( float128, float128 );
+float128 float128_sub( float128, float128 );
+float128 float128_mul( float128, float128 );
+float128 float128_div( float128, float128 );
+float128 float128_rem( float128, float128 );
+float128 float128_sqrt( float128 );
+char float128_eq( float128, float128 );
+char float128_le( float128, float128 );
+char float128_lt( float128, float128 );
+char float128_eq_signaling( float128, float128 );
+char float128_le_quiet( float128, float128 );
+char float128_lt_quiet( float128, float128 );
+char float128_is_signaling_nan( float128 );
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h b/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h
new file mode 100644
index 00000000..9c753384
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/milieu.h
@@ -0,0 +1,45 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Include common integer types and flags.
+*----------------------------------------------------------------------------*/
+#include "../../../processors/SPARC-GCC.h"
+
+/*----------------------------------------------------------------------------
+| Symbolic Boolean literals.
+*----------------------------------------------------------------------------*/
+enum {
+    FALSE = 0,
+    TRUE  = 1
+};
+
diff --git a/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize b/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize
new file mode 100644
index 00000000..28bd4fe9
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat-specialize
@@ -0,0 +1,412 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Underflow tininess-detection mode, statically initialized to default value.
+| (The declaration in `softfloat.h' must match the `int8' type here.)
+*----------------------------------------------------------------------------*/
+int8 float_detect_tininess = float_tininess_before_rounding;
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'.  Floating-point traps can be
+| defined here if desired.  It is currently not possible for such a trap
+| to substitute a result value.  If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise( int8 flags )
+{
+
+    float_exception_flags |= flags;
+
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+    flag sign;
+    bits64 high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+#define float32_default_nan 0x7FFFFFFF
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_nan( float32 a )
+{
+
+    return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_signaling_nan( float32 a )
+{
+
+    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+    commonNaNT z;
+
+    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>31;
+    z.low = 0;
+    z.high = ( (bits64) a )<<41;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float32_is_nan( a );
+    aIsSignalingNaN = float32_is_signaling_nan( a );
+    bIsNaN = float32_is_nan( b );
+    bIsSignalingNaN = float32_is_signaling_nan( b );
+    a |= 0x00400000;
+    b |= 0x00400000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
+
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.
+*----------------------------------------------------------------------------*/
+#define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_nan( float64 a )
+{
+
+    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_signaling_nan( float64 a )
+{
+
+    return
+           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
+        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+    commonNaNT z;
+
+    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>63;
+    z.low = 0;
+    z.high = a<<12;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+
+    return
+          ( ( (bits64) a.sign )<<63 )
+        | LIT64( 0x7FF8000000000000 )
+        | ( a.high>>12 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float64_is_nan( a );
+    aIsSignalingNaN = float64_is_signaling_nan( a );
+    bIsNaN = float64_is_nan( b );
+    bIsSignalingNaN = float64_is_signaling_nan( b );
+    a |= LIT64( 0x0008000000000000 );
+    b |= LIT64( 0x0008000000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision NaN.  The
+| `high' and `low' values hold the most- and least-significant bits,
+| respectively.
+*----------------------------------------------------------------------------*/
+#define floatx80_default_nan_high 0x7FFF
+#define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_is_nan( floatx80 a )
+{
+
+    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_is_signaling_nan( floatx80 a )
+{
+    bits64 aLow;
+
+    aLow = a.low & ~ LIT64( 0x4000000000000000 );
+    return
+           ( ( a.high & 0x7FFF ) == 0x7FFF )
+        && (bits64) ( aLow<<1 )
+        && ( a.low == aLow );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
+| invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT floatx80ToCommonNaN( floatx80 a )
+{
+    commonNaNT z;
+
+    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>15;
+    z.low = 0;
+    z.high = a.low<<1;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the extended
+| double-precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static floatx80 commonNaNToFloatx80( commonNaNT a )
+{
+    floatx80 z;
+
+    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
+    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two extended double-precision floating-point values `a' and `b', one
+| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = floatx80_is_nan( a );
+    aIsSignalingNaN = floatx80_is_signaling_nan( a );
+    bIsNaN = floatx80_is_nan( b );
+    bIsSignalingNaN = floatx80_is_signaling_nan( b );
+    a.low |= LIT64( 0xC000000000000000 );
+    b.low |= LIT64( 0xC000000000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated quadruple-precision NaN.  The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+#define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF )
+#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float128_is_nan( float128 a )
+{
+
+    return
+           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
+        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float128_is_signaling_nan( float128 a )
+{
+
+    return
+           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
+        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float128ToCommonNaN( float128 a )
+{
+    commonNaNT z;
+
+    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>63;
+    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the quadruple-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float128 commonNaNToFloat128( commonNaNT a )
+{
+    float128 z;
+
+    shift128Right( a.high, a.low, 16, &z.high, &z.low );
+    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two quadruple-precision floating-point values `a' and `b', one of
+| which is a NaN, and returns the appropriate NaN result.  If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float128 propagateFloat128NaN( float128 a, float128 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float128_is_nan( a );
+    aIsSignalingNaN = float128_is_signaling_nan( a );
+    bIsNaN = float128_is_nan( b );
+    bIsSignalingNaN = float128_is_signaling_nan( b );
+    a.high |= LIT64( 0x0000800000000000 );
+    b.high |= LIT64( 0x0000800000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
+
+}
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h b/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h
new file mode 100644
index 00000000..eb5303a0
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/SPARC-Solaris-GCC/softfloat.h
@@ -0,0 +1,259 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| The macro `FLOATX80' must be defined to enable the extended double-precision
+| floating-point format `floatx80'.  If this macro is not defined, the
+| `floatx80' type will not be defined, and none of the functions that either
+| input or output the `floatx80' type will be defined.  The same applies to
+| the `FLOAT128' macro and the quadruple-precision format `float128'.
+*----------------------------------------------------------------------------*/
+#define FLOATX80
+#define FLOAT128
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+typedef unsigned int float32;
+typedef unsigned long long float64;
+#ifdef FLOATX80
+typedef struct {
+    unsigned short high;
+    unsigned long long low;
+} floatx80;
+#endif
+#ifdef FLOAT128
+typedef struct {
+    unsigned long long high, low;
+} float128;
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern int float_detect_tininess;
+enum {
+    float_tininess_after_rounding  = 0,
+    float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern int float_rounding_mode;
+enum {
+    float_round_nearest_even = 0,
+    float_round_to_zero      = 1,
+    float_round_up           = 2,
+    float_round_down         = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern int float_exception_flags;
+enum {
+    float_flag_inexact   =  1,
+    float_flag_divbyzero =  2,
+    float_flag_underflow =  4,
+    float_flag_overflow  =  8,
+    float_flag_invalid   = 16
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( int );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( int );
+float64 int32_to_float64( int );
+#ifdef FLOATX80
+floatx80 int32_to_floatx80( int );
+#endif
+#ifdef FLOAT128
+float128 int32_to_float128( int );
+#endif
+float32 int64_to_float32( long long );
+float64 int64_to_float64( long long );
+#ifdef FLOATX80
+floatx80 int64_to_floatx80( long long );
+#endif
+#ifdef FLOAT128
+float128 int64_to_float128( long long );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float32_to_int32( float32 );
+int float32_to_int32_round_to_zero( float32 );
+long long float32_to_int64( float32 );
+long long float32_to_int64_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+#ifdef FLOATX80
+floatx80 float32_to_floatx80( float32 );
+#endif
+#ifdef FLOAT128
+float128 float32_to_float128( float32 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+int float32_eq( float32, float32 );
+int float32_le( float32, float32 );
+int float32_lt( float32, float32 );
+int float32_eq_signaling( float32, float32 );
+int float32_le_quiet( float32, float32 );
+int float32_lt_quiet( float32, float32 );
+int float32_is_signaling_nan( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float64_to_int32( float64 );
+int float64_to_int32_round_to_zero( float64 );
+long long float64_to_int64( float64 );
+long long float64_to_int64_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+#ifdef FLOATX80
+floatx80 float64_to_floatx80( float64 );
+#endif
+#ifdef FLOAT128
+float128 float64_to_float128( float64 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+int float64_eq( float64, float64 );
+int float64_le( float64, float64 );
+int float64_lt( float64, float64 );
+int float64_eq_signaling( float64, float64 );
+int float64_le_quiet( float64, float64 );
+int float64_lt_quiet( float64, float64 );
+int float64_is_signaling_nan( float64 );
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int floatx80_to_int32( floatx80 );
+int floatx80_to_int32_round_to_zero( floatx80 );
+long long floatx80_to_int64( floatx80 );
+long long floatx80_to_int64_round_to_zero( floatx80 );
+float32 floatx80_to_float32( floatx80 );
+float64 floatx80_to_float64( floatx80 );
+#ifdef FLOAT128
+float128 floatx80_to_float128( floatx80 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision rounding precision.  Valid
+| values are 32, 64, and 80.
+*----------------------------------------------------------------------------*/
+extern int floatx80_rounding_precision;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision operations.
+*----------------------------------------------------------------------------*/
+floatx80 floatx80_round_to_int( floatx80 );
+floatx80 floatx80_add( floatx80, floatx80 );
+floatx80 floatx80_sub( floatx80, floatx80 );
+floatx80 floatx80_mul( floatx80, floatx80 );
+floatx80 floatx80_div( floatx80, floatx80 );
+floatx80 floatx80_rem( floatx80, floatx80 );
+floatx80 floatx80_sqrt( floatx80 );
+int floatx80_eq( floatx80, floatx80 );
+int floatx80_le( floatx80, floatx80 );
+int floatx80_lt( floatx80, floatx80 );
+int floatx80_eq_signaling( floatx80, floatx80 );
+int floatx80_le_quiet( floatx80, floatx80 );
+int floatx80_lt_quiet( floatx80, floatx80 );
+int floatx80_is_signaling_nan( floatx80 );
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision conversion routines.
+*----------------------------------------------------------------------------*/
+int float128_to_int32( float128 );
+int float128_to_int32_round_to_zero( float128 );
+long long float128_to_int64( float128 );
+long long float128_to_int64_round_to_zero( float128 );
+float32 float128_to_float32( float128 );
+float64 float128_to_float64( float128 );
+#ifdef FLOATX80
+floatx80 float128_to_floatx80( float128 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision operations.
+*----------------------------------------------------------------------------*/
+float128 float128_round_to_int( float128 );
+float128 float128_add( float128, float128 );
+float128 float128_sub( float128, float128 );
+float128 float128_mul( float128, float128 );
+float128 float128_div( float128, float128 );
+float128 float128_rem( float128, float128 );
+float128 float128_sqrt( float128 );
+int float128_eq( float128, float128 );
+int float128_le( float128, float128 );
+int float128_lt( float128, float128 );
+int float128_eq_signaling( float128, float128 );
+int float128_le_quiet( float128, float128 );
+int float128_lt_quiet( float128, float128 );
+int float128_is_signaling_nan( float128 );
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/softfloat-macros b/float/softfloat/softfloat/bits64/softfloat-macros
new file mode 100644
index 00000000..d2893289
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/softfloat-macros
@@ -0,0 +1,720 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Shifts `a' right by the number of bits given in `count'.  If any nonzero
+| bits are shifted off, they are ``jammed'' into the least significant bit of
+| the result by setting the least significant bit to 1.  The value of `count'
+| can be arbitrarily large; in particular, if `count' is greater than 32, the
+| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+| The result is stored in the location pointed to by `zPtr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
+{
+    bits32 z;
+
+    if ( count == 0 ) {
+        z = a;
+    }
+    else if ( count < 32 ) {
+        z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
+    }
+    else {
+        z = ( a != 0 );
+    }
+    *zPtr = z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts `a' right by the number of bits given in `count'.  If any nonzero
+| bits are shifted off, they are ``jammed'' into the least significant bit of
+| the result by setting the least significant bit to 1.  The value of `count'
+| can be arbitrarily large; in particular, if `count' is greater than 64, the
+| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+| The result is stored in the location pointed to by `zPtr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
+{
+    bits64 z;
+
+    if ( count == 0 ) {
+        z = a;
+    }
+    else if ( count < 64 ) {
+        z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
+    }
+    else {
+        z = ( a != 0 );
+    }
+    *zPtr = z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
+| _plus_ the number of bits given in `count'.  The shifted result is at most
+| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'.  The
+| bits shifted off form a second 64-bit result as follows:  The _last_ bit
+| shifted off is the most-significant bit of the extra result, and the other
+| 63 bits of the extra result are all zero if and only if _all_but_the_last_
+| bits shifted off were all zero.  This extra result is stored in the location
+| pointed to by `z1Ptr'.  The value of `count' can be arbitrarily large.
+|     (This routine makes more sense if `a0' and `a1' are considered to form
+| a fixed-point value with binary point between `a0' and `a1'.  This fixed-
+| point value is shifted right by the number of bits given in `count', and
+| the integer part of the result is returned at the location pointed to by
+| `z0Ptr'.  The fractional part of the result may be slightly corrupted as
+| described above, and is returned at the location pointed to by `z1Ptr'.)
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift64ExtraRightJamming(
+     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+    bits64 z0, z1;
+    int8 negCount = ( - count ) & 63;
+
+    if ( count == 0 ) {
+        z1 = a1;
+        z0 = a0;
+    }
+    else if ( count < 64 ) {
+        z1 = ( a0<<negCount ) | ( a1 != 0 );
+        z0 = a0>>count;
+    }
+    else {
+        if ( count == 64 ) {
+            z1 = a0 | ( a1 != 0 );
+        }
+        else {
+            z1 = ( ( a0 | a1 ) != 0 );
+        }
+        z0 = 0;
+    }
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
+| number of bits given in `count'.  Any bits shifted off are lost.  The value
+| of `count' can be arbitrarily large; in particular, if `count' is greater
+| than 128, the result will be 0.  The result is broken into two 64-bit pieces
+| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift128Right(
+     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+    bits64 z0, z1;
+    int8 negCount = ( - count ) & 63;
+
+    if ( count == 0 ) {
+        z1 = a1;
+        z0 = a0;
+    }
+    else if ( count < 64 ) {
+        z1 = ( a0<<negCount ) | ( a1>>count );
+        z0 = a0>>count;
+    }
+    else {
+        z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
+        z0 = 0;
+    }
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
+| number of bits given in `count'.  If any nonzero bits are shifted off, they
+| are ``jammed'' into the least significant bit of the result by setting the
+| least significant bit to 1.  The value of `count' can be arbitrarily large;
+| in particular, if `count' is greater than 128, the result will be either
+| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
+| nonzero.  The result is broken into two 64-bit pieces which are stored at
+| the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift128RightJamming(
+     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+    bits64 z0, z1;
+    int8 negCount = ( - count ) & 63;
+
+    if ( count == 0 ) {
+        z1 = a1;
+        z0 = a0;
+    }
+    else if ( count < 64 ) {
+        z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
+        z0 = a0>>count;
+    }
+    else {
+        if ( count == 64 ) {
+            z1 = a0 | ( a1 != 0 );
+        }
+        else if ( count < 128 ) {
+            z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
+        }
+        else {
+            z1 = ( ( a0 | a1 ) != 0 );
+        }
+        z0 = 0;
+    }
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
+| by 64 _plus_ the number of bits given in `count'.  The shifted result is
+| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
+| stored at the locations pointed to by `z0Ptr' and `z1Ptr'.  The bits shifted
+| off form a third 64-bit result as follows:  The _last_ bit shifted off is
+| the most-significant bit of the extra result, and the other 63 bits of the
+| extra result are all zero if and only if _all_but_the_last_ bits shifted off
+| were all zero.  This extra result is stored in the location pointed to by
+| `z2Ptr'.  The value of `count' can be arbitrarily large.
+|     (This routine makes more sense if `a0', `a1', and `a2' are considered
+| to form a fixed-point value with binary point between `a1' and `a2'.  This
+| fixed-point value is shifted right by the number of bits given in `count',
+| and the integer part of the result is returned at the locations pointed to
+| by `z0Ptr' and `z1Ptr'.  The fractional part of the result may be slightly
+| corrupted as described above, and is returned at the location pointed to by
+| `z2Ptr'.)
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shift128ExtraRightJamming(
+     bits64 a0,
+     bits64 a1,
+     bits64 a2,
+     int16 count,
+     bits64 *z0Ptr,
+     bits64 *z1Ptr,
+     bits64 *z2Ptr
+ )
+{
+    bits64 z0, z1, z2;
+    int8 negCount = ( - count ) & 63;
+
+    if ( count == 0 ) {
+        z2 = a2;
+        z1 = a1;
+        z0 = a0;
+    }
+    else {
+        if ( count < 64 ) {
+            z2 = a1<<negCount;
+            z1 = ( a0<<negCount ) | ( a1>>count );
+            z0 = a0>>count;
+        }
+        else {
+            if ( count == 64 ) {
+                z2 = a1;
+                z1 = a0;
+            }
+            else {
+                a2 |= a1;
+                if ( count < 128 ) {
+                    z2 = a0<<negCount;
+                    z1 = a0>>( count & 63 );
+                }
+                else {
+                    z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
+                    z1 = 0;
+                }
+            }
+            z0 = 0;
+        }
+        z2 |= ( a2 != 0 );
+    }
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
+| number of bits given in `count'.  Any bits shifted off are lost.  The value
+| of `count' must be less than 64.  The result is broken into two 64-bit
+| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shortShift128Left(
+     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+
+    *z1Ptr = a1<<count;
+    *z0Ptr =
+        ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
+| by the number of bits given in `count'.  Any bits shifted off are lost.
+| The value of `count' must be less than 64.  The result is broken into three
+| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
+| `z1Ptr', and `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ shortShift192Left(
+     bits64 a0,
+     bits64 a1,
+     bits64 a2,
+     int16 count,
+     bits64 *z0Ptr,
+     bits64 *z1Ptr,
+     bits64 *z2Ptr
+ )
+{
+    bits64 z0, z1, z2;
+    int8 negCount;
+
+    z2 = a2<<count;
+    z1 = a1<<count;
+    z0 = a0<<count;
+    if ( 0 < count ) {
+        negCount = ( ( - count ) & 63 );
+        z1 |= a2>>negCount;
+        z0 |= a1>>negCount;
+    }
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
+| value formed by concatenating `b0' and `b1'.  Addition is modulo 2^128, so
+| any carry out is lost.  The result is broken into two 64-bit pieces which
+| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ add128(
+     bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+    bits64 z1;
+
+    z1 = a1 + b1;
+    *z1Ptr = z1;
+    *z0Ptr = a0 + b0 + ( z1 < a1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
+| 192-bit value formed by concatenating `b0', `b1', and `b2'.  Addition is
+| modulo 2^192, so any carry out is lost.  The result is broken into three
+| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
+| `z1Ptr', and `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ add192(
+     bits64 a0,
+     bits64 a1,
+     bits64 a2,
+     bits64 b0,
+     bits64 b1,
+     bits64 b2,
+     bits64 *z0Ptr,
+     bits64 *z1Ptr,
+     bits64 *z2Ptr
+ )
+{
+    bits64 z0, z1, z2;
+    int8 carry0, carry1;
+
+    z2 = a2 + b2;
+    carry1 = ( z2 < a2 );
+    z1 = a1 + b1;
+    carry0 = ( z1 < a1 );
+    z0 = a0 + b0;
+    z1 += carry1;
+    z0 += ( z1 < carry1 );
+    z0 += carry0;
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
+| 128-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
+| 2^128, so any borrow out (carry out) is lost.  The result is broken into two
+| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
+| `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ sub128(
+     bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+
+    *z1Ptr = a1 - b1;
+    *z0Ptr = a0 - b0 - ( a1 < b1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
+| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
+| Subtraction is modulo 2^192, so any borrow out (carry out) is lost.  The
+| result is broken into three 64-bit pieces which are stored at the locations
+| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ sub192(
+     bits64 a0,
+     bits64 a1,
+     bits64 a2,
+     bits64 b0,
+     bits64 b1,
+     bits64 b2,
+     bits64 *z0Ptr,
+     bits64 *z1Ptr,
+     bits64 *z2Ptr
+ )
+{
+    bits64 z0, z1, z2;
+    int8 borrow0, borrow1;
+
+    z2 = a2 - b2;
+    borrow1 = ( a2 < b2 );
+    z1 = a1 - b1;
+    borrow0 = ( a1 < b1 );
+    z0 = a0 - b0;
+    z0 -= ( z1 < borrow1 );
+    z1 -= borrow1;
+    z0 -= borrow0;
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Multiplies `a' by `b' to obtain a 128-bit product.  The product is broken
+| into two 64-bit pieces which are stored at the locations pointed to by
+| `z0Ptr' and `z1Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+    bits32 aHigh, aLow, bHigh, bLow;
+    bits64 z0, zMiddleA, zMiddleB, z1;
+
+    aLow = a;
+    aHigh = a>>32;
+    bLow = b;
+    bHigh = b>>32;
+    z1 = ( (bits64) aLow ) * bLow;
+    zMiddleA = ( (bits64) aLow ) * bHigh;
+    zMiddleB = ( (bits64) aHigh ) * bLow;
+    z0 = ( (bits64) aHigh ) * bHigh;
+    zMiddleA += zMiddleB;
+    z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
+    zMiddleA <<= 32;
+    z1 += zMiddleA;
+    z0 += ( z1 < zMiddleA );
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
+| `b' to obtain a 192-bit product.  The product is broken into three 64-bit
+| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
+| `z2Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ mul128By64To192(
+     bits64 a0,
+     bits64 a1,
+     bits64 b,
+     bits64 *z0Ptr,
+     bits64 *z1Ptr,
+     bits64 *z2Ptr
+ )
+{
+    bits64 z0, z1, z2, more1;
+
+    mul64To128( a1, b, &z1, &z2 );
+    mul64To128( a0, b, &z0, &more1 );
+    add128( z0, more1, 0, z1, &z0, &z1 );
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
+| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
+| product.  The product is broken into four 64-bit pieces which are stored at
+| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
+*----------------------------------------------------------------------------*/
+
+INLINE void
+ mul128To256(
+     bits64 a0,
+     bits64 a1,
+     bits64 b0,
+     bits64 b1,
+     bits64 *z0Ptr,
+     bits64 *z1Ptr,
+     bits64 *z2Ptr,
+     bits64 *z3Ptr
+ )
+{
+    bits64 z0, z1, z2, z3;
+    bits64 more1, more2;
+
+    mul64To128( a1, b1, &z2, &z3 );
+    mul64To128( a1, b0, &z1, &more2 );
+    add128( z1, more2, 0, z2, &z1, &z2 );
+    mul64To128( a0, b0, &z0, &more1 );
+    add128( z0, more1, 0, z1, &z0, &z1 );
+    mul64To128( a0, b1, &more1, &more2 );
+    add128( more1, more2, 0, z2, &more1, &z2 );
+    add128( z0, z1, 0, more1, &z0, &z1 );
+    *z3Ptr = z3;
+    *z2Ptr = z2;
+    *z1Ptr = z1;
+    *z0Ptr = z0;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns an approximation to the 64-bit integer quotient obtained by dividing
+| `b' into the 128-bit value formed by concatenating `a0' and `a1'.  The
+| divisor `b' must be at least 2^63.  If q is the exact quotient truncated
+| toward zero, the approximation returned lies between q and q + 2 inclusive.
+| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
+| unsigned integer is returned.
+*----------------------------------------------------------------------------*/
+
+static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
+{
+    bits64 b0, b1;
+    bits64 rem0, rem1, term0, term1;
+    bits64 z;
+
+    if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
+    b0 = b>>32;
+    z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
+    mul64To128( b, z, &term0, &term1 );
+    sub128( a0, a1, term0, term1, &rem0, &rem1 );
+    while ( ( (sbits64) rem0 ) < 0 ) {
+        z -= LIT64( 0x100000000 );
+        b1 = b<<32;
+        add128( rem0, rem1, b0, b1, &rem0, &rem1 );
+    }
+    rem0 = ( rem0<<32 ) | ( rem1>>32 );
+    z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns an approximation to the square root of the 32-bit significand given
+| by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
+| `aExp' (the least significant bit) is 1, the integer returned approximates
+| 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
+| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
+| case, the approximation returned lies strictly within +/-2 of the exact
+| value.
+*----------------------------------------------------------------------------*/
+
+static bits32 estimateSqrt32( int16 aExp, bits32 a )
+{
+    static const bits16 sqrtOddAdjustments[] = {
+        0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
+        0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
+    };
+    static const bits16 sqrtEvenAdjustments[] = {
+        0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
+        0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
+    };
+    int8 index;
+    bits32 z;
+
+    index = ( a>>27 ) & 15;
+    if ( aExp & 1 ) {
+        z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
+        z = ( ( a / z )<<14 ) + ( z<<15 );
+        a >>= 1;
+    }
+    else {
+        z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
+        z = a / z + z;
+        z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
+        if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
+    }
+    return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the number of leading 0 bits before the most-significant 1 bit of
+| `a'.  If `a' is zero, 32 is returned.
+*----------------------------------------------------------------------------*/
+
+static int8 countLeadingZeros32( bits32 a )
+{
+    static const int8 countLeadingZerosHigh[] = {
+        8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
+        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+    };
+    int8 shiftCount;
+
+    shiftCount = 0;
+    if ( a < 0x10000 ) {
+        shiftCount += 16;
+        a <<= 16;
+    }
+    if ( a < 0x1000000 ) {
+        shiftCount += 8;
+        a <<= 8;
+    }
+    shiftCount += countLeadingZerosHigh[ a>>24 ];
+    return shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the number of leading 0 bits before the most-significant 1 bit of
+| `a'.  If `a' is zero, 64 is returned.
+*----------------------------------------------------------------------------*/
+
+static int8 countLeadingZeros64( bits64 a )
+{
+    int8 shiftCount;
+
+    shiftCount = 0;
+    if ( a < ( (bits64) 1 )<<32 ) {
+        shiftCount += 32;
+    }
+    else {
+        a >>= 32;
+    }
+    shiftCount += countLeadingZeros32( a );
+    return shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
+| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
+| Otherwise, returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+    return ( a0 == b0 ) && ( a1 == b1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
+| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
+| Otherwise, returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
+| than the 128-bit value formed by concatenating `b0' and `b1'.  Otherwise,
+| returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
+| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
+| Otherwise, returns 0.
+*----------------------------------------------------------------------------*/
+
+INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+    return ( a0 != b0 ) || ( a1 != b1 );
+
+}
+
diff --git a/float/softfloat/softfloat/bits64/softfloat.c b/float/softfloat/softfloat/bits64/softfloat.c
new file mode 100644
index 00000000..3c31f0e7
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/softfloat.c
@@ -0,0 +1,5188 @@
+
+/*============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#include "milieu.h"
+#include "softfloat.h"
+
+/*----------------------------------------------------------------------------
+| Floating-point rounding mode, extended double-precision rounding precision,
+| and exception flags.
+*----------------------------------------------------------------------------*/
+int8 float_rounding_mode = float_round_nearest_even;
+int8 float_exception_flags = 0;
+#ifdef FLOATX80
+int8 floatx80_rounding_precision = 80;
+#endif
+
+/*----------------------------------------------------------------------------
+| Primitive arithmetic functions, including multi-word arithmetic, and
+| division and square root approximations.  (Can be specialized to target if
+| desired.)
+*----------------------------------------------------------------------------*/
+#include "softfloat-macros"
+
+/*----------------------------------------------------------------------------
+| Functions and definitions to determine:  (1) whether tininess for underflow
+| is detected before or after rounding by default, (2) what (if anything)
+| happens when exceptions are raised, (3) how signaling NaNs are distinguished
+| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
+| are propagated from function inputs to output.  These details are target-
+| specific.
+*----------------------------------------------------------------------------*/
+#include "softfloat-specialize"
+
+/*----------------------------------------------------------------------------
+| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
+| and 7, and returns the properly rounded 32-bit integer corresponding to the
+| input.  If `zSign' is 1, the input is negated before being converted to an
+| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
+| is simply rounded to an integer, with the inexact exception raised if the
+| input cannot be represented exactly as an integer.  However, if the fixed-
+| point input is too large, the invalid exception is raised and the largest
+| positive or negative integer is returned.
+*----------------------------------------------------------------------------*/
+
+static int32 roundAndPackInt32( flag zSign, bits64 absZ )
+{
+    int8 roundingMode;
+    flag roundNearestEven;
+    int8 roundIncrement, roundBits;
+    int32 z;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    roundIncrement = 0x40;
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            roundIncrement = 0;
+        }
+        else {
+            roundIncrement = 0x7F;
+            if ( zSign ) {
+                if ( roundingMode == float_round_up ) roundIncrement = 0;
+            }
+            else {
+                if ( roundingMode == float_round_down ) roundIncrement = 0;
+            }
+        }
+    }
+    roundBits = absZ & 0x7F;
+    absZ = ( absZ + roundIncrement )>>7;
+    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+    z = absZ;
+    if ( zSign ) z = - z;
+    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
+        float_raise( float_flag_invalid );
+        return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+    }
+    if ( roundBits ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
+| `absZ1', with binary point between bits 63 and 64 (between the input words),
+| and returns the properly rounded 64-bit integer corresponding to the input.
+| If `zSign' is 1, the input is negated before being converted to an integer.
+| Ordinarily, the fixed-point input is simply rounded to an integer, with
+| the inexact exception raised if the input cannot be represented exactly as
+| an integer.  However, if the fixed-point input is too large, the invalid
+| exception is raised and the largest positive or negative integer is
+| returned.
+*----------------------------------------------------------------------------*/
+
+static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 )
+{
+    int8 roundingMode;
+    flag roundNearestEven, increment;
+    int64 z;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    increment = ( (sbits64) absZ1 < 0 );
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            increment = 0;
+        }
+        else {
+            if ( zSign ) {
+                increment = ( roundingMode == float_round_down ) && absZ1;
+            }
+            else {
+                increment = ( roundingMode == float_round_up ) && absZ1;
+            }
+        }
+    }
+    if ( increment ) {
+        ++absZ0;
+        if ( absZ0 == 0 ) goto overflow;
+        absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
+    }
+    z = absZ0;
+    if ( zSign ) z = - z;
+    if ( z && ( ( z < 0 ) ^ zSign ) ) {
+ overflow:
+        float_raise( float_flag_invalid );
+        return
+              zSign ? (sbits64) LIT64( 0x8000000000000000 )
+            : LIT64( 0x7FFFFFFFFFFFFFFF );
+    }
+    if ( absZ1 ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits32 extractFloat32Frac( float32 a )
+{
+
+    return a & 0x007FFFFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int16 extractFloat32Exp( float32 a )
+{
+
+    return ( a>>23 ) & 0xFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the single-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat32Sign( float32 a )
+{
+
+    return a>>31;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal single-precision floating-point value represented
+| by the denormalized significand `aSig'.  The normalized exponent and
+| significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros32( aSig ) - 8;
+    *zSigPtr = aSig<<shiftCount;
+    *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+| single-precision floating-point value, returning the result.  After being
+| shifted into the proper positions, the three fields are simply added
+| together to form the result.  This means that any integer portion of `zSig'
+| will be added into the exponent.  Since a properly normalized significand
+| will have an integer portion equal to 1, the `zExp' input should be 1 less
+| than the desired result exponent whenever `zSig' is a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+
+    return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper single-precision floating-
+| point value corresponding to the abstract input.  Ordinarily, the abstract
+| value is simply rounded and packed into the single-precision format, with
+| the inexact exception raised if the abstract input cannot be represented
+| exactly.  However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned.  If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal single-
+| precision floating-point number.
+|     The input significand `zSig' has its binary point between bits 30
+| and 29, which is 7 bits to the left of the usual location.  This shifted
+| significand must be normalized or smaller.  If `zSig' is not normalized,
+| `zExp' must be 0; in that case, the result returned is a subnormal number,
+| and it must not require rounding.  In the usual case that `zSig' is
+| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+| The handling of underflow and overflow follows the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+    int8 roundingMode;
+    flag roundNearestEven;
+    int8 roundIncrement, roundBits;
+    flag isTiny;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    roundIncrement = 0x40;
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            roundIncrement = 0;
+        }
+        else {
+            roundIncrement = 0x7F;
+            if ( zSign ) {
+                if ( roundingMode == float_round_up ) roundIncrement = 0;
+            }
+            else {
+                if ( roundingMode == float_round_down ) roundIncrement = 0;
+            }
+        }
+    }
+    roundBits = zSig & 0x7F;
+    if ( 0xFD <= (bits16) zExp ) {
+        if (    ( 0xFD < zExp )
+             || (    ( zExp == 0xFD )
+                  && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
+           ) {
+            float_raise( float_flag_overflow | float_flag_inexact );
+            return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
+        }
+        if ( zExp < 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < -1 )
+                || ( zSig + roundIncrement < 0x80000000 );
+            shift32RightJamming( zSig, - zExp, &zSig );
+            zExp = 0;
+            roundBits = zSig & 0x7F;
+            if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+        }
+    }
+    if ( roundBits ) float_exception_flags |= float_flag_inexact;
+    zSig = ( zSig + roundIncrement )>>7;
+    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+    if ( zSig == 0 ) zExp = 0;
+    return packFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper single-precision floating-
+| point value corresponding to the abstract input.  This routine is just like
+| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
+| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+| floating-point exponent.
+*----------------------------------------------------------------------------*/
+
+static float32
+ normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros32( zSig ) - 1;
+    return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloat64Frac( float64 a )
+{
+
+    return a & LIT64( 0x000FFFFFFFFFFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int16 extractFloat64Exp( float64 a )
+{
+
+    return ( a>>52 ) & 0x7FF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the double-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat64Sign( float64 a )
+{
+
+    return a>>63;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal double-precision floating-point value represented
+| by the denormalized significand `aSig'.  The normalized exponent and
+| significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros64( aSig ) - 11;
+    *zSigPtr = aSig<<shiftCount;
+    *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+| double-precision floating-point value, returning the result.  After being
+| shifted into the proper positions, the three fields are simply added
+| together to form the result.  This means that any integer portion of `zSig'
+| will be added into the exponent.  Since a properly normalized significand
+| will have an integer portion equal to 1, the `zExp' input should be 1 less
+| than the desired result exponent whenever `zSig' is a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+
+    return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper double-precision floating-
+| point value corresponding to the abstract input.  Ordinarily, the abstract
+| value is simply rounded and packed into the double-precision format, with
+| the inexact exception raised if the abstract input cannot be represented
+| exactly.  However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned.  If the abstract value is too small, the input value is rounded
+| to a subnormal number, and the underflow and inexact exceptions are raised
+| if the abstract input cannot be represented exactly as a subnormal double-
+| precision floating-point number.
+|     The input significand `zSig' has its binary point between bits 62
+| and 61, which is 10 bits to the left of the usual location.  This shifted
+| significand must be normalized or smaller.  If `zSig' is not normalized,
+| `zExp' must be 0; in that case, the result returned is a subnormal number,
+| and it must not require rounding.  In the usual case that `zSig' is
+| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+| The handling of underflow and overflow follows the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+    int8 roundingMode;
+    flag roundNearestEven;
+    int16 roundIncrement, roundBits;
+    flag isTiny;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    roundIncrement = 0x200;
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            roundIncrement = 0;
+        }
+        else {
+            roundIncrement = 0x3FF;
+            if ( zSign ) {
+                if ( roundingMode == float_round_up ) roundIncrement = 0;
+            }
+            else {
+                if ( roundingMode == float_round_down ) roundIncrement = 0;
+            }
+        }
+    }
+    roundBits = zSig & 0x3FF;
+    if ( 0x7FD <= (bits16) zExp ) {
+        if (    ( 0x7FD < zExp )
+             || (    ( zExp == 0x7FD )
+                  && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
+           ) {
+            float_raise( float_flag_overflow | float_flag_inexact );
+            return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
+        }
+        if ( zExp < 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < -1 )
+                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
+            shift64RightJamming( zSig, - zExp, &zSig );
+            zExp = 0;
+            roundBits = zSig & 0x3FF;
+            if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+        }
+    }
+    if ( roundBits ) float_exception_flags |= float_flag_inexact;
+    zSig = ( zSig + roundIncrement )>>10;
+    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
+    if ( zSig == 0 ) zExp = 0;
+    return packFloat64( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand `zSig', and returns the proper double-precision floating-
+| point value corresponding to the abstract input.  This routine is just like
+| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
+| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+| floating-point exponent.
+*----------------------------------------------------------------------------*/
+
+static float64
+ normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros64( zSig ) - 1;
+    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the extended double-precision floating-point
+| value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloatx80Frac( floatx80 a )
+{
+
+    return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the extended double-precision floating-point
+| value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int32 extractFloatx80Exp( floatx80 a )
+{
+
+    return a.high & 0x7FFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the extended double-precision floating-point value
+| `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloatx80Sign( floatx80 a )
+{
+
+    return a.high>>15;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal extended double-precision floating-point value
+| represented by the denormalized significand `aSig'.  The normalized exponent
+| and significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
+{
+    int8 shiftCount;
+
+    shiftCount = countLeadingZeros64( aSig );
+    *zSigPtr = aSig<<shiftCount;
+    *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
+| extended double-precision floating-point value, returning the result.
+*----------------------------------------------------------------------------*/
+
+INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
+{
+    floatx80 z;
+
+    z.low = zSig;
+    z.high = ( ( (bits16) zSign )<<15 ) + zExp;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0' and `zSig1',
+| and returns the proper extended double-precision floating-point value
+| corresponding to the abstract input.  Ordinarily, the abstract value is
+| rounded and packed into the extended double-precision format, with the
+| inexact exception raised if the abstract input cannot be represented
+| exactly.  However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned.  If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal extended
+| double-precision floating-point number.
+|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
+| number of bits as single or double precision, respectively.  Otherwise, the
+| result is rounded to the full precision of the extended double-precision
+| format.
+|     The input significand must be normalized or smaller.  If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding.  The
+| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80
+ roundAndPackFloatx80(
+     int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+    int8 roundingMode;
+    flag roundNearestEven, increment, isTiny;
+    int64 roundIncrement, roundMask, roundBits;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    if ( roundingPrecision == 80 ) goto precision80;
+    if ( roundingPrecision == 64 ) {
+        roundIncrement = LIT64( 0x0000000000000400 );
+        roundMask = LIT64( 0x00000000000007FF );
+    }
+    else if ( roundingPrecision == 32 ) {
+        roundIncrement = LIT64( 0x0000008000000000 );
+        roundMask = LIT64( 0x000000FFFFFFFFFF );
+    }
+    else {
+        goto precision80;
+    }
+    zSig0 |= ( zSig1 != 0 );
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            roundIncrement = 0;
+        }
+        else {
+            roundIncrement = roundMask;
+            if ( zSign ) {
+                if ( roundingMode == float_round_up ) roundIncrement = 0;
+            }
+            else {
+                if ( roundingMode == float_round_down ) roundIncrement = 0;
+            }
+        }
+    }
+    roundBits = zSig0 & roundMask;
+    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+        if (    ( 0x7FFE < zExp )
+             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
+           ) {
+            goto overflow;
+        }
+        if ( zExp <= 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < 0 )
+                || ( zSig0 <= zSig0 + roundIncrement );
+            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
+            zExp = 0;
+            roundBits = zSig0 & roundMask;
+            if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+            if ( roundBits ) float_exception_flags |= float_flag_inexact;
+            zSig0 += roundIncrement;
+            if ( (sbits64) zSig0 < 0 ) zExp = 1;
+            roundIncrement = roundMask + 1;
+            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+                roundMask |= roundIncrement;
+            }
+            zSig0 &= ~ roundMask;
+            return packFloatx80( zSign, zExp, zSig0 );
+        }
+    }
+    if ( roundBits ) float_exception_flags |= float_flag_inexact;
+    zSig0 += roundIncrement;
+    if ( zSig0 < roundIncrement ) {
+        ++zExp;
+        zSig0 = LIT64( 0x8000000000000000 );
+    }
+    roundIncrement = roundMask + 1;
+    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+        roundMask |= roundIncrement;
+    }
+    zSig0 &= ~ roundMask;
+    if ( zSig0 == 0 ) zExp = 0;
+    return packFloatx80( zSign, zExp, zSig0 );
+ precision80:
+    increment = ( (sbits64) zSig1 < 0 );
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            increment = 0;
+        }
+        else {
+            if ( zSign ) {
+                increment = ( roundingMode == float_round_down ) && zSig1;
+            }
+            else {
+                increment = ( roundingMode == float_round_up ) && zSig1;
+            }
+        }
+    }
+    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+        if (    ( 0x7FFE < zExp )
+             || (    ( zExp == 0x7FFE )
+                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
+                  && increment
+                )
+           ) {
+            roundMask = 0;
+ overflow:
+            float_raise( float_flag_overflow | float_flag_inexact );
+            if (    ( roundingMode == float_round_to_zero )
+                 || ( zSign && ( roundingMode == float_round_up ) )
+                 || ( ! zSign && ( roundingMode == float_round_down ) )
+               ) {
+                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
+            }
+            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+        }
+        if ( zExp <= 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < 0 )
+                || ! increment
+                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
+            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
+            zExp = 0;
+            if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
+            if ( zSig1 ) float_exception_flags |= float_flag_inexact;
+            if ( roundNearestEven ) {
+                increment = ( (sbits64) zSig1 < 0 );
+            }
+            else {
+                if ( zSign ) {
+                    increment = ( roundingMode == float_round_down ) && zSig1;
+                }
+                else {
+                    increment = ( roundingMode == float_round_up ) && zSig1;
+                }
+            }
+            if ( increment ) {
+                ++zSig0;
+                zSig0 &=
+                    ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+                if ( (sbits64) zSig0 < 0 ) zExp = 1;
+            }
+            return packFloatx80( zSign, zExp, zSig0 );
+        }
+    }
+    if ( zSig1 ) float_exception_flags |= float_flag_inexact;
+    if ( increment ) {
+        ++zSig0;
+        if ( zSig0 == 0 ) {
+            ++zExp;
+            zSig0 = LIT64( 0x8000000000000000 );
+        }
+        else {
+            zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+        }
+    }
+    else {
+        if ( zSig0 == 0 ) zExp = 0;
+    }
+    return packFloatx80( zSign, zExp, zSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent
+| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
+| and returns the proper extended double-precision floating-point value
+| corresponding to the abstract input.  This routine is just like
+| `roundAndPackFloatx80' except that the input significand does not have to be
+| normalized.
+*----------------------------------------------------------------------------*/
+
+static floatx80
+ normalizeRoundAndPackFloatx80(
+     int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+    int8 shiftCount;
+
+    if ( zSig0 == 0 ) {
+        zSig0 = zSig1;
+        zSig1 = 0;
+        zExp -= 64;
+    }
+    shiftCount = countLeadingZeros64( zSig0 );
+    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+    zExp -= shiftCount;
+    return
+        roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the least-significant 64 fraction bits of the quadruple-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloat128Frac1( float128 a )
+{
+
+    return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the most-significant 48 fraction bits of the quadruple-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloat128Frac0( float128 a )
+{
+
+    return a.high & LIT64( 0x0000FFFFFFFFFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the quadruple-precision floating-point value
+| `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int32 extractFloat128Exp( float128 a )
+{
+
+    return ( a.high>>48 ) & 0x7FFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the quadruple-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat128Sign( float128 a )
+{
+
+    return a.high>>63;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal quadruple-precision floating-point value
+| represented by the denormalized significand formed by the concatenation of
+| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
+| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
+| significand are stored at the location pointed to by `zSig0Ptr', and the
+| least significant 64 bits of the normalized significand are stored at the
+| location pointed to by `zSig1Ptr'.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat128Subnormal(
+     bits64 aSig0,
+     bits64 aSig1,
+     int32 *zExpPtr,
+     bits64 *zSig0Ptr,
+     bits64 *zSig1Ptr
+ )
+{
+    int8 shiftCount;
+
+    if ( aSig0 == 0 ) {
+        shiftCount = countLeadingZeros64( aSig1 ) - 15;
+        if ( shiftCount < 0 ) {
+            *zSig0Ptr = aSig1>>( - shiftCount );
+            *zSig1Ptr = aSig1<<( shiftCount & 63 );
+        }
+        else {
+            *zSig0Ptr = aSig1<<shiftCount;
+            *zSig1Ptr = 0;
+        }
+        *zExpPtr = - shiftCount - 63;
+    }
+    else {
+        shiftCount = countLeadingZeros64( aSig0 ) - 15;
+        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
+        *zExpPtr = 1 - shiftCount;
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', the exponent `zExp', and the significand formed
+| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
+| floating-point value, returning the result.  After being shifted into the
+| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
+| added together to form the most significant 32 bits of the result.  This
+| means that any integer portion of `zSig0' will be added into the exponent.
+| Since a properly normalized significand will have an integer portion equal
+| to 1, the `zExp' input should be 1 less than the desired result exponent
+| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+INLINE float128
+ packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+{
+    float128 z;
+
+    z.low = zSig1;
+    z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0', `zSig1',
+| and `zSig2', and returns the proper quadruple-precision floating-point value
+| corresponding to the abstract input.  Ordinarily, the abstract value is
+| simply rounded and packed into the quadruple-precision format, with the
+| inexact exception raised if the abstract input cannot be represented
+| exactly.  However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned.  If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal quadruple-
+| precision floating-point number.
+|     The input significand must be normalized or smaller.  If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding.  In the
+| usual case that the input significand is normalized, `zExp' must be 1 less
+| than the ``true'' floating-point exponent.  The handling of underflow and
+| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128
+ roundAndPackFloat128(
+     flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
+{
+    int8 roundingMode;
+    flag roundNearestEven, increment, isTiny;
+
+    roundingMode = float_rounding_mode;
+    roundNearestEven = ( roundingMode == float_round_nearest_even );
+    increment = ( (sbits64) zSig2 < 0 );
+    if ( ! roundNearestEven ) {
+        if ( roundingMode == float_round_to_zero ) {
+            increment = 0;
+        }
+        else {
+            if ( zSign ) {
+                increment = ( roundingMode == float_round_down ) && zSig2;
+            }
+            else {
+                increment = ( roundingMode == float_round_up ) && zSig2;
+            }
+        }
+    }
+    if ( 0x7FFD <= (bits32) zExp ) {
+        if (    ( 0x7FFD < zExp )
+             || (    ( zExp == 0x7FFD )
+                  && eq128(
+                         LIT64( 0x0001FFFFFFFFFFFF ),
+                         LIT64( 0xFFFFFFFFFFFFFFFF ),
+                         zSig0,
+                         zSig1
+                     )
+                  && increment
+                )
+           ) {
+            float_raise( float_flag_overflow | float_flag_inexact );
+            if (    ( roundingMode == float_round_to_zero )
+                 || ( zSign && ( roundingMode == float_round_up ) )
+                 || ( ! zSign && ( roundingMode == float_round_down ) )
+               ) {
+                return
+                    packFloat128(
+                        zSign,
+                        0x7FFE,
+                        LIT64( 0x0000FFFFFFFFFFFF ),
+                        LIT64( 0xFFFFFFFFFFFFFFFF )
+                    );
+            }
+            return packFloat128( zSign, 0x7FFF, 0, 0 );
+        }
+        if ( zExp < 0 ) {
+            isTiny =
+                   ( float_detect_tininess == float_tininess_before_rounding )
+                || ( zExp < -1 )
+                || ! increment
+                || lt128(
+                       zSig0,
+                       zSig1,
+                       LIT64( 0x0001FFFFFFFFFFFF ),
+                       LIT64( 0xFFFFFFFFFFFFFFFF )
+                   );
+            shift128ExtraRightJamming(
+                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
+            zExp = 0;
+            if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
+            if ( roundNearestEven ) {
+                increment = ( (sbits64) zSig2 < 0 );
+            }
+            else {
+                if ( zSign ) {
+                    increment = ( roundingMode == float_round_down ) && zSig2;
+                }
+                else {
+                    increment = ( roundingMode == float_round_up ) && zSig2;
+                }
+            }
+        }
+    }
+    if ( zSig2 ) float_exception_flags |= float_flag_inexact;
+    if ( increment ) {
+        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
+        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
+    }
+    else {
+        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
+    }
+    return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand formed by the concatenation of `zSig0' and `zSig1', and
+| returns the proper quadruple-precision floating-point value corresponding
+| to the abstract input.  This routine is just like `roundAndPackFloat128'
+| except that the input significand has fewer bits and does not have to be
+| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
+| point exponent.
+*----------------------------------------------------------------------------*/
+
+static float128
+ normalizeRoundAndPackFloat128(
+     flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+{
+    int8 shiftCount;
+    bits64 zSig2;
+
+    if ( zSig0 == 0 ) {
+        zSig0 = zSig1;
+        zSig1 = 0;
+        zExp -= 64;
+    }
+    shiftCount = countLeadingZeros64( zSig0 ) - 15;
+    if ( 0 <= shiftCount ) {
+        zSig2 = 0;
+        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+    }
+    else {
+        shift128ExtraRightJamming(
+            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
+    }
+    zExp -= shiftCount;
+    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the single-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 int32_to_float32( int32 a )
+{
+    flag zSign;
+
+    if ( a == 0 ) return 0;
+    if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+    zSign = ( a < 0 );
+    return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the double-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 int32_to_float64( int32 a )
+{
+    flag zSign;
+    uint32 absA;
+    int8 shiftCount;
+    bits64 zSig;
+
+    if ( a == 0 ) return 0;
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros32( absA ) + 21;
+    zSig = absA;
+    return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the extended double-precision floating-point format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 int32_to_floatx80( int32 a )
+{
+    flag zSign;
+    uint32 absA;
+    int8 shiftCount;
+    bits64 zSig;
+
+    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros32( absA ) + 32;
+    zSig = absA;
+    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a' to
+| the quadruple-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 int32_to_float128( int32 a )
+{
+    flag zSign;
+    uint32 absA;
+    int8 shiftCount;
+    bits64 zSig0;
+
+    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros32( absA ) + 17;
+    zSig0 = absA;
+    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the single-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 int64_to_float32( int64 a )
+{
+    flag zSign;
+    uint64 absA;
+    int8 shiftCount;
+    bits32 zSig;
+
+    if ( a == 0 ) return 0;
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros64( absA ) - 40;
+    if ( 0 <= shiftCount ) {
+        return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
+    }
+    else {
+        shiftCount += 7;
+        if ( shiftCount < 0 ) {
+            shift64RightJamming( absA, - shiftCount, &absA );
+        }
+        else {
+            absA <<= shiftCount;
+        }
+        return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the double-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 int64_to_float64( int64 a )
+{
+    flag zSign;
+
+    if ( a == 0 ) return 0;
+    if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
+        return packFloat64( 1, 0x43E, 0 );
+    }
+    zSign = ( a < 0 );
+    return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the extended double-precision floating-point format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 int64_to_floatx80( int64 a )
+{
+    flag zSign;
+    uint64 absA;
+    int8 shiftCount;
+
+    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros64( absA );
+    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a' to
+| the quadruple-precision floating-point format.  The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 int64_to_float128( int64 a )
+{
+    flag zSign;
+    uint64 absA;
+    int8 shiftCount;
+    int32 zExp;
+    bits64 zSig0, zSig1;
+
+    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+    zSign = ( a < 0 );
+    absA = zSign ? - a : a;
+    shiftCount = countLeadingZeros64( absA ) + 49;
+    zExp = 0x406E - shiftCount;
+    if ( 64 <= shiftCount ) {
+        zSig1 = 0;
+        zSig0 = absA;
+        shiftCount -= 64;
+    }
+    else {
+        zSig1 = absA;
+        zSig0 = 0;
+    }
+    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+    return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float32_to_int32( float32 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig;
+    bits64 aSig64;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
+    if ( aExp ) aSig |= 0x00800000;
+    shiftCount = 0xAF - aExp;
+    aSig64 = aSig;
+    aSig64 <<= 32;
+    if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
+    return roundAndPackInt32( aSign, aSig64 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float32_to_int32_round_to_zero( float32 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig;
+    int32 z;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    shiftCount = aExp - 0x9E;
+    if ( 0 <= shiftCount ) {
+        if ( a != 0xCF000000 ) {
+            float_raise( float_flag_invalid );
+            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
+        }
+        return (sbits32) 0x80000000;
+    }
+    else if ( aExp <= 0x7E ) {
+        if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    aSig = ( aSig | 0x00800000 )<<8;
+    z = aSig>>( - shiftCount );
+    if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    if ( aSign ) z = - z;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 64-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float32_to_int64( float32 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig;
+    bits64 aSig64, aSigExtra;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    shiftCount = 0xBE - aExp;
+    if ( shiftCount < 0 ) {
+        float_raise( float_flag_invalid );
+        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+            return LIT64( 0x7FFFFFFFFFFFFFFF );
+        }
+        return (sbits64) LIT64( 0x8000000000000000 );
+    }
+    if ( aExp ) aSig |= 0x00800000;
+    aSig64 = aSig;
+    aSig64 <<= 40;
+    shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
+    return roundAndPackInt64( aSign, aSig64, aSigExtra );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the 64-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.  If
+| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
+| conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float32_to_int64_round_to_zero( float32 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits32 aSig;
+    bits64 aSig64;
+    int64 z;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    shiftCount = aExp - 0xBE;
+    if ( 0 <= shiftCount ) {
+        if ( a != 0xDF000000 ) {
+            float_raise( float_flag_invalid );
+            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+                return LIT64( 0x7FFFFFFFFFFFFFFF );
+            }
+        }
+        return (sbits64) LIT64( 0x8000000000000000 );
+    }
+    else if ( aExp <= 0x7E ) {
+        if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    aSig64 = aSig | 0x00800000;
+    aSig64 <<= 40;
+    z = aSig64>>( - shiftCount );
+    if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    if ( aSign ) z = - z;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the double-precision floating-point format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float32_to_float64( float32 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 aSig;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
+        return packFloat64( aSign, 0x7FF, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+        --aExp;
+    }
+    return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the extended double-precision floating-point format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float32_to_floatx80( float32 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 aSig;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
+        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    aSig |= 0x00800000;
+    return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the double-precision floating-point format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float32_to_float128( float32 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 aSig;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
+        return packFloat128( aSign, 0x7FFF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+        --aExp;
+    }
+    return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Rounds the single-precision floating-point value `a' to an integer, and
+| returns the result as a single-precision floating-point value.  The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_round_to_int( float32 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits32 lastBitMask, roundBitsMask;
+    int8 roundingMode;
+    float32 z;
+
+    aExp = extractFloat32Exp( a );
+    if ( 0x96 <= aExp ) {
+        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
+            return propagateFloat32NaN( a, a );
+        }
+        return a;
+    }
+    if ( aExp <= 0x7E ) {
+        if ( (bits32) ( a<<1 ) == 0 ) return a;
+        float_exception_flags |= float_flag_inexact;
+        aSign = extractFloat32Sign( a );
+        switch ( float_rounding_mode ) {
+         case float_round_nearest_even:
+            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
+                return packFloat32( aSign, 0x7F, 0 );
+            }
+            break;
+         case float_round_down:
+            return aSign ? 0xBF800000 : 0;
+         case float_round_up:
+            return aSign ? 0x80000000 : 0x3F800000;
+        }
+        return packFloat32( aSign, 0, 0 );
+    }
+    lastBitMask = 1;
+    lastBitMask <<= 0x96 - aExp;
+    roundBitsMask = lastBitMask - 1;
+    z = a;
+    roundingMode = float_rounding_mode;
+    if ( roundingMode == float_round_nearest_even ) {
+        z += lastBitMask>>1;
+        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+    }
+    else if ( roundingMode != float_round_to_zero ) {
+        if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+            z += roundBitsMask;
+        }
+    }
+    z &= ~ roundBitsMask;
+    if ( z != a ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the single-precision
+| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
+| before being returned.  `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig;
+    int16 expDiff;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    expDiff = aExp - bExp;
+    aSig <<= 6;
+    bSig <<= 6;
+    if ( 0 < expDiff ) {
+        if ( aExp == 0xFF ) {
+            if ( aSig ) return propagateFloat32NaN( a, b );
+            return a;
+        }
+        if ( bExp == 0 ) {
+            --expDiff;
+        }
+        else {
+            bSig |= 0x20000000;
+        }
+        shift32RightJamming( bSig, expDiff, &bSig );
+        zExp = aExp;
+    }
+    else if ( expDiff < 0 ) {
+        if ( bExp == 0xFF ) {
+            if ( bSig ) return propagateFloat32NaN( a, b );
+            return packFloat32( zSign, 0xFF, 0 );
+        }
+        if ( aExp == 0 ) {
+            ++expDiff;
+        }
+        else {
+            aSig |= 0x20000000;
+        }
+        shift32RightJamming( aSig, - expDiff, &aSig );
+        zExp = bExp;
+    }
+    else {
+        if ( aExp == 0xFF ) {
+            if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+            return a;
+        }
+        if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
+        zSig = 0x40000000 + aSig + bSig;
+        zExp = aExp;
+        goto roundAndPack;
+    }
+    aSig |= 0x20000000;
+    zSig = ( aSig + bSig )<<1;
+    --zExp;
+    if ( (sbits32) zSig < 0 ) {
+        zSig = aSig + bSig;
+        ++zExp;
+    }
+ roundAndPack:
+    return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the single-
+| precision floating-point values `a' and `b'.  If `zSign' is 1, the
+| difference is negated before being returned.  `zSign' is ignored if the
+| result is a NaN.  The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig;
+    int16 expDiff;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    expDiff = aExp - bExp;
+    aSig <<= 7;
+    bSig <<= 7;
+    if ( 0 < expDiff ) goto aExpBigger;
+    if ( expDiff < 0 ) goto bExpBigger;
+    if ( aExp == 0xFF ) {
+        if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( aExp == 0 ) {
+        aExp = 1;
+        bExp = 1;
+    }
+    if ( bSig < aSig ) goto aBigger;
+    if ( aSig < bSig ) goto bBigger;
+    return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        return packFloat32( zSign ^ 1, 0xFF, 0 );
+    }
+    if ( aExp == 0 ) {
+        ++expDiff;
+    }
+    else {
+        aSig |= 0x40000000;
+    }
+    shift32RightJamming( aSig, - expDiff, &aSig );
+    bSig |= 0x40000000;
+ bBigger:
+    zSig = bSig - aSig;
+    zExp = bExp;
+    zSign ^= 1;
+    goto normalizeRoundAndPack;
+ aExpBigger:
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return propagateFloat32NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        --expDiff;
+    }
+    else {
+        bSig |= 0x40000000;
+    }
+    shift32RightJamming( bSig, expDiff, &bSig );
+    aSig |= 0x40000000;
+ aBigger:
+    zSig = aSig - bSig;
+    zExp = aExp;
+ normalizeRoundAndPack:
+    --zExp;
+    return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the single-precision floating-point values `a'
+| and `b'.  The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_add( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign == bSign ) {
+        return addFloat32Sigs( a, b, aSign );
+    }
+    else {
+        return subFloat32Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the single-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_sub( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign == bSign ) {
+        return subFloat32Sigs( a, b, aSign );
+    }
+    else {
+        return addFloat32Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the single-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_mul( float32 a, float32 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig;
+    bits64 zSig64;
+    bits32 zSig;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    bSign = extractFloat32Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0xFF ) {
+        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+            return propagateFloat32NaN( a, b );
+        }
+        if ( ( bExp | bSig ) == 0 ) {
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        return packFloat32( zSign, 0xFF, 0 );
+    }
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        if ( ( aExp | aSig ) == 0 ) {
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        return packFloat32( zSign, 0xFF, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
+        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+    }
+    zExp = aExp + bExp - 0x7F;
+    aSig = ( aSig | 0x00800000 )<<7;
+    bSig = ( bSig | 0x00800000 )<<8;
+    shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
+    zSig = zSig64;
+    if ( 0 <= (sbits32) ( zSig<<1 ) ) {
+        zSig <<= 1;
+        --zExp;
+    }
+    return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the single-precision floating-point value `a'
+| by the corresponding value `b'.  The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_div( float32 a, float32 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits32 aSig, bSig, zSig;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    bSign = extractFloat32Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return propagateFloat32NaN( a, b );
+        if ( bExp == 0xFF ) {
+            if ( bSig ) return propagateFloat32NaN( a, b );
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        return packFloat32( zSign, 0xFF, 0 );
+    }
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        return packFloat32( zSign, 0, 0 );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            if ( ( aExp | aSig ) == 0 ) {
+                float_raise( float_flag_invalid );
+                return float32_default_nan;
+            }
+            float_raise( float_flag_divbyzero );
+            return packFloat32( zSign, 0xFF, 0 );
+        }
+        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = aExp - bExp + 0x7D;
+    aSig = ( aSig | 0x00800000 )<<7;
+    bSig = ( bSig | 0x00800000 )<<8;
+    if ( bSig <= ( aSig + aSig ) ) {
+        aSig >>= 1;
+        ++zExp;
+    }
+    zSig = ( ( (bits64) aSig )<<32 ) / bSig;
+    if ( ( zSig & 0x3F ) == 0 ) {
+        zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
+    }
+    return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the single-precision floating-point value `a'
+| with respect to the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_rem( float32 a, float32 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, expDiff;
+    bits32 aSig, bSig;
+    bits32 q;
+    bits64 aSig64, bSig64, q64;
+    bits32 alternateASig;
+    sbits32 sigMean;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    bSig = extractFloat32Frac( b );
+    bExp = extractFloat32Exp( b );
+    bSign = extractFloat32Sign( b );
+    if ( aExp == 0xFF ) {
+        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+            return propagateFloat32NaN( a, b );
+        }
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( bExp == 0xFF ) {
+        if ( bSig ) return propagateFloat32NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            float_raise( float_flag_invalid );
+            return float32_default_nan;
+        }
+        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return a;
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    expDiff = aExp - bExp;
+    aSig |= 0x00800000;
+    bSig |= 0x00800000;
+    if ( expDiff < 32 ) {
+        aSig <<= 8;
+        bSig <<= 8;
+        if ( expDiff < 0 ) {
+            if ( expDiff < -1 ) return a;
+            aSig >>= 1;
+        }
+        q = ( bSig <= aSig );
+        if ( q ) aSig -= bSig;
+        if ( 0 < expDiff ) {
+            q = ( ( (bits64) aSig )<<32 ) / bSig;
+            q >>= 32 - expDiff;
+            bSig >>= 2;
+            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+        }
+        else {
+            aSig >>= 2;
+            bSig >>= 2;
+        }
+    }
+    else {
+        if ( bSig <= aSig ) aSig -= bSig;
+        aSig64 = ( (bits64) aSig )<<40;
+        bSig64 = ( (bits64) bSig )<<40;
+        expDiff -= 64;
+        while ( 0 < expDiff ) {
+            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+            aSig64 = - ( ( bSig * q64 )<<38 );
+            expDiff -= 62;
+        }
+        expDiff += 64;
+        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+        q = q64>>( 64 - expDiff );
+        bSig <<= 6;
+        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
+    }
+    do {
+        alternateASig = aSig;
+        ++q;
+        aSig -= bSig;
+    } while ( 0 <= (sbits32) aSig );
+    sigMean = aSig + alternateASig;
+    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+        aSig = alternateASig;
+    }
+    zSign = ( (sbits32) aSig < 0 );
+    if ( zSign ) aSig = - aSig;
+    return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the single-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float32_sqrt( float32 a )
+{
+    flag aSign;
+    int16 aExp, zExp;
+    bits32 aSig, zSig;
+    bits64 rem, term;
+
+    aSig = extractFloat32Frac( a );
+    aExp = extractFloat32Exp( a );
+    aSign = extractFloat32Sign( a );
+    if ( aExp == 0xFF ) {
+        if ( aSig ) return propagateFloat32NaN( a, 0 );
+        if ( ! aSign ) return a;
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( aSign ) {
+        if ( ( aExp | aSig ) == 0 ) return a;
+        float_raise( float_flag_invalid );
+        return float32_default_nan;
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return 0;
+        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
+    aSig = ( aSig | 0x00800000 )<<8;
+    zSig = estimateSqrt32( aExp, aSig ) + 2;
+    if ( ( zSig & 0x7F ) <= 5 ) {
+        if ( zSig < 2 ) {
+            zSig = 0x7FFFFFFF;
+            goto roundAndPack;
+        }
+        aSig >>= aExp & 1;
+        term = ( (bits64) zSig ) * zSig;
+        rem = ( ( (bits64) aSig )<<32 ) - term;
+        while ( (sbits64) rem < 0 ) {
+            --zSig;
+            rem += ( ( (bits64) zSig )<<1 ) | 1;
+        }
+        zSig |= ( rem != 0 );
+    }
+    shift32RightJamming( zSig, 1, &zSig );
+ roundAndPack:
+    return roundAndPackFloat32( 0, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_eq( float32 a, float32 b )
+{
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise.  The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_le( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+    return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_lt( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+    return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The invalid exception is
+| raised if either operand is a NaN.  Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_eq_signaling( float32 a, float32 b )
+{
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
+| cause an exception.  Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_le_quiet( float32 a, float32 b )
+{
+    flag aSign, bSign;
+    int16 aExp, bExp;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+    return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
+| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float32_lt_quiet( float32 a, float32 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+       ) {
+        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat32Sign( a );
+    bSign = extractFloat32Sign( b );
+    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+    return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float64_to_int32( float64 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits64 aSig;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+    shiftCount = 0x42C - aExp;
+    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
+    return roundAndPackInt32( aSign, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 32-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float64_to_int32_round_to_zero( float64 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits64 aSig, savedASig;
+    int32 z;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( 0x41E < aExp ) {
+        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+        goto invalid;
+    }
+    else if ( aExp < 0x3FF ) {
+        if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    aSig |= LIT64( 0x0010000000000000 );
+    shiftCount = 0x433 - aExp;
+    savedASig = aSig;
+    aSig >>= shiftCount;
+    z = aSig;
+    if ( aSign ) z = - z;
+    if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+        float_raise( float_flag_invalid );
+        return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+    }
+    if ( ( aSig<<shiftCount ) != savedASig ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 64-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float64_to_int64( float64 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits64 aSig, aSigExtra;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+    shiftCount = 0x433 - aExp;
+    if ( shiftCount <= 0 ) {
+        if ( 0x43E < aExp ) {
+            float_raise( float_flag_invalid );
+            if (    ! aSign
+                 || (    ( aExp == 0x7FF )
+                      && ( aSig != LIT64( 0x0010000000000000 ) ) )
+               ) {
+                return LIT64( 0x7FFFFFFFFFFFFFFF );
+            }
+            return (sbits64) LIT64( 0x8000000000000000 );
+        }
+        aSigExtra = 0;
+        aSig <<= - shiftCount;
+    }
+    else {
+        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+    }
+    return roundAndPackInt64( aSign, aSig, aSigExtra );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the 64-bit two's complement integer format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float64_to_int64_round_to_zero( float64 a )
+{
+    flag aSign;
+    int16 aExp, shiftCount;
+    bits64 aSig;
+    int64 z;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+    shiftCount = aExp - 0x433;
+    if ( 0 <= shiftCount ) {
+        if ( 0x43E <= aExp ) {
+            if ( a != LIT64( 0xC3E0000000000000 ) ) {
+                float_raise( float_flag_invalid );
+                if (    ! aSign
+                     || (    ( aExp == 0x7FF )
+                          && ( aSig != LIT64( 0x0010000000000000 ) ) )
+                   ) {
+                    return LIT64( 0x7FFFFFFFFFFFFFFF );
+                }
+            }
+            return (sbits64) LIT64( 0x8000000000000000 );
+        }
+        z = aSig<<shiftCount;
+    }
+    else {
+        if ( aExp < 0x3FE ) {
+            if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+            return 0;
+        }
+        z = aSig>>( - shiftCount );
+        if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+            float_exception_flags |= float_flag_inexact;
+        }
+    }
+    if ( aSign ) z = - z;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the single-precision floating-point format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float64_to_float32( float64 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits64 aSig;
+    bits32 zSig;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp == 0x7FF ) {
+        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
+        return packFloat32( aSign, 0xFF, 0 );
+    }
+    shift64RightJamming( aSig, 22, &aSig );
+    zSig = aSig;
+    if ( aExp || zSig ) {
+        zSig |= 0x40000000;
+        aExp -= 0x381;
+    }
+    return roundAndPackFloat32( aSign, aExp, zSig );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the extended double-precision floating-point format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float64_to_floatx80( float64 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits64 aSig;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp == 0x7FF ) {
+        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
+        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+    }
+    return
+        packFloatx80(
+            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the quadruple-precision floating-point format.  The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float64_to_float128( float64 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits64 aSig, zSig0, zSig1;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp == 0x7FF ) {
+        if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
+        return packFloat128( aSign, 0x7FFF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+        --aExp;
+    }
+    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
+    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Rounds the double-precision floating-point value `a' to an integer, and
+| returns the result as a double-precision floating-point value.  The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_round_to_int( float64 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits64 lastBitMask, roundBitsMask;
+    int8 roundingMode;
+    float64 z;
+
+    aExp = extractFloat64Exp( a );
+    if ( 0x433 <= aExp ) {
+        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
+            return propagateFloat64NaN( a, a );
+        }
+        return a;
+    }
+    if ( aExp < 0x3FF ) {
+        if ( (bits64) ( a<<1 ) == 0 ) return a;
+        float_exception_flags |= float_flag_inexact;
+        aSign = extractFloat64Sign( a );
+        switch ( float_rounding_mode ) {
+         case float_round_nearest_even:
+            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
+                return packFloat64( aSign, 0x3FF, 0 );
+            }
+            break;
+         case float_round_down:
+            return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
+         case float_round_up:
+            return
+            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
+        }
+        return packFloat64( aSign, 0, 0 );
+    }
+    lastBitMask = 1;
+    lastBitMask <<= 0x433 - aExp;
+    roundBitsMask = lastBitMask - 1;
+    z = a;
+    roundingMode = float_rounding_mode;
+    if ( roundingMode == float_round_nearest_even ) {
+        z += lastBitMask>>1;
+        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+    }
+    else if ( roundingMode != float_round_to_zero ) {
+        if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+            z += roundBitsMask;
+        }
+    }
+    z &= ~ roundBitsMask;
+    if ( z != a ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the double-precision
+| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
+| before being returned.  `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig;
+    int16 expDiff;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    bSig = extractFloat64Frac( b );
+    bExp = extractFloat64Exp( b );
+    expDiff = aExp - bExp;
+    aSig <<= 9;
+    bSig <<= 9;
+    if ( 0 < expDiff ) {
+        if ( aExp == 0x7FF ) {
+            if ( aSig ) return propagateFloat64NaN( a, b );
+            return a;
+        }
+        if ( bExp == 0 ) {
+            --expDiff;
+        }
+        else {
+            bSig |= LIT64( 0x2000000000000000 );
+        }
+        shift64RightJamming( bSig, expDiff, &bSig );
+        zExp = aExp;
+    }
+    else if ( expDiff < 0 ) {
+        if ( bExp == 0x7FF ) {
+            if ( bSig ) return propagateFloat64NaN( a, b );
+            return packFloat64( zSign, 0x7FF, 0 );
+        }
+        if ( aExp == 0 ) {
+            ++expDiff;
+        }
+        else {
+            aSig |= LIT64( 0x2000000000000000 );
+        }
+        shift64RightJamming( aSig, - expDiff, &aSig );
+        zExp = bExp;
+    }
+    else {
+        if ( aExp == 0x7FF ) {
+            if ( aSig | bSig ) return propagateFloat64NaN( a, b );
+            return a;
+        }
+        if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
+        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
+        zExp = aExp;
+        goto roundAndPack;
+    }
+    aSig |= LIT64( 0x2000000000000000 );
+    zSig = ( aSig + bSig )<<1;
+    --zExp;
+    if ( (sbits64) zSig < 0 ) {
+        zSig = aSig + bSig;
+        ++zExp;
+    }
+ roundAndPack:
+    return roundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the double-
+| precision floating-point values `a' and `b'.  If `zSign' is 1, the
+| difference is negated before being returned.  `zSign' is ignored if the
+| result is a NaN.  The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+    int16 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig;
+    int16 expDiff;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    bSig = extractFloat64Frac( b );
+    bExp = extractFloat64Exp( b );
+    expDiff = aExp - bExp;
+    aSig <<= 10;
+    bSig <<= 10;
+    if ( 0 < expDiff ) goto aExpBigger;
+    if ( expDiff < 0 ) goto bExpBigger;
+    if ( aExp == 0x7FF ) {
+        if ( aSig | bSig ) return propagateFloat64NaN( a, b );
+        float_raise( float_flag_invalid );
+        return float64_default_nan;
+    }
+    if ( aExp == 0 ) {
+        aExp = 1;
+        bExp = 1;
+    }
+    if ( bSig < aSig ) goto aBigger;
+    if ( aSig < bSig ) goto bBigger;
+    return packFloat64( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+    if ( bExp == 0x7FF ) {
+        if ( bSig ) return propagateFloat64NaN( a, b );
+        return packFloat64( zSign ^ 1, 0x7FF, 0 );
+    }
+    if ( aExp == 0 ) {
+        ++expDiff;
+    }
+    else {
+        aSig |= LIT64( 0x4000000000000000 );
+    }
+    shift64RightJamming( aSig, - expDiff, &aSig );
+    bSig |= LIT64( 0x4000000000000000 );
+ bBigger:
+    zSig = bSig - aSig;
+    zExp = bExp;
+    zSign ^= 1;
+    goto normalizeRoundAndPack;
+ aExpBigger:
+    if ( aExp == 0x7FF ) {
+        if ( aSig ) return propagateFloat64NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        --expDiff;
+    }
+    else {
+        bSig |= LIT64( 0x4000000000000000 );
+    }
+    shift64RightJamming( bSig, expDiff, &bSig );
+    aSig |= LIT64( 0x4000000000000000 );
+ aBigger:
+    zSig = aSig - bSig;
+    zExp = aExp;
+ normalizeRoundAndPack:
+    --zExp;
+    return normalizeRoundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the double-precision floating-point values `a'
+| and `b'.  The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_add( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign == bSign ) {
+        return addFloat64Sigs( a, b, aSign );
+    }
+    else {
+        return subFloat64Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the double-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_sub( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign == bSign ) {
+        return subFloat64Sigs( a, b, aSign );
+    }
+    else {
+        return addFloat64Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the double-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_mul( float64 a, float64 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig0, zSig1;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    bSig = extractFloat64Frac( b );
+    bExp = extractFloat64Exp( b );
+    bSign = extractFloat64Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FF ) {
+        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+            return propagateFloat64NaN( a, b );
+        }
+        if ( ( bExp | bSig ) == 0 ) {
+            float_raise( float_flag_invalid );
+            return float64_default_nan;
+        }
+        return packFloat64( zSign, 0x7FF, 0 );
+    }
+    if ( bExp == 0x7FF ) {
+        if ( bSig ) return propagateFloat64NaN( a, b );
+        if ( ( aExp | aSig ) == 0 ) {
+            float_raise( float_flag_invalid );
+            return float64_default_nan;
+        }
+        return packFloat64( zSign, 0x7FF, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
+        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+    }
+    zExp = aExp + bExp - 0x3FF;
+    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+    mul64To128( aSig, bSig, &zSig0, &zSig1 );
+    zSig0 |= ( zSig1 != 0 );
+    if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
+        zSig0 <<= 1;
+        --zExp;
+    }
+    return roundAndPackFloat64( zSign, zExp, zSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the double-precision floating-point value `a'
+| by the corresponding value `b'.  The operation is performed according to
+| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_div( float64 a, float64 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig;
+    bits64 rem0, rem1;
+    bits64 term0, term1;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    bSig = extractFloat64Frac( b );
+    bExp = extractFloat64Exp( b );
+    bSign = extractFloat64Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FF ) {
+        if ( aSig ) return propagateFloat64NaN( a, b );
+        if ( bExp == 0x7FF ) {
+            if ( bSig ) return propagateFloat64NaN( a, b );
+            float_raise( float_flag_invalid );
+            return float64_default_nan;
+        }
+        return packFloat64( zSign, 0x7FF, 0 );
+    }
+    if ( bExp == 0x7FF ) {
+        if ( bSig ) return propagateFloat64NaN( a, b );
+        return packFloat64( zSign, 0, 0 );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            if ( ( aExp | aSig ) == 0 ) {
+                float_raise( float_flag_invalid );
+                return float64_default_nan;
+            }
+            float_raise( float_flag_divbyzero );
+            return packFloat64( zSign, 0x7FF, 0 );
+        }
+        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = aExp - bExp + 0x3FD;
+    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+    if ( bSig <= ( aSig + aSig ) ) {
+        aSig >>= 1;
+        ++zExp;
+    }
+    zSig = estimateDiv128To64( aSig, 0, bSig );
+    if ( ( zSig & 0x1FF ) <= 2 ) {
+        mul64To128( bSig, zSig, &term0, &term1 );
+        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+        while ( (sbits64) rem0 < 0 ) {
+            --zSig;
+            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+        }
+        zSig |= ( rem1 != 0 );
+    }
+    return roundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the double-precision floating-point value `a'
+| with respect to the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_rem( float64 a, float64 b )
+{
+    flag aSign, bSign, zSign;
+    int16 aExp, bExp, expDiff;
+    bits64 aSig, bSig;
+    bits64 q, alternateASig;
+    sbits64 sigMean;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    bSig = extractFloat64Frac( b );
+    bExp = extractFloat64Exp( b );
+    bSign = extractFloat64Sign( b );
+    if ( aExp == 0x7FF ) {
+        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+            return propagateFloat64NaN( a, b );
+        }
+        float_raise( float_flag_invalid );
+        return float64_default_nan;
+    }
+    if ( bExp == 0x7FF ) {
+        if ( bSig ) return propagateFloat64NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            float_raise( float_flag_invalid );
+            return float64_default_nan;
+        }
+        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return a;
+        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+    }
+    expDiff = aExp - bExp;
+    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
+    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+    if ( expDiff < 0 ) {
+        if ( expDiff < -1 ) return a;
+        aSig >>= 1;
+    }
+    q = ( bSig <= aSig );
+    if ( q ) aSig -= bSig;
+    expDiff -= 64;
+    while ( 0 < expDiff ) {
+        q = estimateDiv128To64( aSig, 0, bSig );
+        q = ( 2 < q ) ? q - 2 : 0;
+        aSig = - ( ( bSig>>2 ) * q );
+        expDiff -= 62;
+    }
+    expDiff += 64;
+    if ( 0 < expDiff ) {
+        q = estimateDiv128To64( aSig, 0, bSig );
+        q = ( 2 < q ) ? q - 2 : 0;
+        q >>= 64 - expDiff;
+        bSig >>= 2;
+        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+    }
+    else {
+        aSig >>= 2;
+        bSig >>= 2;
+    }
+    do {
+        alternateASig = aSig;
+        ++q;
+        aSig -= bSig;
+    } while ( 0 <= (sbits64) aSig );
+    sigMean = aSig + alternateASig;
+    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+        aSig = alternateASig;
+    }
+    zSign = ( (sbits64) aSig < 0 );
+    if ( zSign ) aSig = - aSig;
+    return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the double-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float64_sqrt( float64 a )
+{
+    flag aSign;
+    int16 aExp, zExp;
+    bits64 aSig, zSig, doubleZSig;
+    bits64 rem0, rem1, term0, term1;
+    float64 z;
+
+    aSig = extractFloat64Frac( a );
+    aExp = extractFloat64Exp( a );
+    aSign = extractFloat64Sign( a );
+    if ( aExp == 0x7FF ) {
+        if ( aSig ) return propagateFloat64NaN( a, a );
+        if ( ! aSign ) return a;
+        float_raise( float_flag_invalid );
+        return float64_default_nan;
+    }
+    if ( aSign ) {
+        if ( ( aExp | aSig ) == 0 ) return a;
+        float_raise( float_flag_invalid );
+        return float64_default_nan;
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return 0;
+        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
+    aSig |= LIT64( 0x0010000000000000 );
+    zSig = estimateSqrt32( aExp, aSig>>21 );
+    aSig <<= 9 - ( aExp & 1 );
+    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
+    if ( ( zSig & 0x1FF ) <= 5 ) {
+        doubleZSig = zSig<<1;
+        mul64To128( zSig, zSig, &term0, &term1 );
+        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+        while ( (sbits64) rem0 < 0 ) {
+            --zSig;
+            doubleZSig -= 2;
+            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
+        }
+        zSig |= ( ( rem0 | rem1 ) != 0 );
+    }
+    return roundAndPackFloat64( 0, zExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to the
+| corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_eq( float64 a, float64 b )
+{
+
+    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+       ) {
+        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise.  The comparison is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_le( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
+    return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_lt( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
+    return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is equal to the
+| corresponding value `b', and 0 otherwise.  The invalid exception is raised
+| if either operand is a NaN.  Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_eq_signaling( float64 a, float64 b )
+{
+
+    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than or
+| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
+| cause an exception.  Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_le_quiet( float64 a, float64 b )
+{
+    flag aSign, bSign;
+    int16 aExp, bExp;
+
+    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+       ) {
+        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
+    return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
+| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float64_lt_quiet( float64 a, float64 b )
+{
+    flag aSign, bSign;
+
+    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+       ) {
+        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat64Sign( a );
+    bSign = extractFloat64Sign( b );
+    if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
+    return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 32-bit two's complement integer format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic---which means in particular that the conversion
+| is rounded according to the current rounding mode.  If `a' is a NaN, the
+| largest positive integer is returned.  Otherwise, if the conversion
+| overflows, the largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 floatx80_to_int32( floatx80 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+    shiftCount = 0x4037 - aExp;
+    if ( shiftCount <= 0 ) shiftCount = 1;
+    shift64RightJamming( aSig, shiftCount, &aSig );
+    return roundAndPackInt32( aSign, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 32-bit two's complement integer format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic, except that the conversion is always rounded
+| toward zero.  If `a' is a NaN, the largest positive integer is returned.
+| Otherwise, if the conversion overflows, the largest integer with the same
+| sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 floatx80_to_int32_round_to_zero( floatx80 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig, savedASig;
+    int32 z;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    if ( 0x401E < aExp ) {
+        if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+        goto invalid;
+    }
+    else if ( aExp < 0x3FFF ) {
+        if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    shiftCount = 0x403E - aExp;
+    savedASig = aSig;
+    aSig >>= shiftCount;
+    z = aSig;
+    if ( aSign ) z = - z;
+    if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+        float_raise( float_flag_invalid );
+        return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+    }
+    if ( ( aSig<<shiftCount ) != savedASig ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 64-bit two's complement integer format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic---which means in particular that the conversion
+| is rounded according to the current rounding mode.  If `a' is a NaN,
+| the largest positive integer is returned.  Otherwise, if the conversion
+| overflows, the largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 floatx80_to_int64( floatx80 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig, aSigExtra;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    shiftCount = 0x403E - aExp;
+    if ( shiftCount <= 0 ) {
+        if ( shiftCount ) {
+            float_raise( float_flag_invalid );
+            if (    ! aSign
+                 || (    ( aExp == 0x7FFF )
+                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
+               ) {
+                return LIT64( 0x7FFFFFFFFFFFFFFF );
+            }
+            return (sbits64) LIT64( 0x8000000000000000 );
+        }
+        aSigExtra = 0;
+    }
+    else {
+        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+    }
+    return roundAndPackInt64( aSign, aSig, aSigExtra );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 64-bit two's complement integer format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic, except that the conversion is always rounded
+| toward zero.  If `a' is a NaN, the largest positive integer is returned.
+| Otherwise, if the conversion overflows, the largest integer with the same
+| sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 floatx80_to_int64_round_to_zero( floatx80 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig;
+    int64 z;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    shiftCount = aExp - 0x403E;
+    if ( 0 <= shiftCount ) {
+        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
+        if ( ( a.high != 0xC03E ) || aSig ) {
+            float_raise( float_flag_invalid );
+            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
+                return LIT64( 0x7FFFFFFFFFFFFFFF );
+            }
+        }
+        return (sbits64) LIT64( 0x8000000000000000 );
+    }
+    else if ( aExp < 0x3FFF ) {
+        if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    z = aSig>>( - shiftCount );
+    if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    if ( aSign ) z = - z;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the single-precision floating-point format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 floatx80_to_float32( floatx80 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 aSig;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( (bits64) ( aSig<<1 ) ) {
+            return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
+        }
+        return packFloat32( aSign, 0xFF, 0 );
+    }
+    shift64RightJamming( aSig, 33, &aSig );
+    if ( aExp || aSig ) aExp -= 0x3F81;
+    return roundAndPackFloat32( aSign, aExp, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the double-precision floating-point format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 floatx80_to_float64( floatx80 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 aSig, zSig;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( (bits64) ( aSig<<1 ) ) {
+            return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
+        }
+        return packFloat64( aSign, 0x7FF, 0 );
+    }
+    shift64RightJamming( aSig, 1, &zSig );
+    if ( aExp || aSig ) aExp -= 0x3C01;
+    return roundAndPackFloat64( aSign, aExp, zSig );
+
+}
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the quadruple-precision floating-point format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 floatx80_to_float128( floatx80 a )
+{
+    flag aSign;
+    int16 aExp;
+    bits64 aSig, zSig0, zSig1;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
+        return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
+    }
+    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
+    return packFloat128( aSign, aExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Rounds the extended double-precision floating-point value `a' to an integer,
+| and returns the result as an extended quadruple-precision floating-point
+| value.  The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_round_to_int( floatx80 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 lastBitMask, roundBitsMask;
+    int8 roundingMode;
+    floatx80 z;
+
+    aExp = extractFloatx80Exp( a );
+    if ( 0x403E <= aExp ) {
+        if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
+            return propagateFloatx80NaN( a, a );
+        }
+        return a;
+    }
+    if ( aExp < 0x3FFF ) {
+        if (    ( aExp == 0 )
+             && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
+            return a;
+        }
+        float_exception_flags |= float_flag_inexact;
+        aSign = extractFloatx80Sign( a );
+        switch ( float_rounding_mode ) {
+         case float_round_nearest_even:
+            if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
+               ) {
+                return
+                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
+            }
+            break;
+         case float_round_down:
+            return
+                  aSign ?
+                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
+                : packFloatx80( 0, 0, 0 );
+         case float_round_up:
+            return
+                  aSign ? packFloatx80( 1, 0, 0 )
+                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
+        }
+        return packFloatx80( aSign, 0, 0 );
+    }
+    lastBitMask = 1;
+    lastBitMask <<= 0x403E - aExp;
+    roundBitsMask = lastBitMask - 1;
+    z = a;
+    roundingMode = float_rounding_mode;
+    if ( roundingMode == float_round_nearest_even ) {
+        z.low += lastBitMask>>1;
+        if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+    }
+    else if ( roundingMode != float_round_to_zero ) {
+        if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+            z.low += roundBitsMask;
+        }
+    }
+    z.low &= ~ roundBitsMask;
+    if ( z.low == 0 ) {
+        ++z.high;
+        z.low = LIT64( 0x8000000000000000 );
+    }
+    if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the extended double-
+| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
+| negated before being returned.  `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+    int32 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig0, zSig1;
+    int32 expDiff;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    bSig = extractFloatx80Frac( b );
+    bExp = extractFloatx80Exp( b );
+    expDiff = aExp - bExp;
+    if ( 0 < expDiff ) {
+        if ( aExp == 0x7FFF ) {
+            if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+            return a;
+        }
+        if ( bExp == 0 ) --expDiff;
+        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+        zExp = aExp;
+    }
+    else if ( expDiff < 0 ) {
+        if ( bExp == 0x7FFF ) {
+            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+        }
+        if ( aExp == 0 ) ++expDiff;
+        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+        zExp = bExp;
+    }
+    else {
+        if ( aExp == 0x7FFF ) {
+            if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+                return propagateFloatx80NaN( a, b );
+            }
+            return a;
+        }
+        zSig1 = 0;
+        zSig0 = aSig + bSig;
+        if ( aExp == 0 ) {
+            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
+            goto roundAndPack;
+        }
+        zExp = aExp;
+        goto shiftRight1;
+    }
+    zSig0 = aSig + bSig;
+    if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
+ shiftRight1:
+    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
+    zSig0 |= LIT64( 0x8000000000000000 );
+    ++zExp;
+ roundAndPack:
+    return
+        roundAndPackFloatx80(
+            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the extended
+| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
+| difference is negated before being returned.  `zSign' is ignored if the
+| result is a NaN.  The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+    int32 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig0, zSig1;
+    int32 expDiff;
+    floatx80 z;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    bSig = extractFloatx80Frac( b );
+    bExp = extractFloatx80Exp( b );
+    expDiff = aExp - bExp;
+    if ( 0 < expDiff ) goto aExpBigger;
+    if ( expDiff < 0 ) goto bExpBigger;
+    if ( aExp == 0x7FFF ) {
+        if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+            return propagateFloatx80NaN( a, b );
+        }
+        float_raise( float_flag_invalid );
+        z.low = floatx80_default_nan_low;
+        z.high = floatx80_default_nan_high;
+        return z;
+    }
+    if ( aExp == 0 ) {
+        aExp = 1;
+        bExp = 1;
+    }
+    zSig1 = 0;
+    if ( bSig < aSig ) goto aBigger;
+    if ( aSig < bSig ) goto bBigger;
+    return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+    if ( bExp == 0x7FFF ) {
+        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( aExp == 0 ) ++expDiff;
+    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ bBigger:
+    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
+    zExp = bExp;
+    zSign ^= 1;
+    goto normalizeRoundAndPack;
+ aExpBigger:
+    if ( aExp == 0x7FFF ) {
+        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) --expDiff;
+    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ aBigger:
+    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
+    zExp = aExp;
+ normalizeRoundAndPack:
+    return
+        normalizeRoundAndPackFloatx80(
+            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the extended double-precision floating-point
+| values `a' and `b'.  The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_add( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloatx80Sign( a );
+    bSign = extractFloatx80Sign( b );
+    if ( aSign == bSign ) {
+        return addFloatx80Sigs( a, b, aSign );
+    }
+    else {
+        return subFloatx80Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the extended double-precision floating-
+| point values `a' and `b'.  The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_sub( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloatx80Sign( a );
+    bSign = extractFloatx80Sign( b );
+    if ( aSign == bSign ) {
+        return subFloatx80Sigs( a, b, aSign );
+    }
+    else {
+        return addFloatx80Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the extended double-precision floating-
+| point values `a' and `b'.  The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_mul( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign, zSign;
+    int32 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig0, zSig1;
+    floatx80 z;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    bSig = extractFloatx80Frac( b );
+    bExp = extractFloatx80Exp( b );
+    bSign = extractFloatx80Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FFF ) {
+        if (    (bits64) ( aSig<<1 )
+             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+            return propagateFloatx80NaN( a, b );
+        }
+        if ( ( bExp | bSig ) == 0 ) goto invalid;
+        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( bExp == 0x7FFF ) {
+        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+        if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+            float_raise( float_flag_invalid );
+            z.low = floatx80_default_nan_low;
+            z.high = floatx80_default_nan_high;
+            return z;
+        }
+        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
+        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+    }
+    zExp = aExp + bExp - 0x3FFE;
+    mul64To128( aSig, bSig, &zSig0, &zSig1 );
+    if ( 0 < (sbits64) zSig0 ) {
+        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
+        --zExp;
+    }
+    return
+        roundAndPackFloatx80(
+            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the extended double-precision floating-point
+| value `a' by the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_div( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign, zSign;
+    int32 aExp, bExp, zExp;
+    bits64 aSig, bSig, zSig0, zSig1;
+    bits64 rem0, rem1, rem2, term0, term1, term2;
+    floatx80 z;
+
+    aSig = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    bSig = extractFloatx80Frac( b );
+    bExp = extractFloatx80Exp( b );
+    bSign = extractFloatx80Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FFF ) {
+        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+        if ( bExp == 0x7FFF ) {
+            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+            goto invalid;
+        }
+        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( bExp == 0x7FFF ) {
+        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+        return packFloatx80( zSign, 0, 0 );
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+            if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+                float_raise( float_flag_invalid );
+                z.low = floatx80_default_nan_low;
+                z.high = floatx80_default_nan_high;
+                return z;
+            }
+            float_raise( float_flag_divbyzero );
+            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+        }
+        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+    }
+    zExp = aExp - bExp + 0x3FFE;
+    rem1 = 0;
+    if ( bSig <= aSig ) {
+        shift128Right( aSig, 0, 1, &aSig, &rem1 );
+        ++zExp;
+    }
+    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
+    mul64To128( bSig, zSig0, &term0, &term1 );
+    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
+    while ( (sbits64) rem0 < 0 ) {
+        --zSig0;
+        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+    }
+    zSig1 = estimateDiv128To64( rem1, 0, bSig );
+    if ( (bits64) ( zSig1<<1 ) <= 8 ) {
+        mul64To128( bSig, zSig1, &term1, &term2 );
+        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+        while ( (sbits64) rem1 < 0 ) {
+            --zSig1;
+            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
+        }
+        zSig1 |= ( ( rem1 | rem2 ) != 0 );
+    }
+    return
+        roundAndPackFloatx80(
+            floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the extended double-precision floating-point value
+| `a' with respect to the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_rem( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign, zSign;
+    int32 aExp, bExp, expDiff;
+    bits64 aSig0, aSig1, bSig;
+    bits64 q, term0, term1, alternateASig0, alternateASig1;
+    floatx80 z;
+
+    aSig0 = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    bSig = extractFloatx80Frac( b );
+    bExp = extractFloatx80Exp( b );
+    bSign = extractFloatx80Sign( b );
+    if ( aExp == 0x7FFF ) {
+        if (    (bits64) ( aSig0<<1 )
+             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+            return propagateFloatx80NaN( a, b );
+        }
+        goto invalid;
+    }
+    if ( bExp == 0x7FFF ) {
+        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        if ( bSig == 0 ) {
+ invalid:
+            float_raise( float_flag_invalid );
+            z.low = floatx80_default_nan_low;
+            z.high = floatx80_default_nan_high;
+            return z;
+        }
+        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+    }
+    if ( aExp == 0 ) {
+        if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
+        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+    }
+    bSig |= LIT64( 0x8000000000000000 );
+    zSign = aSign;
+    expDiff = aExp - bExp;
+    aSig1 = 0;
+    if ( expDiff < 0 ) {
+        if ( expDiff < -1 ) return a;
+        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
+        expDiff = 0;
+    }
+    q = ( bSig <= aSig0 );
+    if ( q ) aSig0 -= bSig;
+    expDiff -= 64;
+    while ( 0 < expDiff ) {
+        q = estimateDiv128To64( aSig0, aSig1, bSig );
+        q = ( 2 < q ) ? q - 2 : 0;
+        mul64To128( bSig, q, &term0, &term1 );
+        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
+        expDiff -= 62;
+    }
+    expDiff += 64;
+    if ( 0 < expDiff ) {
+        q = estimateDiv128To64( aSig0, aSig1, bSig );
+        q = ( 2 < q ) ? q - 2 : 0;
+        q >>= 64 - expDiff;
+        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
+        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
+        while ( le128( term0, term1, aSig0, aSig1 ) ) {
+            ++q;
+            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+        }
+    }
+    else {
+        term1 = 0;
+        term0 = bSig;
+    }
+    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
+    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
+         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
+              && ( q & 1 ) )
+       ) {
+        aSig0 = alternateASig0;
+        aSig1 = alternateASig1;
+        zSign = ! zSign;
+    }
+    return
+        normalizeRoundAndPackFloatx80(
+            80, zSign, bExp + expDiff, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the extended double-precision floating-point
+| value `a'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_sqrt( floatx80 a )
+{
+    flag aSign;
+    int32 aExp, zExp;
+    bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
+    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+    floatx80 z;
+
+    aSig0 = extractFloatx80Frac( a );
+    aExp = extractFloatx80Exp( a );
+    aSign = extractFloatx80Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
+        if ( ! aSign ) return a;
+        goto invalid;
+    }
+    if ( aSign ) {
+        if ( ( aExp | aSig0 ) == 0 ) return a;
+ invalid:
+        float_raise( float_flag_invalid );
+        z.low = floatx80_default_nan_low;
+        z.high = floatx80_default_nan_high;
+        return z;
+    }
+    if ( aExp == 0 ) {
+        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
+        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+    }
+    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
+    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
+    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
+    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+    doubleZSig0 = zSig0<<1;
+    mul64To128( zSig0, zSig0, &term0, &term1 );
+    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+    while ( (sbits64) rem0 < 0 ) {
+        --zSig0;
+        doubleZSig0 -= 2;
+        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+    }
+    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
+        if ( zSig1 == 0 ) zSig1 = 1;
+        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+        mul64To128( zSig1, zSig1, &term2, &term3 );
+        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+        while ( (sbits64) rem1 < 0 ) {
+            --zSig1;
+            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+            term3 |= 1;
+            term2 |= doubleZSig0;
+            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+        }
+        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+    }
+    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
+    zSig0 |= doubleZSig0;
+    return
+        roundAndPackFloatx80(
+            floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| equal to the corresponding value `b', and 0 otherwise.  The comparison is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_eq( floatx80 a, floatx80 b )
+{
+
+    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+       ) {
+        if (    floatx80_is_signaling_nan( a )
+             || floatx80_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    return
+           ( a.low == b.low )
+        && (    ( a.high == b.high )
+             || (    ( a.low == 0 )
+                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+           );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| less than or equal to the corresponding value `b', and 0 otherwise.  The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_le( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloatx80Sign( a );
+    bSign = extractFloatx80Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 == 0 );
+    }
+    return
+          aSign ? le128( b.high, b.low, a.high, a.low )
+        : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| less than the corresponding value `b', and 0 otherwise.  The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_lt( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloatx80Sign( a );
+    bSign = extractFloatx80Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 != 0 );
+    }
+    return
+          aSign ? lt128( b.high, b.low, a.high, a.low )
+        : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is equal
+| to the corresponding value `b', and 0 otherwise.  The invalid exception is
+| raised if either operand is a NaN.  Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_eq_signaling( floatx80 a, floatx80 b )
+{
+
+    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    return
+           ( a.low == b.low )
+        && (    ( a.high == b.high )
+             || (    ( a.low == 0 )
+                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+           );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is less
+| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
+| do not cause an exception.  Otherwise, the comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_le_quiet( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+       ) {
+        if (    floatx80_is_signaling_nan( a )
+             || floatx80_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloatx80Sign( a );
+    bSign = extractFloatx80Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 == 0 );
+    }
+    return
+          aSign ? le128( b.high, b.low, a.high, a.low )
+        : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is less
+| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
+| an exception.  Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_lt_quiet( floatx80 a, floatx80 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
+              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+       ) {
+        if (    floatx80_is_signaling_nan( a )
+             || floatx80_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloatx80Sign( a );
+    bSign = extractFloatx80Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 != 0 );
+    }
+    return
+          aSign ? lt128( b.high, b.low, a.high, a.low )
+        : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 32-bit two's complement integer format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float128_to_int32( float128 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig0, aSig1;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+    aSig0 |= ( aSig1 != 0 );
+    shiftCount = 0x4028 - aExp;
+    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
+    return roundAndPackInt32( aSign, aSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 32-bit two's complement integer format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.  If
+| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
+| conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float128_to_int32_round_to_zero( float128 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig0, aSig1, savedASig;
+    int32 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    aSig0 |= ( aSig1 != 0 );
+    if ( 0x401E < aExp ) {
+        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
+        goto invalid;
+    }
+    else if ( aExp < 0x3FFF ) {
+        if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
+        return 0;
+    }
+    aSig0 |= LIT64( 0x0001000000000000 );
+    shiftCount = 0x402F - aExp;
+    savedASig = aSig0;
+    aSig0 >>= shiftCount;
+    z = aSig0;
+    if ( aSign ) z = - z;
+    if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+        float_raise( float_flag_invalid );
+        return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+    }
+    if ( ( aSig0<<shiftCount ) != savedASig ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 64-bit two's complement integer format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode.  If `a' is a NaN, the largest
+| positive integer is returned.  Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float128_to_int64( float128 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig0, aSig1;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+    shiftCount = 0x402F - aExp;
+    if ( shiftCount <= 0 ) {
+        if ( 0x403E < aExp ) {
+            float_raise( float_flag_invalid );
+            if (    ! aSign
+                 || (    ( aExp == 0x7FFF )
+                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
+                    )
+               ) {
+                return LIT64( 0x7FFFFFFFFFFFFFFF );
+            }
+            return (sbits64) LIT64( 0x8000000000000000 );
+        }
+        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
+    }
+    else {
+        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
+    }
+    return roundAndPackInt64( aSign, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 64-bit two's complement integer format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float128_to_int64_round_to_zero( float128 a )
+{
+    flag aSign;
+    int32 aExp, shiftCount;
+    bits64 aSig0, aSig1;
+    int64 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+    shiftCount = aExp - 0x402F;
+    if ( 0 < shiftCount ) {
+        if ( 0x403E <= aExp ) {
+            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
+            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
+                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
+                if ( aSig1 ) float_exception_flags |= float_flag_inexact;
+            }
+            else {
+                float_raise( float_flag_invalid );
+                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
+                    return LIT64( 0x7FFFFFFFFFFFFFFF );
+                }
+            }
+            return (sbits64) LIT64( 0x8000000000000000 );
+        }
+        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
+        if ( (bits64) ( aSig1<<shiftCount ) ) {
+            float_exception_flags |= float_flag_inexact;
+        }
+    }
+    else {
+        if ( aExp < 0x3FFF ) {
+            if ( aExp | aSig0 | aSig1 ) {
+                float_exception_flags |= float_flag_inexact;
+            }
+            return 0;
+        }
+        z = aSig0>>( - shiftCount );
+        if (    aSig1
+             || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
+            float_exception_flags |= float_flag_inexact;
+        }
+    }
+    if ( aSign ) z = - z;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the single-precision floating-point format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float128_to_float32( float128 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 aSig0, aSig1;
+    bits32 zSig;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 ) {
+            return commonNaNToFloat32( float128ToCommonNaN( a ) );
+        }
+        return packFloat32( aSign, 0xFF, 0 );
+    }
+    aSig0 |= ( aSig1 != 0 );
+    shift64RightJamming( aSig0, 18, &aSig0 );
+    zSig = aSig0;
+    if ( aExp || zSig ) {
+        zSig |= 0x40000000;
+        aExp -= 0x3F81;
+    }
+    return roundAndPackFloat32( aSign, aExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the double-precision floating-point format.  The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float128_to_float64( float128 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 aSig0, aSig1;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 ) {
+            return commonNaNToFloat64( float128ToCommonNaN( a ) );
+        }
+        return packFloat64( aSign, 0x7FF, 0 );
+    }
+    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+    aSig0 |= ( aSig1 != 0 );
+    if ( aExp || aSig0 ) {
+        aSig0 |= LIT64( 0x4000000000000000 );
+        aExp -= 0x3C01;
+    }
+    return roundAndPackFloat64( aSign, aExp, aSig0 );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the extended double-precision floating-point format.  The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float128_to_floatx80( float128 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 aSig0, aSig1;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 ) {
+            return commonNaNToFloatx80( float128ToCommonNaN( a ) );
+        }
+        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
+        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    else {
+        aSig0 |= LIT64( 0x0001000000000000 );
+    }
+    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
+    return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Rounds the quadruple-precision floating-point value `a' to an integer, and
+| returns the result as a quadruple-precision floating-point value.  The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_round_to_int( float128 a )
+{
+    flag aSign;
+    int32 aExp;
+    bits64 lastBitMask, roundBitsMask;
+    int8 roundingMode;
+    float128 z;
+
+    aExp = extractFloat128Exp( a );
+    if ( 0x402F <= aExp ) {
+        if ( 0x406F <= aExp ) {
+            if (    ( aExp == 0x7FFF )
+                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
+               ) {
+                return propagateFloat128NaN( a, a );
+            }
+            return a;
+        }
+        lastBitMask = 1;
+        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
+        roundBitsMask = lastBitMask - 1;
+        z = a;
+        roundingMode = float_rounding_mode;
+        if ( roundingMode == float_round_nearest_even ) {
+            if ( lastBitMask ) {
+                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
+                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+            }
+            else {
+                if ( (sbits64) z.low < 0 ) {
+                    ++z.high;
+                    if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
+                }
+            }
+        }
+        else if ( roundingMode != float_round_to_zero ) {
+            if (   extractFloat128Sign( z )
+                 ^ ( roundingMode == float_round_up ) ) {
+                add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
+            }
+        }
+        z.low &= ~ roundBitsMask;
+    }
+    else {
+        if ( aExp < 0x3FFF ) {
+            if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+            float_exception_flags |= float_flag_inexact;
+            aSign = extractFloat128Sign( a );
+            switch ( float_rounding_mode ) {
+             case float_round_nearest_even:
+                if (    ( aExp == 0x3FFE )
+                     && (   extractFloat128Frac0( a )
+                          | extractFloat128Frac1( a ) )
+                   ) {
+                    return packFloat128( aSign, 0x3FFF, 0, 0 );
+                }
+                break;
+             case float_round_down:
+                return
+                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
+                    : packFloat128( 0, 0, 0, 0 );
+             case float_round_up:
+                return
+                      aSign ? packFloat128( 1, 0, 0, 0 )
+                    : packFloat128( 0, 0x3FFF, 0, 0 );
+            }
+            return packFloat128( aSign, 0, 0, 0 );
+        }
+        lastBitMask = 1;
+        lastBitMask <<= 0x402F - aExp;
+        roundBitsMask = lastBitMask - 1;
+        z.low = 0;
+        z.high = a.high;
+        roundingMode = float_rounding_mode;
+        if ( roundingMode == float_round_nearest_even ) {
+            z.high += lastBitMask>>1;
+            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
+                z.high &= ~ lastBitMask;
+            }
+        }
+        else if ( roundingMode != float_round_to_zero ) {
+            if (   extractFloat128Sign( z )
+                 ^ ( roundingMode == float_round_up ) ) {
+                z.high |= ( a.low != 0 );
+                z.high += roundBitsMask;
+            }
+        }
+        z.high &= ~ roundBitsMask;
+    }
+    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
+        float_exception_flags |= float_flag_inexact;
+    }
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the quadruple-precision
+| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
+| before being returned.  `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
+{
+    int32 aExp, bExp, zExp;
+    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+    int32 expDiff;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    bSig1 = extractFloat128Frac1( b );
+    bSig0 = extractFloat128Frac0( b );
+    bExp = extractFloat128Exp( b );
+    expDiff = aExp - bExp;
+    if ( 0 < expDiff ) {
+        if ( aExp == 0x7FFF ) {
+            if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+            return a;
+        }
+        if ( bExp == 0 ) {
+            --expDiff;
+        }
+        else {
+            bSig0 |= LIT64( 0x0001000000000000 );
+        }
+        shift128ExtraRightJamming(
+            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
+        zExp = aExp;
+    }
+    else if ( expDiff < 0 ) {
+        if ( bExp == 0x7FFF ) {
+            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+            return packFloat128( zSign, 0x7FFF, 0, 0 );
+        }
+        if ( aExp == 0 ) {
+            ++expDiff;
+        }
+        else {
+            aSig0 |= LIT64( 0x0001000000000000 );
+        }
+        shift128ExtraRightJamming(
+            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
+        zExp = bExp;
+    }
+    else {
+        if ( aExp == 0x7FFF ) {
+            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+                return propagateFloat128NaN( a, b );
+            }
+            return a;
+        }
+        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+        if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
+        zSig2 = 0;
+        zSig0 |= LIT64( 0x0002000000000000 );
+        zExp = aExp;
+        goto shiftRight1;
+    }
+    aSig0 |= LIT64( 0x0001000000000000 );
+    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+    --zExp;
+    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
+    ++zExp;
+ shiftRight1:
+    shift128ExtraRightJamming(
+        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ roundAndPack:
+    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the quadruple-
+| precision floating-point values `a' and `b'.  If `zSign' is 1, the
+| difference is negated before being returned.  `zSign' is ignored if the
+| result is a NaN.  The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
+{
+    int32 aExp, bExp, zExp;
+    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+    int32 expDiff;
+    float128 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    bSig1 = extractFloat128Frac1( b );
+    bSig0 = extractFloat128Frac0( b );
+    bExp = extractFloat128Exp( b );
+    expDiff = aExp - bExp;
+    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
+    if ( 0 < expDiff ) goto aExpBigger;
+    if ( expDiff < 0 ) goto bExpBigger;
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+            return propagateFloat128NaN( a, b );
+        }
+        float_raise( float_flag_invalid );
+        z.low = float128_default_nan_low;
+        z.high = float128_default_nan_high;
+        return z;
+    }
+    if ( aExp == 0 ) {
+        aExp = 1;
+        bExp = 1;
+    }
+    if ( bSig0 < aSig0 ) goto aBigger;
+    if ( aSig0 < bSig0 ) goto bBigger;
+    if ( bSig1 < aSig1 ) goto aBigger;
+    if ( aSig1 < bSig1 ) goto bBigger;
+    return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
+ bExpBigger:
+    if ( bExp == 0x7FFF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        ++expDiff;
+    }
+    else {
+        aSig0 |= LIT64( 0x4000000000000000 );
+    }
+    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+    bSig0 |= LIT64( 0x4000000000000000 );
+ bBigger:
+    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
+    zExp = bExp;
+    zSign ^= 1;
+    goto normalizeRoundAndPack;
+ aExpBigger:
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        --expDiff;
+    }
+    else {
+        bSig0 |= LIT64( 0x4000000000000000 );
+    }
+    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
+    aSig0 |= LIT64( 0x4000000000000000 );
+ aBigger:
+    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+    zExp = aExp;
+ normalizeRoundAndPack:
+    --zExp;
+    return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the quadruple-precision floating-point values
+| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_add( float128 a, float128 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat128Sign( a );
+    bSign = extractFloat128Sign( b );
+    if ( aSign == bSign ) {
+        return addFloat128Sigs( a, b, aSign );
+    }
+    else {
+        return subFloat128Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the quadruple-precision floating-point
+| values `a' and `b'.  The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_sub( float128 a, float128 b )
+{
+    flag aSign, bSign;
+
+    aSign = extractFloat128Sign( a );
+    bSign = extractFloat128Sign( b );
+    if ( aSign == bSign ) {
+        return subFloat128Sigs( a, b, aSign );
+    }
+    else {
+        return addFloat128Sigs( a, b, aSign );
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the quadruple-precision floating-point
+| values `a' and `b'.  The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_mul( float128 a, float128 b )
+{
+    flag aSign, bSign, zSign;
+    int32 aExp, bExp, zExp;
+    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+    float128 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    bSig1 = extractFloat128Frac1( b );
+    bSig0 = extractFloat128Frac0( b );
+    bExp = extractFloat128Exp( b );
+    bSign = extractFloat128Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FFF ) {
+        if (    ( aSig0 | aSig1 )
+             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+            return propagateFloat128NaN( a, b );
+        }
+        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
+        return packFloat128( zSign, 0x7FFF, 0, 0 );
+    }
+    if ( bExp == 0x7FFF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+            float_raise( float_flag_invalid );
+            z.low = float128_default_nan_low;
+            z.high = float128_default_nan_high;
+            return z;
+        }
+        return packFloat128( zSign, 0x7FFF, 0, 0 );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    if ( bExp == 0 ) {
+        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+    }
+    zExp = aExp + bExp - 0x4000;
+    aSig0 |= LIT64( 0x0001000000000000 );
+    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
+    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
+    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
+    zSig2 |= ( zSig3 != 0 );
+    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
+        shift128ExtraRightJamming(
+            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+        ++zExp;
+    }
+    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the quadruple-precision floating-point value
+| `a' by the corresponding value `b'.  The operation is performed according to
+| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_div( float128 a, float128 b )
+{
+    flag aSign, bSign, zSign;
+    int32 aExp, bExp, zExp;
+    bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+    float128 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    bSig1 = extractFloat128Frac1( b );
+    bSig0 = extractFloat128Frac0( b );
+    bExp = extractFloat128Exp( b );
+    bSign = extractFloat128Sign( b );
+    zSign = aSign ^ bSign;
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+        if ( bExp == 0x7FFF ) {
+            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+            goto invalid;
+        }
+        return packFloat128( zSign, 0x7FFF, 0, 0 );
+    }
+    if ( bExp == 0x7FFF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+        return packFloat128( zSign, 0, 0, 0 );
+    }
+    if ( bExp == 0 ) {
+        if ( ( bSig0 | bSig1 ) == 0 ) {
+            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+                float_raise( float_flag_invalid );
+                z.low = float128_default_nan_low;
+                z.high = float128_default_nan_high;
+                return z;
+            }
+            float_raise( float_flag_divbyzero );
+            return packFloat128( zSign, 0x7FFF, 0, 0 );
+        }
+        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    zExp = aExp - bExp + 0x3FFD;
+    shortShift128Left(
+        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
+    shortShift128Left(
+        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
+        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
+        ++zExp;
+    }
+    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
+    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
+    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
+    while ( (sbits64) rem0 < 0 ) {
+        --zSig0;
+        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
+    }
+    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
+    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
+        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
+        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
+        while ( (sbits64) rem1 < 0 ) {
+            --zSig1;
+            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
+        }
+        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+    }
+    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
+    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the quadruple-precision floating-point value `a'
+| with respect to the corresponding value `b'.  The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_rem( float128 a, float128 b )
+{
+    flag aSign, bSign, zSign;
+    int32 aExp, bExp, expDiff;
+    bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+    bits64 allZero, alternateASig0, alternateASig1, sigMean1;
+    sbits64 sigMean0;
+    float128 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    bSig1 = extractFloat128Frac1( b );
+    bSig0 = extractFloat128Frac0( b );
+    bExp = extractFloat128Exp( b );
+    bSign = extractFloat128Sign( b );
+    if ( aExp == 0x7FFF ) {
+        if (    ( aSig0 | aSig1 )
+             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+            return propagateFloat128NaN( a, b );
+        }
+        goto invalid;
+    }
+    if ( bExp == 0x7FFF ) {
+        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+        return a;
+    }
+    if ( bExp == 0 ) {
+        if ( ( bSig0 | bSig1 ) == 0 ) {
+ invalid:
+            float_raise( float_flag_invalid );
+            z.low = float128_default_nan_low;
+            z.high = float128_default_nan_high;
+            return z;
+        }
+        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return a;
+        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    expDiff = aExp - bExp;
+    if ( expDiff < -1 ) return a;
+    shortShift128Left(
+        aSig0 | LIT64( 0x0001000000000000 ),
+        aSig1,
+        15 - ( expDiff < 0 ),
+        &aSig0,
+        &aSig1
+    );
+    shortShift128Left(
+        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+    q = le128( bSig0, bSig1, aSig0, aSig1 );
+    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+    expDiff -= 64;
+    while ( 0 < expDiff ) {
+        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+        q = ( 4 < q ) ? q - 4 : 0;
+        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
+        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
+        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
+        expDiff -= 61;
+    }
+    if ( -64 < expDiff ) {
+        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+        q = ( 4 < q ) ? q - 4 : 0;
+        q >>= - expDiff;
+        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+        expDiff += 52;
+        if ( expDiff < 0 ) {
+            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+        }
+        else {
+            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
+        }
+        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
+    }
+    else {
+        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
+        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+    }
+    do {
+        alternateASig0 = aSig0;
+        alternateASig1 = aSig1;
+        ++q;
+        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+    } while ( 0 <= (sbits64) aSig0 );
+    add128(
+        aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
+    if (    ( sigMean0 < 0 )
+         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
+        aSig0 = alternateASig0;
+        aSig1 = alternateASig1;
+    }
+    zSign = ( (sbits64) aSig0 < 0 );
+    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
+    return
+        normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the quadruple-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_sqrt( float128 a )
+{
+    flag aSign;
+    int32 aExp, zExp;
+    bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+    float128 z;
+
+    aSig1 = extractFloat128Frac1( a );
+    aSig0 = extractFloat128Frac0( a );
+    aExp = extractFloat128Exp( a );
+    aSign = extractFloat128Sign( a );
+    if ( aExp == 0x7FFF ) {
+        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
+        if ( ! aSign ) return a;
+        goto invalid;
+    }
+    if ( aSign ) {
+        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
+ invalid:
+        float_raise( float_flag_invalid );
+        z.low = float128_default_nan_low;
+        z.high = float128_default_nan_high;
+        return z;
+    }
+    if ( aExp == 0 ) {
+        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
+        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+    }
+    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
+    aSig0 |= LIT64( 0x0001000000000000 );
+    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
+    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
+    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+    doubleZSig0 = zSig0<<1;
+    mul64To128( zSig0, zSig0, &term0, &term1 );
+    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+    while ( (sbits64) rem0 < 0 ) {
+        --zSig0;
+        doubleZSig0 -= 2;
+        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+    }
+    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
+        if ( zSig1 == 0 ) zSig1 = 1;
+        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+        mul64To128( zSig1, zSig1, &term2, &term3 );
+        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+        while ( (sbits64) rem1 < 0 ) {
+            --zSig1;
+            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+            term3 |= 1;
+            term2 |= doubleZSig0;
+            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+        }
+        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+    }
+    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
+    return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_eq( float128 a, float128 b )
+{
+
+    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
+              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+         || (    ( extractFloat128Exp( b ) == 0x7FFF )
+              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+       ) {
+        if (    float128_is_signaling_nan( a )
+             || float128_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    return
+           ( a.low == b.low )
+        && (    ( a.high == b.high )
+             || (    ( a.low == 0 )
+                  && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+           );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise.  The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_le( float128 a, float128 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
+              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+         || (    ( extractFloat128Exp( b ) == 0x7FFF )
+              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat128Sign( a );
+    bSign = extractFloat128Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            || (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 == 0 );
+    }
+    return
+          aSign ? le128( b.high, b.low, a.high, a.low )
+        : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_lt( float128 a, float128 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
+              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+         || (    ( extractFloat128Exp( b ) == 0x7FFF )
+              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    aSign = extractFloat128Sign( a );
+    bSign = extractFloat128Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            && (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 != 0 );
+    }
+    return
+          aSign ? lt128( b.high, b.low, a.high, a.low )
+        : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise.  The invalid exception is
+| raised if either operand is a NaN.  Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_eq_signaling( float128 a, float128 b )
+{
+
+    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
+              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+         || (    ( extractFloat128Exp( b ) == 0x7FFF )
+              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+       ) {
+        float_raise( float_flag_invalid );
+        return 0;
+    }
+    return
+           ( a.low == b.low )
+        && (    ( a.high == b.high )
+             || (    ( a.low == 0 )
+                  && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+           );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
+| cause an exception.  Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_le_quiet( float128 a, float128 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
+              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+         || (    ( extractFloat128Exp( b ) == 0x7FFF )
+              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+       ) {
+        if (    float128_is_signaling_nan( a )
+             || float128_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat128Sign( a );
+    bSign = extractFloat128Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            || (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 == 0 );
+    }
+    return
+          aSign ? le128( b.high, b.low, a.high, a.low )
+        : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
+| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_lt_quiet( float128 a, float128 b )
+{
+    flag aSign, bSign;
+
+    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
+              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+         || (    ( extractFloat128Exp( b ) == 0x7FFF )
+              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+       ) {
+        if (    float128_is_signaling_nan( a )
+             || float128_is_signaling_nan( b ) ) {
+            float_raise( float_flag_invalid );
+        }
+        return 0;
+    }
+    aSign = extractFloat128Sign( a );
+    bSign = extractFloat128Sign( b );
+    if ( aSign != bSign ) {
+        return
+               aSign
+            && (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+                 != 0 );
+    }
+    return
+          aSign ? lt128( b.high, b.low, a.high, a.low )
+        : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/templates/milieu.h b/float/softfloat/softfloat/bits64/templates/milieu.h
new file mode 100644
index 00000000..02da6e87
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/templates/milieu.h
@@ -0,0 +1,45 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Include common integer types and flags.
+*----------------------------------------------------------------------------*/
+#include "../../../processors/!!!processor.h"
+
+/*----------------------------------------------------------------------------
+| Symbolic Boolean literals.
+*----------------------------------------------------------------------------*/
+enum {
+    FALSE = 0,
+    TRUE  = 1
+};
+
diff --git a/float/softfloat/softfloat/bits64/templates/softfloat-specialize b/float/softfloat/softfloat/bits64/templates/softfloat-specialize
new file mode 100644
index 00000000..44c7e4d5
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/templates/softfloat-specialize
@@ -0,0 +1,432 @@
+
+/*============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| Underflow tininess-detection mode, statically initialized to default value.
+| (The declaration in `softfloat.h' must match the `int8' type here.)
+*----------------------------------------------------------------------------*/
+int8 float_detect_tininess = float_tininess_after_rounding;
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'.  Floating-point traps can be
+| defined here if desired.  It is currently not possible for such a trap to
+| substitute a result value.  If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise( int8 flags )
+{
+
+    float_exception_flags |= flags;
+
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+    flag sign;
+    bits64 high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated single-precision NaN.
+*----------------------------------------------------------------------------*/
+#define float32_default_nan 0xFFFFFFFF
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_nan( float32 a )
+{
+
+    return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float32_is_signaling_nan( float32 a )
+{
+
+    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+    commonNaNT z;
+
+    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>31;
+    z.low = 0;
+    z.high = ( (bits64) a )<<41;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float32_is_nan( a );
+    aIsSignalingNaN = float32_is_signaling_nan( a );
+    bIsNaN = float32_is_nan( b );
+    bIsSignalingNaN = float32_is_signaling_nan( b );
+    a |= 0x00400000;
+    b |= 0x00400000;
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsNaN ) {
+        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+    }
+    else {
+        return b;
+    }
+
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated double-precision NaN.
+*----------------------------------------------------------------------------*/
+#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_nan( float64 a )
+{
+
+    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float64_is_signaling_nan( float64 a )
+{
+
+    return
+           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
+        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+    commonNaNT z;
+
+    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a>>63;
+    z.low = 0;
+    z.high = a<<12;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+
+    return
+          ( ( (bits64) a.sign )<<63 )
+        | LIT64( 0x7FF8000000000000 )
+        | ( a.high>>12 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float64_is_nan( a );
+    aIsSignalingNaN = float64_is_signaling_nan( a );
+    bIsNaN = float64_is_nan( b );
+    bIsSignalingNaN = float64_is_signaling_nan( b );
+    a |= LIT64( 0x0008000000000000 );
+    b |= LIT64( 0x0008000000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsNaN ) {
+        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+    }
+    else {
+        return b;
+    }
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision NaN.  The
+| `high' and `low' values hold the most- and least-significant bits,
+| respectively.
+*----------------------------------------------------------------------------*/
+#define floatx80_default_nan_high 0xFFFF
+#define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_is_nan( floatx80 a )
+{
+
+    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_is_signaling_nan( floatx80 a )
+{
+    bits64 aLow;
+
+    aLow = a.low & ~ LIT64( 0x4000000000000000 );
+    return
+           ( ( a.high & 0x7FFF ) == 0x7FFF )
+        && (bits64) ( aLow<<1 )
+        && ( a.low == aLow );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
+| invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT floatx80ToCommonNaN( floatx80 a )
+{
+    commonNaNT z;
+
+    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>15;
+    z.low = 0;
+    z.high = a.low<<1;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the extended
+| double-precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static floatx80 commonNaNToFloatx80( commonNaNT a )
+{
+    floatx80 z;
+
+    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
+    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two extended double-precision floating-point values `a' and `b', one
+| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = floatx80_is_nan( a );
+    aIsSignalingNaN = floatx80_is_signaling_nan( a );
+    bIsNaN = floatx80_is_nan( b );
+    bIsSignalingNaN = floatx80_is_signaling_nan( b );
+    a.low |= LIT64( 0xC000000000000000 );
+    b.low |= LIT64( 0xC000000000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsNaN ) {
+        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+    }
+    else {
+        return b;
+    }
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated quadruple-precision NaN.  The `high' and
+| `low' values hold the most- and least-significant bits, respectively.
+*----------------------------------------------------------------------------*/
+#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
+#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
+| otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float128_is_nan( float128 a )
+{
+
+    return
+           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
+        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+flag float128_is_signaling_nan( float128 a )
+{
+
+    return
+           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
+        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point NaN
+| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float128ToCommonNaN( float128 a )
+{
+    commonNaNT z;
+
+    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+    z.sign = a.high>>63;
+    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the quadruple-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float128 commonNaNToFloat128( commonNaNT a )
+{
+    float128 z;
+
+    shift128Right( a.high, a.low, 16, &z.high, &z.low );
+    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
+    return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes two quadruple-precision floating-point values `a' and `b', one of
+| which is a NaN, and returns the appropriate NaN result.  If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float128 propagateFloat128NaN( float128 a, float128 b )
+{
+    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+    aIsNaN = float128_is_nan( a );
+    aIsSignalingNaN = float128_is_signaling_nan( a );
+    bIsNaN = float128_is_nan( b );
+    bIsSignalingNaN = float128_is_signaling_nan( b );
+    a.high |= LIT64( 0x0000800000000000 );
+    b.high |= LIT64( 0x0000800000000000 );
+    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+    if ( aIsNaN ) {
+        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+    }
+    else {
+        return b;
+    }
+
+}
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/templates/softfloat.h b/float/softfloat/softfloat/bits64/templates/softfloat.h
new file mode 100644
index 00000000..e2487d6c
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/templates/softfloat.h
@@ -0,0 +1,259 @@
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.  This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704.  Funding was partially provided by the
+National Science Foundation under grant MIP-9311980.  The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+/*----------------------------------------------------------------------------
+| The macro `FLOATX80' must be defined to enable the extended double-precision
+| floating-point format `floatx80'.  If this macro is not defined, the
+| `floatx80' type will not be defined, and none of the functions that either
+| input or output the `floatx80' type will be defined.  The same applies to
+| the `FLOAT128' macro and the quadruple-precision format `float128'.
+*----------------------------------------------------------------------------*/
+#define FLOATX80
+#define FLOAT128
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point types.
+*----------------------------------------------------------------------------*/
+typedef !!!bits32 float32;
+typedef !!!bits64 float64;
+#ifdef FLOATX80
+typedef struct {
+    !!!bits16 high;
+    !!!bits64 low;
+} floatx80;
+#endif
+#ifdef FLOAT128
+typedef struct {
+    !!!bits64 high, low;
+} float128;
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern !!!int8 float_detect_tininess;
+enum {
+    float_tininess_after_rounding  = 0,
+    float_tininess_before_rounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern !!!int8 float_rounding_mode;
+enum {
+    float_round_nearest_even = 0,
+    float_round_to_zero      = 1,
+    float_round_down         = 2,
+    float_round_up           = 3
+};
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern !!!int8 float_exception_flags;
+enum {
+    float_flag_inexact   =  1,
+    float_flag_underflow =  2,
+    float_flag_overflow  =  4,
+    float_flag_divbyzero =  8,
+    float_flag_invalid   = 16
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software IEC/IEEE floating-point
+| exception flags.
+*----------------------------------------------------------------------------*/
+void float_raise( !!!int8 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32 int32_to_float32( !!!int32 );
+float64 int32_to_float64( !!!int32 );
+#ifdef FLOATX80
+floatx80 int32_to_floatx80( !!!int32 );
+#endif
+#ifdef FLOAT128
+float128 int32_to_float128( !!!int32 );
+#endif
+float32 int64_to_float32( !!!int64 );
+float64 int64_to_float64( !!!int64 );
+#ifdef FLOATX80
+floatx80 int64_to_floatx80( !!!int64 );
+#endif
+#ifdef FLOAT128
+float128 int64_to_float128( !!!int64 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision conversion routines.
+*----------------------------------------------------------------------------*/
+!!!int32 float32_to_int32( float32 );
+!!!int32 float32_to_int32_round_to_zero( float32 );
+!!!int64 float32_to_int64( float32 );
+!!!int64 float32_to_int64_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+#ifdef FLOATX80
+floatx80 float32_to_floatx80( float32 );
+#endif
+#ifdef FLOAT128
+float128 float32_to_float128( float32 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE single-precision operations.
+*----------------------------------------------------------------------------*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+!!!flag float32_eq( float32, float32 );
+!!!flag float32_le( float32, float32 );
+!!!flag float32_lt( float32, float32 );
+!!!flag float32_eq_signaling( float32, float32 );
+!!!flag float32_le_quiet( float32, float32 );
+!!!flag float32_lt_quiet( float32, float32 );
+!!!flag float32_is_signaling_nan( float32 );
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+!!!int32 float64_to_int32( float64 );
+!!!int32 float64_to_int32_round_to_zero( float64 );
+!!!int64 float64_to_int64( float64 );
+!!!int64 float64_to_int64_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+#ifdef FLOATX80
+floatx80 float64_to_floatx80( float64 );
+#endif
+#ifdef FLOAT128
+float128 float64_to_float128( float64 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE double-precision operations.
+*----------------------------------------------------------------------------*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+!!!flag float64_eq( float64, float64 );
+!!!flag float64_le( float64, float64 );
+!!!flag float64_lt( float64, float64 );
+!!!flag float64_eq_signaling( float64, float64 );
+!!!flag float64_le_quiet( float64, float64 );
+!!!flag float64_lt_quiet( float64, float64 );
+!!!flag float64_is_signaling_nan( float64 );
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision conversion routines.
+*----------------------------------------------------------------------------*/
+!!!int32 floatx80_to_int32( floatx80 );
+!!!int32 floatx80_to_int32_round_to_zero( floatx80 );
+!!!int64 floatx80_to_int64( floatx80 );
+!!!int64 floatx80_to_int64_round_to_zero( floatx80 );
+float32 floatx80_to_float32( floatx80 );
+float64 floatx80_to_float64( floatx80 );
+#ifdef FLOAT128
+float128 floatx80_to_float128( floatx80 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision rounding precision.  Valid
+| values are 32, 64, and 80.
+*----------------------------------------------------------------------------*/
+extern !!!int8 floatx80_rounding_precision;
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE extended double-precision operations.
+*----------------------------------------------------------------------------*/
+floatx80 floatx80_round_to_int( floatx80 );
+floatx80 floatx80_add( floatx80, floatx80 );
+floatx80 floatx80_sub( floatx80, floatx80 );
+floatx80 floatx80_mul( floatx80, floatx80 );
+floatx80 floatx80_div( floatx80, floatx80 );
+floatx80 floatx80_rem( floatx80, floatx80 );
+floatx80 floatx80_sqrt( floatx80 );
+!!!flag floatx80_eq( floatx80, floatx80 );
+!!!flag floatx80_le( floatx80, floatx80 );
+!!!flag floatx80_lt( floatx80, floatx80 );
+!!!flag floatx80_eq_signaling( floatx80, floatx80 );
+!!!flag floatx80_le_quiet( floatx80, floatx80 );
+!!!flag floatx80_lt_quiet( floatx80, floatx80 );
+!!!flag floatx80_is_signaling_nan( floatx80 );
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision conversion routines.
+*----------------------------------------------------------------------------*/
+!!!int32 float128_to_int32( float128 );
+!!!int32 float128_to_int32_round_to_zero( float128 );
+!!!int64 float128_to_int64( float128 );
+!!!int64 float128_to_int64_round_to_zero( float128 );
+float32 float128_to_float32( float128 );
+float64 float128_to_float64( float128 );
+#ifdef FLOATX80
+floatx80 float128_to_floatx80( float128 );
+#endif
+
+/*----------------------------------------------------------------------------
+| Software IEC/IEEE quadruple-precision operations.
+*----------------------------------------------------------------------------*/
+float128 float128_round_to_int( float128 );
+float128 float128_add( float128, float128 );
+float128 float128_sub( float128, float128 );
+float128 float128_mul( float128, float128 );
+float128 float128_div( float128, float128 );
+float128 float128_rem( float128, float128 );
+float128 float128_sqrt( float128 );
+!!!flag float128_eq( float128, float128 );
+!!!flag float128_le( float128, float128 );
+!!!flag float128_lt( float128, float128 );
+!!!flag float128_eq_signaling( float128, float128 );
+!!!flag float128_le_quiet( float128, float128 );
+!!!flag float128_lt_quiet( float128, float128 );
+!!!flag float128_is_signaling_nan( float128 );
+
+#endif
+
diff --git a/float/softfloat/softfloat/bits64/timesoftfloat.c b/float/softfloat/softfloat/bits64/timesoftfloat.c
new file mode 100644
index 00000000..597e44b9
--- /dev/null
+++ b/float/softfloat/softfloat/bits64/timesoftfloat.c
@@ -0,0 +1,2628 @@
+
+/*============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY THE AUTHOR, JOHN HAUSER, (possibly via similar legal
+warning) AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS INCURRED BY THEIR
+CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#include <stdlib.h>
+#include <stdarg.h>
+#include <string.h>
+#include <stdio.h>
+#include <time.h>
+#include "milieu.h"
+#include "softfloat.h"
+
+enum {
+    minIterations = 1000
+};
+
+static void fail( const char *message, ... )
+{
+    va_list varArgs;
+
+    fputs( "timesoftfloat: ", stderr );
+    va_start( varArgs, message );
+    vfprintf( stderr, message, varArgs );
+    va_end( varArgs );
+    fputs( ".\n", stderr );
+    exit( EXIT_FAILURE );
+
+}
+
+static char *functionName;
+static char *roundingPrecisionName, *roundingModeName, *tininessModeName;
+
+static void reportTime( int32 count, long clocks )
+{
+
+    printf(
+        "%8.1f kops/s: %s",
+        ( count / ( ( (float) clocks ) / CLOCKS_PER_SEC ) ) / 1000,
+        functionName
+    );
+    if ( roundingModeName ) {
+        if ( roundingPrecisionName ) {
+            fputs( ", precision ", stdout );
+            fputs( roundingPrecisionName, stdout );
+        }
+        fputs( ", rounding ", stdout );
+        fputs( roundingModeName, stdout );
+        if ( tininessModeName ) {
+            fputs( ", tininess ", stdout );
+            fputs( tininessModeName, stdout );
+            fputs( " rounding", stdout );
+        }
+    }
+    fputc( '\n', stdout );
+
+}
+
+enum {
+    numInputs_int32 = 32
+};
+
+static const int32 inputs_int32[ numInputs_int32 ] = {
+    0xFFFFBB79, 0x405CF80F, 0x00000000, 0xFFFFFD04,
+    0xFFF20002, 0x0C8EF795, 0xF00011FF, 0x000006CA,
+    0x00009BFE, 0xFF4862E3, 0x9FFFEFFE, 0xFFFFFFB7,
+    0x0BFF7FFF, 0x0000F37A, 0x0011DFFE, 0x00000006,
+    0xFFF02006, 0xFFFFF7D1, 0x10200003, 0xDE8DF765,
+    0x00003E02, 0x000019E8, 0x0008FFFE, 0xFFFFFB5C,
+    0xFFDF7FFE, 0x07C42FBF, 0x0FFFE3FF, 0x040B9F13,
+    0xBFFFFFF8, 0x0001BF56, 0x000017F6, 0x000A908A
+};
+
+static void time_a_int32_z_float32( float32 function( int32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_int32_z_float64( float64 function( int32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOATX80
+
+static void time_a_int32_z_floatx80( floatx80 function( int32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+static void time_a_int32_z_float128( float128 function( int32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+enum {
+    numInputs_int64 = 32
+};
+
+static const int64 inputs_int64[ numInputs_int64 ] = {
+    LIT64( 0xFBFFC3FFFFFFFFFF ),
+    LIT64( 0x0000000003C589BC ),
+    LIT64( 0x00000000400013FE ),
+    LIT64( 0x0000000000186171 ),
+    LIT64( 0xFFFFFFFFFFFEFBFA ),
+    LIT64( 0xFFFFFD79E6DFFC73 ),
+    LIT64( 0x0000000010001DFF ),
+    LIT64( 0xDD1A0F0C78513710 ),
+    LIT64( 0xFFFF83FFFFFEFFFE ),
+    LIT64( 0x00756EBD1AD0C1C7 ),
+    LIT64( 0x0003FDFFFFFFFFBE ),
+    LIT64( 0x0007D0FB2C2CA951 ),
+    LIT64( 0x0007FC0007FFFFFE ),
+    LIT64( 0x0000001F942B18BB ),
+    LIT64( 0x0000080101FFFFFE ),
+    LIT64( 0xFFFFFFFFFFFF0978 ),
+    LIT64( 0x000000000008BFFF ),
+    LIT64( 0x0000000006F5AF08 ),
+    LIT64( 0xFFDEFF7FFFFFFFFE ),
+    LIT64( 0x0000000000000003 ),
+    LIT64( 0x3FFFFFFFFF80007D ),
+    LIT64( 0x0000000000000078 ),
+    LIT64( 0xFFF80000007FDFFD ),
+    LIT64( 0x1BBC775B78016AB0 ),
+    LIT64( 0xFFF9001FFFFFFFFE ),
+    LIT64( 0xFFFD4767AB98E43F ),
+    LIT64( 0xFFFFFEFFFE00001E ),
+    LIT64( 0xFFFFFFFFFFF04EFD ),
+    LIT64( 0x07FFFFFFFFFFF7FF ),
+    LIT64( 0xFFFC9EAA38F89050 ),
+    LIT64( 0x00000020FBFFFFFE ),
+    LIT64( 0x0000099AE6455357 )
+};
+
+static void time_a_int64_z_float32( float32 function( int64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_int64_z_float64( float64 function( int64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOATX80
+
+static void time_a_int64_z_floatx80( floatx80 function( int64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+static void time_a_int64_z_float128( float128 function( int64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_int64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_int64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_int64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+enum {
+    numInputs_float32 = 32
+};
+
+static const float32 inputs_float32[ numInputs_float32 ] = {
+    0x4EFA0000, 0xC1D0B328, 0x80000000, 0x3E69A31E,
+    0xAF803EFF, 0x3F800000, 0x17BF8000, 0xE74A301A,
+    0x4E010003, 0x7EE3C75D, 0xBD803FE0, 0xBFFEFF00,
+    0x7981F800, 0x431FFFFC, 0xC100C000, 0x3D87EFFF,
+    0x4103FEFE, 0xBC000007, 0xBF01F7FF, 0x4E6C6B5C,
+    0xC187FFFE, 0xC58B9F13, 0x4F88007F, 0xDF004007,
+    0xB7FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000,
+    0xDB428661, 0x33F89B1F, 0xA3BFEFFF, 0x537BFFBE
+};
+
+static void time_a_float32_z_int32( int32 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float32_z_int64( int64 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float32_z_float64( float64 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOATX80
+
+static void time_a_float32_z_floatx80( floatx80 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+static void time_a_float32_z_float128( float128 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+static void time_az_float32( float32 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_ab_float32_z_flag( flag function( float32, float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_abz_float32( float32 function( float32, float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+            function(
+                inputs_float32[ inputNumA ], inputs_float32[ inputNumB ] );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float32 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static const float32 inputs_float32_pos[ numInputs_float32 ] = {
+    0x4EFA0000, 0x41D0B328, 0x00000000, 0x3E69A31E,
+    0x2F803EFF, 0x3F800000, 0x17BF8000, 0x674A301A,
+    0x4E010003, 0x7EE3C75D, 0x3D803FE0, 0x3FFEFF00,
+    0x7981F800, 0x431FFFFC, 0x4100C000, 0x3D87EFFF,
+    0x4103FEFE, 0x3C000007, 0x3F01F7FF, 0x4E6C6B5C,
+    0x4187FFFE, 0x458B9F13, 0x4F88007F, 0x5F004007,
+    0x37FFD7FE, 0x7E8001FB, 0x46EFFBFF, 0x31C10000,
+    0x5B428661, 0x33F89B1F, 0x23BFEFFF, 0x537BFFBE
+};
+
+static void time_az_float32_pos( float32 function( float32 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float32_pos[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float32_pos[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float32 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+enum {
+    numInputs_float64 = 32
+};
+
+static const float64 inputs_float64[ numInputs_float64 ] = {
+    LIT64( 0x422FFFC008000000 ),
+    LIT64( 0xB7E0000480000000 ),
+    LIT64( 0xF3FD2546120B7935 ),
+    LIT64( 0x3FF0000000000000 ),
+    LIT64( 0xCE07F766F09588D6 ),
+    LIT64( 0x8000000000000000 ),
+    LIT64( 0x3FCE000400000000 ),
+    LIT64( 0x8313B60F0032BED8 ),
+    LIT64( 0xC1EFFFFFC0002000 ),
+    LIT64( 0x3FB3C75D224F2B0F ),
+    LIT64( 0x7FD00000004000FF ),
+    LIT64( 0xA12FFF8000001FFF ),
+    LIT64( 0x3EE0000000FE0000 ),
+    LIT64( 0x0010000080000004 ),
+    LIT64( 0x41CFFFFE00000020 ),
+    LIT64( 0x40303FFFFFFFFFFD ),
+    LIT64( 0x3FD000003FEFFFFF ),
+    LIT64( 0xBFD0000010000000 ),
+    LIT64( 0xB7FC6B5C16CA55CF ),
+    LIT64( 0x413EEB940B9D1301 ),
+    LIT64( 0xC7E00200001FFFFF ),
+    LIT64( 0x47F00021FFFFFFFE ),
+    LIT64( 0xBFFFFFFFF80000FF ),
+    LIT64( 0xC07FFFFFE00FFFFF ),
+    LIT64( 0x001497A63740C5E8 ),
+    LIT64( 0xC4BFFFE0001FFFFF ),
+    LIT64( 0x96FFDFFEFFFFFFFF ),
+    LIT64( 0x403FC000000001FE ),
+    LIT64( 0xFFD00000000001F6 ),
+    LIT64( 0x0640400002000000 ),
+    LIT64( 0x479CEE1E4F789FE0 ),
+    LIT64( 0xC237FFFFFFFFFDFE )
+};
+
+static void time_a_float64_z_int32( int32 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float64_z_int64( int64 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float64_z_float32( float32 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOATX80
+
+static void time_a_float64_z_floatx80( floatx80 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+static void time_a_float64_z_float128( float128 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+static void time_az_float64( float64 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_ab_float64_z_flag( flag function( float64, float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function(
+                inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+            function(
+                inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_abz_float64( float64 function( float64, float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function(
+                inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+            function(
+                inputs_float64[ inputNumA ], inputs_float64[ inputNumB ] );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float64 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static const float64 inputs_float64_pos[ numInputs_float64 ] = {
+    LIT64( 0x422FFFC008000000 ),
+    LIT64( 0x37E0000480000000 ),
+    LIT64( 0x73FD2546120B7935 ),
+    LIT64( 0x3FF0000000000000 ),
+    LIT64( 0x4E07F766F09588D6 ),
+    LIT64( 0x0000000000000000 ),
+    LIT64( 0x3FCE000400000000 ),
+    LIT64( 0x0313B60F0032BED8 ),
+    LIT64( 0x41EFFFFFC0002000 ),
+    LIT64( 0x3FB3C75D224F2B0F ),
+    LIT64( 0x7FD00000004000FF ),
+    LIT64( 0x212FFF8000001FFF ),
+    LIT64( 0x3EE0000000FE0000 ),
+    LIT64( 0x0010000080000004 ),
+    LIT64( 0x41CFFFFE00000020 ),
+    LIT64( 0x40303FFFFFFFFFFD ),
+    LIT64( 0x3FD000003FEFFFFF ),
+    LIT64( 0x3FD0000010000000 ),
+    LIT64( 0x37FC6B5C16CA55CF ),
+    LIT64( 0x413EEB940B9D1301 ),
+    LIT64( 0x47E00200001FFFFF ),
+    LIT64( 0x47F00021FFFFFFFE ),
+    LIT64( 0x3FFFFFFFF80000FF ),
+    LIT64( 0x407FFFFFE00FFFFF ),
+    LIT64( 0x001497A63740C5E8 ),
+    LIT64( 0x44BFFFE0001FFFFF ),
+    LIT64( 0x16FFDFFEFFFFFFFF ),
+    LIT64( 0x403FC000000001FE ),
+    LIT64( 0x7FD00000000001F6 ),
+    LIT64( 0x0640400002000000 ),
+    LIT64( 0x479CEE1E4F789FE0 ),
+    LIT64( 0x4237FFFFFFFFFDFE )
+};
+
+static void time_az_float64_pos( float64 function( float64 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            function( inputs_float64_pos[ inputNum ] );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        function( inputs_float64_pos[ inputNum ] );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float64 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOATX80
+
+enum {
+    numInputs_floatx80 = 32
+};
+
+static const struct {
+    bits16 high;
+    bits64 low;
+} inputs_floatx80[ numInputs_floatx80 ] = {
+    { 0xC03F, LIT64( 0xA9BE15A19C1E8B62 ) },
+    { 0x8000, LIT64( 0x0000000000000000 ) },
+    { 0x75A8, LIT64( 0xE59591E4788957A5 ) },
+    { 0xBFFF, LIT64( 0xFFF0000000000040 ) },
+    { 0x0CD8, LIT64( 0xFC000000000007FE ) },
+    { 0x43BA, LIT64( 0x99A4000000000000 ) },
+    { 0x3FFF, LIT64( 0x8000000000000000 ) },
+    { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) },
+    { 0x403E, LIT64( 0xFFF0000000002000 ) },
+    { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) },
+    { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) },
+    { 0x737A, LIT64( 0x800000007FFDFFFE ) },
+    { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) },
+    { 0xBBFE, LIT64( 0x8000040000001FFE ) },
+    { 0xC002, LIT64( 0xFF80000000000020 ) },
+    { 0xDE8D, LIT64( 0xFFFFFFFFFFE00004 ) },
+    { 0xC004, LIT64( 0x8000000000003FFB ) },
+    { 0x407F, LIT64( 0x800000000003FFFE ) },
+    { 0xC000, LIT64( 0xA459EE6A5C16CA55 ) },
+    { 0x8003, LIT64( 0xC42CBF7399AEEB94 ) },
+    { 0xBF7F, LIT64( 0xF800000000000006 ) },
+    { 0xC07F, LIT64( 0xBF56BE8871F28FEA ) },
+    { 0xC07E, LIT64( 0xFFFF77FFFFFFFFFE ) },
+    { 0xADC9, LIT64( 0x8000000FFFFFFFDE ) },
+    { 0xC001, LIT64( 0xEFF7FFFFFFFFFFFF ) },
+    { 0x4001, LIT64( 0xBE84F30125C497A6 ) },
+    { 0xC06B, LIT64( 0xEFFFFFFFFFFFFFFF ) },
+    { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) },
+    { 0x87E9, LIT64( 0x81FFFFFFFFFFFBFF ) },
+    { 0xA63F, LIT64( 0x801FFFFFFEFFFFFE ) },
+    { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) },
+    { 0x4018, LIT64( 0x8000000000080003 ) }
+};
+
+static void time_a_floatx80_z_int32( int32 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNum ].low;
+            a.high = inputs_floatx80[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNum ].low;
+        a.high = inputs_floatx80[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_floatx80_z_int64( int64 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNum ].low;
+            a.high = inputs_floatx80[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNum ].low;
+        a.high = inputs_floatx80[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_floatx80_z_float32( float32 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNum ].low;
+            a.high = inputs_floatx80[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNum ].low;
+        a.high = inputs_floatx80[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_floatx80_z_float64( float64 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNum ].low;
+            a.high = inputs_floatx80[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNum ].low;
+        a.high = inputs_floatx80[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOAT128
+
+static void time_a_floatx80_z_float128( float128 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNum ].low;
+            a.high = inputs_floatx80[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNum ].low;
+        a.high = inputs_floatx80[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+static void time_az_floatx80( floatx80 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNum ].low;
+            a.high = inputs_floatx80[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNum ].low;
+        a.high = inputs_floatx80[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_ab_floatx80_z_flag( flag function( floatx80, floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+    floatx80 a, b;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNumA ].low;
+            a.high = inputs_floatx80[ inputNumA ].high;
+            b.low = inputs_floatx80[ inputNumB ].low;
+            b.high = inputs_floatx80[ inputNumB ].high;
+            function( a, b );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNumA ].low;
+        a.high = inputs_floatx80[ inputNumA ].high;
+        b.low = inputs_floatx80[ inputNumB ].low;
+        b.high = inputs_floatx80[ inputNumB ].high;
+        function( a, b );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_abz_floatx80( floatx80 function( floatx80, floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+    floatx80 a, b;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80[ inputNumA ].low;
+            a.high = inputs_floatx80[ inputNumA ].high;
+            b.low = inputs_floatx80[ inputNumB ].low;
+            b.high = inputs_floatx80[ inputNumB ].high;
+            function( a, b );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80[ inputNumA ].low;
+        a.high = inputs_floatx80[ inputNumA ].high;
+        b.low = inputs_floatx80[ inputNumB ].low;
+        b.high = inputs_floatx80[ inputNumB ].high;
+        function( a, b );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_floatx80 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static const struct {
+    bits16 high;
+    bits64 low;
+} inputs_floatx80_pos[ numInputs_floatx80 ] = {
+    { 0x403F, LIT64( 0xA9BE15A19C1E8B62 ) },
+    { 0x0000, LIT64( 0x0000000000000000 ) },
+    { 0x75A8, LIT64( 0xE59591E4788957A5 ) },
+    { 0x3FFF, LIT64( 0xFFF0000000000040 ) },
+    { 0x0CD8, LIT64( 0xFC000000000007FE ) },
+    { 0x43BA, LIT64( 0x99A4000000000000 ) },
+    { 0x3FFF, LIT64( 0x8000000000000000 ) },
+    { 0x4081, LIT64( 0x94FBF1BCEB5545F0 ) },
+    { 0x403E, LIT64( 0xFFF0000000002000 ) },
+    { 0x3FFE, LIT64( 0xC860E3C75D224F28 ) },
+    { 0x407E, LIT64( 0xFC00000FFFFFFFFE ) },
+    { 0x737A, LIT64( 0x800000007FFDFFFE ) },
+    { 0x4044, LIT64( 0xFFFFFF80000FFFFF ) },
+    { 0x3BFE, LIT64( 0x8000040000001FFE ) },
+    { 0x4002, LIT64( 0xFF80000000000020 ) },
+    { 0x5E8D, LIT64( 0xFFFFFFFFFFE00004 ) },
+    { 0x4004, LIT64( 0x8000000000003FFB ) },
+    { 0x407F, LIT64( 0x800000000003FFFE ) },
+    { 0x4000, LIT64( 0xA459EE6A5C16CA55 ) },
+    { 0x0003, LIT64( 0xC42CBF7399AEEB94 ) },
+    { 0x3F7F, LIT64( 0xF800000000000006 ) },
+    { 0x407F, LIT64( 0xBF56BE8871F28FEA ) },
+    { 0x407E, LIT64( 0xFFFF77FFFFFFFFFE ) },
+    { 0x2DC9, LIT64( 0x8000000FFFFFFFDE ) },
+    { 0x4001, LIT64( 0xEFF7FFFFFFFFFFFF ) },
+    { 0x4001, LIT64( 0xBE84F30125C497A6 ) },
+    { 0x406B, LIT64( 0xEFFFFFFFFFFFFFFF ) },
+    { 0x4080, LIT64( 0xFFFFFFFFBFFFFFFF ) },
+    { 0x07E9, LIT64( 0x81FFFFFFFFFFFBFF ) },
+    { 0x263F, LIT64( 0x801FFFFFFEFFFFFE ) },
+    { 0x403C, LIT64( 0x801FFFFFFFF7FFFF ) },
+    { 0x4018, LIT64( 0x8000000000080003 ) }
+};
+
+static void time_az_floatx80_pos( floatx80 function( floatx80 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    floatx80 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_floatx80_pos[ inputNum ].low;
+            a.high = inputs_floatx80_pos[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_floatx80_pos[ inputNum ].low;
+        a.high = inputs_floatx80_pos[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_floatx80 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+enum {
+    numInputs_float128 = 32
+};
+
+static const struct {
+    bits64 high, low;
+} inputs_float128[ numInputs_float128 ] = {
+    { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x85F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) },
+    { LIT64( 0xF2B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) },
+    { LIT64( 0x8000000000000000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0xBFFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) },
+    { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) },
+    { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) },
+    { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) },
+    { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) },
+    { LIT64( 0xBF7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) },
+    { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) },
+    { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) },
+    { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) },
+    { LIT64( 0xBFFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) },
+    { LIT64( 0xBDB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) },
+    { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) },
+    { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) },
+    { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) },
+    { LIT64( 0x8001000000000000 ), LIT64( 0x0000001000000001 ) },
+    { LIT64( 0xC036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) },
+    { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) },
+    { LIT64( 0xBFFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) },
+    { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) },
+    { LIT64( 0xB5CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) },
+    { LIT64( 0xE228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) },
+    { LIT64( 0xC1AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) },
+    { LIT64( 0xC96F000000000000 ), LIT64( 0x00000001FFFBFFFF ) },
+    { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) },
+    { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) }
+};
+
+static void time_a_float128_z_int32( int32 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNum ].low;
+            a.high = inputs_float128[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNum ].low;
+        a.high = inputs_float128[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float128_z_int64( int64 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNum ].low;
+            a.high = inputs_float128[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNum ].low;
+        a.high = inputs_float128[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float128_z_float32( float32 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNum ].low;
+            a.high = inputs_float128[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNum ].low;
+        a.high = inputs_float128[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_a_float128_z_float64( float64 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNum ].low;
+            a.high = inputs_float128[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNum ].low;
+        a.high = inputs_float128[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#ifdef FLOATX80
+
+static void time_a_float128_z_floatx80( floatx80 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNum ].low;
+            a.high = inputs_float128[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNum ].low;
+        a.high = inputs_float128[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+static void time_az_float128( float128 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNum ].low;
+            a.high = inputs_float128[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNum ].low;
+        a.high = inputs_float128[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_ab_float128_z_flag( flag function( float128, float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+    float128 a, b;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNumA ].low;
+            a.high = inputs_float128[ inputNumA ].high;
+            b.low = inputs_float128[ inputNumB ].low;
+            b.high = inputs_float128[ inputNumB ].high;
+            function( a, b );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNumA ].low;
+        a.high = inputs_float128[ inputNumA ].high;
+        b.low = inputs_float128[ inputNumB ].low;
+        b.high = inputs_float128[ inputNumB ].high;
+        function( a, b );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static void time_abz_float128( float128 function( float128, float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNumA, inputNumB;
+    float128 a, b;
+
+    count = 0;
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128[ inputNumA ].low;
+            a.high = inputs_float128[ inputNumA ].high;
+            b.low = inputs_float128[ inputNumB ].low;
+            b.high = inputs_float128[ inputNumB ].high;
+            function( a, b );
+            inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 );
+            if ( inputNumA == 0 ) ++inputNumB;
+            inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNumA = 0;
+    inputNumB = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128[ inputNumA ].low;
+        a.high = inputs_float128[ inputNumA ].high;
+        b.low = inputs_float128[ inputNumB ].low;
+        b.high = inputs_float128[ inputNumB ].high;
+        function( a, b );
+        inputNumA = ( inputNumA + 1 ) & ( numInputs_float128 - 1 );
+        if ( inputNumA == 0 ) ++inputNumB;
+        inputNumB = ( inputNumB + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+static const struct {
+    bits64 high, low;
+} inputs_float128_pos[ numInputs_float128 ] = {
+    { LIT64( 0x3FDA200000100000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x3FFF000000000000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x05F14776190C8306 ), LIT64( 0xD8715F4E3D54BB92 ) },
+    { LIT64( 0x72B00000007FFFFF ), LIT64( 0xFFFFFFFFFFF7FFFF ) },
+    { LIT64( 0x0000000000000000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x3FFFFFFFFFE00000 ), LIT64( 0x0000008000000000 ) },
+    { LIT64( 0x407F1719CE722F3E ), LIT64( 0xDA6B3FE5FF29425B ) },
+    { LIT64( 0x43FFFF8000000000 ), LIT64( 0x0000000000400000 ) },
+    { LIT64( 0x401E000000000100 ), LIT64( 0x0000000000002000 ) },
+    { LIT64( 0x3FFED71DACDA8E47 ), LIT64( 0x4860E3C75D224F28 ) },
+    { LIT64( 0x3F7ECFC1E90647D1 ), LIT64( 0x7A124FE55623EE44 ) },
+    { LIT64( 0x0DF7007FFFFFFFFF ), LIT64( 0xFFFFFFFFEFFFFFFF ) },
+    { LIT64( 0x3FE5FFEFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFEFFF ) },
+    { LIT64( 0x403FFFFFFFFFFFFF ), LIT64( 0xFFFFFFFFFFFFFBFE ) },
+    { LIT64( 0x3FFB2FBF7399AFEB ), LIT64( 0xA459EE6A5C16CA55 ) },
+    { LIT64( 0x3DB8FFFFFFFFFFFC ), LIT64( 0x0000000000000400 ) },
+    { LIT64( 0x3FC8FFDFFFFFFFFF ), LIT64( 0xFFFFFFFFF0000000 ) },
+    { LIT64( 0x3FFBFFFFFFDFFFFF ), LIT64( 0xFFF8000000000000 ) },
+    { LIT64( 0x407043C11737BE84 ), LIT64( 0xDDD58212ADC937F4 ) },
+    { LIT64( 0x0001000000000000 ), LIT64( 0x0000001000000001 ) },
+    { LIT64( 0x4036FFFFFFFFFFFF ), LIT64( 0xFE40000000000000 ) },
+    { LIT64( 0x4002FFFFFE000002 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x4000C3FEDE897773 ), LIT64( 0x326AC4FD8EFBE6DC ) },
+    { LIT64( 0x3FFF0000000FFFFF ), LIT64( 0xFFFFFE0000000000 ) },
+    { LIT64( 0x62C3E502146E426D ), LIT64( 0x43F3CAA0DC7DF1A0 ) },
+    { LIT64( 0x35CBD32E52BB570E ), LIT64( 0xBCC477CB11C6236C ) },
+    { LIT64( 0x6228FFFFFFC00000 ), LIT64( 0x0000000000000000 ) },
+    { LIT64( 0x3F80000000000000 ), LIT64( 0x0000000080000008 ) },
+    { LIT64( 0x41AFFFDFFFFFFFFF ), LIT64( 0xFFFC000000000000 ) },
+    { LIT64( 0x496F000000000000 ), LIT64( 0x00000001FFFBFFFF ) },
+    { LIT64( 0x3DE09BFE7923A338 ), LIT64( 0xBCC8FBBD7CEC1F4F ) },
+    { LIT64( 0x401CFFFFFFFFFFFF ), LIT64( 0xFFFFFFFEFFFFFF80 ) }
+};
+
+static void time_az_float128_pos( float128 function( float128 ) )
+{
+    clock_t startClock, endClock;
+    int32 count, i;
+    int8 inputNum;
+    float128 a;
+
+    count = 0;
+    inputNum = 0;
+    startClock = clock();
+    do {
+        for ( i = minIterations; i; --i ) {
+            a.low = inputs_float128_pos[ inputNum ].low;
+            a.high = inputs_float128_pos[ inputNum ].high;
+            function( a );
+            inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+        }
+        count += minIterations;
+    } while ( clock() - startClock < CLOCKS_PER_SEC );
+    inputNum = 0;
+    startClock = clock();
+    for ( i = count; i; --i ) {
+        a.low = inputs_float128_pos[ inputNum ].low;
+        a.high = inputs_float128_pos[ inputNum ].high;
+        function( a );
+        inputNum = ( inputNum + 1 ) & ( numInputs_float128 - 1 );
+    }
+    endClock = clock();
+    reportTime( count, endClock - startClock );
+
+}
+
+#endif
+
+enum {
+    INT32_TO_FLOAT32 = 1,
+    INT32_TO_FLOAT64,
+#ifdef FLOATX80
+    INT32_TO_FLOATX80,
+#endif
+#ifdef FLOAT128
+    INT32_TO_FLOAT128,
+#endif
+    INT64_TO_FLOAT32,
+    INT64_TO_FLOAT64,
+#ifdef FLOATX80
+    INT64_TO_FLOATX80,
+#endif
+#ifdef FLOAT128
+    INT64_TO_FLOAT128,
+#endif
+    FLOAT32_TO_INT32,
+    FLOAT32_TO_INT32_ROUND_TO_ZERO,
+    FLOAT32_TO_INT64,
+    FLOAT32_TO_INT64_ROUND_TO_ZERO,
+    FLOAT32_TO_FLOAT64,
+#ifdef FLOATX80
+    FLOAT32_TO_FLOATX80,
+#endif
+#ifdef FLOAT128
+    FLOAT32_TO_FLOAT128,
+#endif
+    FLOAT32_ROUND_TO_INT,
+    FLOAT32_ADD,
+    FLOAT32_SUB,
+    FLOAT32_MUL,
+    FLOAT32_DIV,
+    FLOAT32_REM,
+    FLOAT32_SQRT,
+    FLOAT32_EQ,
+    FLOAT32_LE,
+    FLOAT32_LT,
+    FLOAT32_EQ_SIGNALING,
+    FLOAT32_LE_QUIET,
+    FLOAT32_LT_QUIET,
+    FLOAT64_TO_INT32,
+    FLOAT64_TO_INT32_ROUND_TO_ZERO,
+    FLOAT64_TO_INT64,
+    FLOAT64_TO_INT64_ROUND_TO_ZERO,
+    FLOAT64_TO_FLOAT32,
+#ifdef FLOATX80
+    FLOAT64_TO_FLOATX80,
+#endif
+#ifdef FLOAT128
+    FLOAT64_TO_FLOAT128,
+#endif
+    FLOAT64_ROUND_TO_INT,
+    FLOAT64_ADD,
+    FLOAT64_SUB,
+    FLOAT64_MUL,
+    FLOAT64_DIV,
+    FLOAT64_REM,
+    FLOAT64_SQRT,
+    FLOAT64_EQ,
+    FLOAT64_LE,
+    FLOAT64_LT,
+    FLOAT64_EQ_SIGNALING,
+    FLOAT64_LE_QUIET,
+    FLOAT64_LT_QUIET,
+#ifdef FLOATX80
+    FLOATX80_TO_INT32,
+    FLOATX80_TO_INT32_ROUND_TO_ZERO,
+    FLOATX80_TO_INT64,
+    FLOATX80_TO_INT64_ROUND_TO_ZERO,
+    FLOATX80_TO_FLOAT32,
+    FLOATX80_TO_FLOAT64,
+#ifdef FLOAT128
+    FLOATX80_TO_FLOAT128,
+#endif
+    FLOATX80_ROUND_TO_INT,
+    FLOATX80_ADD,
+    FLOATX80_SUB,
+    FLOATX80_MUL,
+    FLOATX80_DIV,
+    FLOATX80_REM,
+    FLOATX80_SQRT,
+    FLOATX80_EQ,
+    FLOATX80_LE,
+    FLOATX80_LT,
+    FLOATX80_EQ_SIGNALING,
+    FLOATX80_LE_QUIET,
+    FLOATX80_LT_QUIET,
+#endif
+#ifdef FLOAT128
+    FLOAT128_TO_INT32,
+    FLOAT128_TO_INT32_ROUND_TO_ZERO,
+    FLOAT128_TO_INT64,
+    FLOAT128_TO_INT64_ROUND_TO_ZERO,
+    FLOAT128_TO_FLOAT32,
+    FLOAT128_TO_FLOAT64,
+#ifdef FLOATX80
+    FLOAT128_TO_FLOATX80,
+#endif
+    FLOAT128_ROUND_TO_INT,
+    FLOAT128_ADD,
+    FLOAT128_SUB,
+    FLOAT128_MUL,
+    FLOAT128_DIV,
+    FLOAT128_REM,
+    FLOAT128_SQRT,
+    FLOAT128_EQ,
+    FLOAT128_LE,
+    FLOAT128_LT,
+    FLOAT128_EQ_SIGNALING,
+    FLOAT128_LE_QUIET,
+    FLOAT128_LT_QUIET,
+#endif
+    NUM_FUNCTIONS
+};
+
+static struct {
+    char *name;
+    int8 numInputs;
+    flag roundingPrecision, roundingMode;
+    flag tininessMode, tininessModeAtReducedPrecision;
+} functions[ NUM_FUNCTIONS ] = {
+    { 0, 0, 0, 0, 0, 0 },
+    { "int32_to_float32",                1, FALSE, TRUE,  FALSE, FALSE },
+    { "int32_to_float64",                1, FALSE, FALSE, FALSE, FALSE },
+#ifdef FLOATX80
+    { "int32_to_floatx80",               1, FALSE, FALSE, FALSE, FALSE },
+#endif
+#ifdef FLOAT128
+    { "int32_to_float128",               1, FALSE, FALSE, FALSE, FALSE },
+#endif
+    { "int64_to_float32",                1, FALSE, TRUE,  FALSE, FALSE },
+    { "int64_to_float64",                1, FALSE, TRUE,  FALSE, FALSE },
+#ifdef FLOATX80
+    { "int64_to_floatx80",               1, FALSE, FALSE, FALSE, FALSE },
+#endif
+#ifdef FLOAT128
+    { "int64_to_float128",               1, FALSE, FALSE, FALSE, FALSE },
+#endif
+    { "float32_to_int32",                1, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_to_int32_round_to_zero",  1, FALSE, FALSE, FALSE, FALSE },
+    { "float32_to_int64",                1, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_to_int64_round_to_zero",  1, FALSE, FALSE, FALSE, FALSE },
+    { "float32_to_float64",              1, FALSE, FALSE, FALSE, FALSE },
+#ifdef FLOATX80
+    { "float32_to_floatx80",             1, FALSE, FALSE, FALSE, FALSE },
+#endif
+#ifdef FLOAT128
+    { "float32_to_float128",             1, FALSE, FALSE, FALSE, FALSE },
+#endif
+    { "float32_round_to_int",            1, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_add",                     2, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_sub",                     2, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_mul",                     2, FALSE, TRUE,  TRUE,  FALSE },
+    { "float32_div",                     2, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_rem",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "float32_sqrt",                    1, FALSE, TRUE,  FALSE, FALSE },
+    { "float32_eq",                      2, FALSE, FALSE, FALSE, FALSE },
+    { "float32_le",                      2, FALSE, FALSE, FALSE, FALSE },
+    { "float32_lt",                      2, FALSE, FALSE, FALSE, FALSE },
+    { "float32_eq_signaling",            2, FALSE, FALSE, FALSE, FALSE },
+    { "float32_le_quiet",                2, FALSE, FALSE, FALSE, FALSE },
+    { "float32_lt_quiet",                2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_to_int32",                1, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_to_int32_round_to_zero",  1, FALSE, FALSE, FALSE, FALSE },
+    { "float64_to_int64",                1, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_to_int64_round_to_zero",  1, FALSE, FALSE, FALSE, FALSE },
+    { "float64_to_float32",              1, FALSE, TRUE,  TRUE,  FALSE },
+#ifdef FLOATX80
+    { "float64_to_floatx80",             1, FALSE, FALSE, FALSE, FALSE },
+#endif
+#ifdef FLOAT128
+    { "float64_to_float128",             1, FALSE, FALSE, FALSE, FALSE },
+#endif
+    { "float64_round_to_int",            1, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_add",                     2, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_sub",                     2, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_mul",                     2, FALSE, TRUE,  TRUE,  FALSE },
+    { "float64_div",                     2, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_rem",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_sqrt",                    1, FALSE, TRUE,  FALSE, FALSE },
+    { "float64_eq",                      2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_le",                      2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_lt",                      2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_eq_signaling",            2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_le_quiet",                2, FALSE, FALSE, FALSE, FALSE },
+    { "float64_lt_quiet",                2, FALSE, FALSE, FALSE, FALSE },
+#ifdef FLOATX80
+    { "floatx80_to_int32",               1, FALSE, TRUE,  FALSE, FALSE },
+    { "floatx80_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_to_int64",               1, FALSE, TRUE,  FALSE, FALSE },
+    { "floatx80_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_to_float32",             1, FALSE, TRUE,  TRUE,  FALSE },
+    { "floatx80_to_float64",             1, FALSE, TRUE,  TRUE,  FALSE },
+#ifdef FLOAT128
+    { "floatx80_to_float128",            1, FALSE, FALSE, FALSE, FALSE },
+#endif
+    { "floatx80_round_to_int",           1, FALSE, TRUE,  FALSE, FALSE },
+    { "floatx80_add",                    2, TRUE,  TRUE,  FALSE, TRUE  },
+    { "floatx80_sub",                    2, TRUE,  TRUE,  FALSE, TRUE  },
+    { "floatx80_mul",                    2, TRUE,  TRUE,  TRUE,  TRUE  },
+    { "floatx80_div",                    2, TRUE,  TRUE,  FALSE, TRUE  },
+    { "floatx80_rem",                    2, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_sqrt",                   1, TRUE,  TRUE,  FALSE, FALSE },
+    { "floatx80_eq",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_le",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_lt",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_eq_signaling",           2, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_le_quiet",               2, FALSE, FALSE, FALSE, FALSE },
+    { "floatx80_lt_quiet",               2, FALSE, FALSE, FALSE, FALSE },
+#endif
+#ifdef FLOAT128
+    { "float128_to_int32",               1, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_to_int32_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE },
+    { "float128_to_int64",               1, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_to_int64_round_to_zero", 1, FALSE, FALSE, FALSE, FALSE },
+    { "float128_to_float32",             1, FALSE, TRUE,  TRUE,  FALSE },
+    { "float128_to_float64",             1, FALSE, TRUE,  TRUE,  FALSE },
+#ifdef FLOATX80
+    { "float128_to_floatx80",            1, FALSE, TRUE,  TRUE,  FALSE },
+#endif
+    { "float128_round_to_int",           1, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_add",                    2, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_sub",                    2, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_mul",                    2, FALSE, TRUE,  TRUE,  FALSE },
+    { "float128_div",                    2, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_rem",                    2, FALSE, FALSE, FALSE, FALSE },
+    { "float128_sqrt",                   1, FALSE, TRUE,  FALSE, FALSE },
+    { "float128_eq",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "float128_le",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "float128_lt",                     2, FALSE, FALSE, FALSE, FALSE },
+    { "float128_eq_signaling",           2, FALSE, FALSE, FALSE, FALSE },
+    { "float128_le_quiet",               2, FALSE, FALSE, FALSE, FALSE },
+    { "float128_lt_quiet",               2, FALSE, FALSE, FALSE, FALSE },
+#endif
+};
+
+enum {
+    ROUND_NEAREST_EVEN = 1,
+    ROUND_TO_ZERO,
+    ROUND_DOWN,
+    ROUND_UP,
+    NUM_ROUNDINGMODES
+};
+enum {
+    TININESS_BEFORE_ROUNDING = 1,
+    TININESS_AFTER_ROUNDING,
+    NUM_TININESSMODES
+};
+
+static void
+ timeFunctionVariety(
+     uint8 functionCode,
+     int8 roundingPrecision,
+     int8 roundingMode,
+     int8 tininessMode
+ )
+{
+    uint8 roundingCode;
+    int8 tininessCode;
+
+    functionName = functions[ functionCode ].name;
+    if ( roundingPrecision == 32 ) {
+        roundingPrecisionName = "32";
+    }
+    else if ( roundingPrecision == 64 ) {
+        roundingPrecisionName = "64";
+    }
+    else if ( roundingPrecision == 80 ) {
+        roundingPrecisionName = "80";
+    }
+    else {
+        roundingPrecisionName = 0;
+    }
+#ifdef FLOATX80
+    floatx80_rounding_precision = roundingPrecision;
+#endif
+    switch ( roundingMode ) {
+     case 0:
+        roundingModeName = 0;
+        roundingCode = float_round_nearest_even;
+        break;
+     case ROUND_NEAREST_EVEN:
+        roundingModeName = "nearest_even";
+        roundingCode = float_round_nearest_even;
+        break;
+     case ROUND_TO_ZERO:
+        roundingModeName = "to_zero";
+        roundingCode = float_round_to_zero;
+        break;
+     case ROUND_DOWN:
+        roundingModeName = "down";
+        roundingCode = float_round_down;
+        break;
+     case ROUND_UP:
+        roundingModeName = "up";
+        roundingCode = float_round_up;
+        break;
+    }
+    float_rounding_mode = roundingCode;
+    switch ( tininessMode ) {
+     case 0:
+        tininessModeName = 0;
+        tininessCode = float_tininess_after_rounding;
+        break;
+     case TININESS_BEFORE_ROUNDING:
+        tininessModeName = "before";
+        tininessCode = float_tininess_before_rounding;
+        break;
+     case TININESS_AFTER_ROUNDING:
+        tininessModeName = "after";
+        tininessCode = float_tininess_after_rounding;
+        break;
+    }
+    float_detect_tininess = tininessCode;
+    switch ( functionCode ) {
+     case INT32_TO_FLOAT32:
+        time_a_int32_z_float32( int32_to_float32 );
+        break;
+     case INT32_TO_FLOAT64:
+        time_a_int32_z_float64( int32_to_float64 );
+        break;
+#ifdef FLOATX80
+     case INT32_TO_FLOATX80:
+        time_a_int32_z_floatx80( int32_to_floatx80 );
+        break;
+#endif
+#ifdef FLOAT128
+     case INT32_TO_FLOAT128:
+        time_a_int32_z_float128( int32_to_float128 );
+        break;
+#endif
+     case INT64_TO_FLOAT32:
+        time_a_int64_z_float32( int64_to_float32 );
+        break;
+     case INT64_TO_FLOAT64:
+        time_a_int64_z_float64( int64_to_float64 );
+        break;
+#ifdef FLOATX80
+     case INT64_TO_FLOATX80:
+        time_a_int64_z_floatx80( int64_to_floatx80 );
+        break;
+#endif
+#ifdef FLOAT128
+     case INT64_TO_FLOAT128:
+        time_a_int64_z_float128( int64_to_float128 );
+        break;
+#endif
+     case FLOAT32_TO_INT32:
+        time_a_float32_z_int32( float32_to_int32 );
+        break;
+     case FLOAT32_TO_INT32_ROUND_TO_ZERO:
+        time_a_float32_z_int32( float32_to_int32_round_to_zero );
+        break;
+     case FLOAT32_TO_INT64:
+        time_a_float32_z_int64( float32_to_int64 );
+        break;
+     case FLOAT32_TO_INT64_ROUND_TO_ZERO:
+        time_a_float32_z_int64( float32_to_int64_round_to_zero );
+        break;
+     case FLOAT32_TO_FLOAT64:
+        time_a_float32_z_float64( float32_to_float64 );
+        break;
+#ifdef FLOATX80
+     case FLOAT32_TO_FLOATX80:
+        time_a_float32_z_floatx80( float32_to_floatx80 );
+        break;
+#endif
+#ifdef FLOAT128
+     case FLOAT32_TO_FLOAT128:
+        time_a_float32_z_float128( float32_to_float128 );
+        break;
+#endif
+     case FLOAT32_ROUND_TO_INT:
+        time_az_float32( float32_round_to_int );
+        break;
+     case FLOAT32_ADD:
+        time_abz_float32( float32_add );
+        break;
+     case FLOAT32_SUB:
+        time_abz_float32( float32_sub );
+        break;
+     case FLOAT32_MUL:
+        time_abz_float32( float32_mul );
+        break;
+     case FLOAT32_DIV:
+        time_abz_float32( float32_div );
+        break;
+     case FLOAT32_REM:
+        time_abz_float32( float32_rem );
+        break;
+     case FLOAT32_SQRT:
+        time_az_float32_pos( float32_sqrt );
+        break;
+     case FLOAT32_EQ:
+        time_ab_float32_z_flag( float32_eq );
+        break;
+     case FLOAT32_LE:
+        time_ab_float32_z_flag( float32_le );
+        break;
+     case FLOAT32_LT:
+        time_ab_float32_z_flag( float32_lt );
+        break;
+     case FLOAT32_EQ_SIGNALING:
+        time_ab_float32_z_flag( float32_eq_signaling );
+        break;
+     case FLOAT32_LE_QUIET:
+        time_ab_float32_z_flag( float32_le_quiet );
+        break;
+     case FLOAT32_LT_QUIET:
+        time_ab_float32_z_flag( float32_lt_quiet );
+        break;
+     case FLOAT64_TO_INT32:
+        time_a_float64_z_int32( float64_to_int32 );
+        break;
+     case FLOAT64_TO_INT32_ROUND_TO_ZERO:
+        time_a_float64_z_int32( float64_to_int32_round_to_zero );
+        break;
+     case FLOAT64_TO_INT64:
+        time_a_float64_z_int64( float64_to_int64 );
+        break;
+     case FLOAT64_TO_INT64_ROUND_TO_ZERO:
+        time_a_float64_z_int64( float64_to_int64_round_to_zero );
+        break;
+     case FLOAT64_TO_FLOAT32:
+        time_a_float64_z_float32( float64_to_float32 );
+        break;
+#ifdef FLOATX80
+     case FLOAT64_TO_FLOATX80:
+        time_a_float64_z_floatx80( float64_to_floatx80 );
+        break;
+#endif
+#ifdef FLOAT128
+     case FLOAT64_TO_FLOAT128:
+        time_a_float64_z_float128( float64_to_float128 );
+        break;
+#endif
+     case FLOAT64_ROUND_TO_INT:
+        time_az_float64( float64_round_to_int );
+        break;
+     case FLOAT64_ADD:
+        time_abz_float64( float64_add );
+        break;
+     case FLOAT64_SUB:
+        time_abz_float64( float64_sub );
+        break;
+     case FLOAT64_MUL:
+        time_abz_float64( float64_mul );
+        break;
+     case FLOAT64_DIV:
+        time_abz_float64( float64_div );
+        break;
+     case FLOAT64_REM:
+        time_abz_float64( float64_rem );
+        break;
+     case FLOAT64_SQRT:
+        time_az_float64_pos( float64_sqrt );
+        break;
+     case FLOAT64_EQ:
+        time_ab_float64_z_flag( float64_eq );
+        break;
+     case FLOAT64_LE:
+        time_ab_float64_z_flag( float64_le );
+        break;
+     case FLOAT64_LT:
+        time_ab_float64_z_flag( float64_lt );
+        break;
+     case FLOAT64_EQ_SIGNALING:
+        time_ab_float64_z_flag( float64_eq_signaling );
+        break;
+     case FLOAT64_LE_QUIET:
+        time_ab_float64_z_flag( float64_le_quiet );
+        break;
+     case FLOAT64_LT_QUIET:
+        time_ab_float64_z_flag( float64_lt_quiet );
+        break;
+#ifdef FLOATX80
+     case FLOATX80_TO_INT32:
+        time_a_floatx80_z_int32( floatx80_to_int32 );
+        break;
+     case FLOATX80_TO_INT32_ROUND_TO_ZERO:
+        time_a_floatx80_z_int32( floatx80_to_int32_round_to_zero );
+        break;
+     case FLOATX80_TO_INT64:
+        time_a_floatx80_z_int64( floatx80_to_int64 );
+        break;
+     case FLOATX80_TO_INT64_ROUND_TO_ZERO:
+        time_a_floatx80_z_int64( floatx80_to_int64_round_to_zero );
+        break;
+     case FLOATX80_TO_FLOAT32:
+        time_a_floatx80_z_float32( floatx80_to_float32 );
+        break;
+     case FLOATX80_TO_FLOAT64:
+        time_a_floatx80_z_float64( floatx80_to_float64 );
+        break;
+#ifdef FLOAT128
+     case FLOATX80_TO_FLOAT128:
+        time_a_floatx80_z_float128( floatx80_to_float128 );
+        break;
+#endif
+     case FLOATX80_ROUND_TO_INT:
+        time_az_floatx80( floatx80_round_to_int );
+        break;
+     case FLOATX80_ADD:
+        time_abz_floatx80( floatx80_add );
+        break;
+     case FLOATX80_SUB:
+        time_abz_floatx80( floatx80_sub );
+        break;
+     case FLOATX80_MUL:
+        time_abz_floatx80( floatx80_mul );
+        break;
+     case FLOATX80_DIV:
+        time_abz_floatx80( floatx80_div );
+        break;
+     case FLOATX80_REM:
+        time_abz_floatx80( floatx80_rem );
+        break;
+     case FLOATX80_SQRT:
+        time_az_floatx80_pos( floatx80_sqrt );
+        break;
+     case FLOATX80_EQ:
+        time_ab_floatx80_z_flag( floatx80_eq );
+        break;
+     case FLOATX80_LE:
+        time_ab_floatx80_z_flag( floatx80_le );
+        break;
+     case FLOATX80_LT:
+        time_ab_floatx80_z_flag( floatx80_lt );
+        break;
+     case FLOATX80_EQ_SIGNALING:
+        time_ab_floatx80_z_flag( floatx80_eq_signaling );
+        break;
+     case FLOATX80_LE_QUIET:
+        time_ab_floatx80_z_flag( floatx80_le_quiet );
+        break;
+     case FLOATX80_LT_QUIET:
+        time_ab_floatx80_z_flag( floatx80_lt_quiet );
+        break;
+#endif
+#ifdef FLOAT128
+     case FLOAT128_TO_INT32:
+        time_a_float128_z_int32( float128_to_int32 );
+        break;
+     case FLOAT128_TO_INT32_ROUND_TO_ZERO:
+        time_a_float128_z_int32( float128_to_int32_round_to_zero );
+        break;
+     case FLOAT128_TO_INT64:
+        time_a_float128_z_int64( float128_to_int64 );
+        break;
+     case FLOAT128_TO_INT64_ROUND_TO_ZERO:
+        time_a_float128_z_int64( float128_to_int64_round_to_zero );
+        break;
+     case FLOAT128_TO_FLOAT32:
+        time_a_float128_z_float32( float128_to_float32 );
+        break;
+     case FLOAT128_TO_FLOAT64:
+        time_a_float128_z_float64( float128_to_float64 );
+        break;
+#ifdef FLOATX80
+     case FLOAT128_TO_FLOATX80:
+        time_a_float128_z_floatx80( float128_to_floatx80 );
+        break;
+#endif
+     case FLOAT128_ROUND_TO_INT:
+        time_az_float128( float128_round_to_int );
+        break;
+     case FLOAT128_ADD:
+        time_abz_float128( float128_add );
+        break;
+     case FLOAT128_SUB:
+        time_abz_float128( float128_sub );
+        break;
+     case FLOAT128_MUL:
+        time_abz_float128( float128_mul );
+        break;
+     case FLOAT128_DIV:
+        time_abz_float128( float128_div );
+        break;
+     case FLOAT128_REM:
+        time_abz_float128( float128_rem );
+        break;
+     case FLOAT128_SQRT:
+        time_az_float128_pos( float128_sqrt );
+        break;
+     case FLOAT128_EQ:
+        time_ab_float128_z_flag( float128_eq );
+        break;
+     case FLOAT128_LE:
+        time_ab_float128_z_flag( float128_le );
+        break;
+     case FLOAT128_LT:
+        time_ab_float128_z_flag( float128_lt );
+        break;
+     case FLOAT128_EQ_SIGNALING:
+        time_ab_float128_z_flag( float128_eq_signaling );
+        break;
+     case FLOAT128_LE_QUIET:
+        time_ab_float128_z_flag( float128_le_quiet );
+        break;
+     case FLOAT128_LT_QUIET:
+        time_ab_float128_z_flag( float128_lt_quiet );
+        break;
+#endif
+    }
+
+}
+
+static void
+ timeFunction(
+     uint8 functionCode,
+     int8 roundingPrecisionIn,
+     int8 roundingModeIn,
+     int8 tininessModeIn
+ )
+{
+    int8 roundingPrecision, roundingMode, tininessMode;
+
+    roundingPrecision = 32;
+    for (;;) {
+        if ( ! functions[ functionCode ].roundingPrecision ) {
+            roundingPrecision = 0;
+        }
+        else if ( roundingPrecisionIn ) {
+            roundingPrecision = roundingPrecisionIn;
+        }
+        for ( roundingMode = 1;
+              roundingMode < NUM_ROUNDINGMODES;
+              ++roundingMode
+            ) {
+            if ( ! functions[ functionCode ].roundingMode ) {
+                roundingMode = 0;
+            }
+            else if ( roundingModeIn ) {
+                roundingMode = roundingModeIn;
+            }
+            for ( tininessMode = 1;
+                  tininessMode < NUM_TININESSMODES;
+                  ++tininessMode
+                ) {
+                if (    ( roundingPrecision == 32 )
+                     || ( roundingPrecision == 64 ) ) {
+                    if ( ! functions[ functionCode ]
+                               .tininessModeAtReducedPrecision
+                       ) {
+                        tininessMode = 0;
+                    }
+                    else if ( tininessModeIn ) {
+                        tininessMode = tininessModeIn;
+                    }
+                }
+                else {
+                    if ( ! functions[ functionCode ].tininessMode ) {
+                        tininessMode = 0;
+                    }
+                    else if ( tininessModeIn ) {
+                        tininessMode = tininessModeIn;
+                    }
+                }
+                timeFunctionVariety(
+                    functionCode, roundingPrecision, roundingMode, tininessMode
+                );
+                if ( tininessModeIn || ! tininessMode ) break;
+            }
+            if ( roundingModeIn || ! roundingMode ) break;
+        }
+        if ( roundingPrecisionIn || ! roundingPrecision ) break;
+        if ( roundingPrecision == 80 ) {
+            break;
+        }
+        else if ( roundingPrecision == 64 ) {
+            roundingPrecision = 80;
+        }
+        else if ( roundingPrecision == 32 ) {
+            roundingPrecision = 64;
+        }
+    }
+
+}
+
+main( int argc, char **argv )
+{
+    char *argPtr;
+    flag functionArgument;
+    uint8 functionCode;
+    int8 operands, roundingPrecision, roundingMode, tininessMode;
+
+    if ( argc <= 1 ) goto writeHelpMessage;
+    functionArgument = FALSE;
+    functionCode = 0;
+    operands = 0;
+    roundingPrecision = 0;
+    roundingMode = 0;
+    tininessMode = 0;
+    --argc;
+    ++argv;
+    while ( argc && ( argPtr = argv[ 0 ] ) ) {
+        if ( argPtr[ 0 ] == '-' ) ++argPtr;
+        if ( strcmp( argPtr, "help" ) == 0 ) {
+ writeHelpMessage:
+            fputs(
+"timesoftfloat [<option>...] <function>\n"
+"  <option>:  (* is default)\n"
+"    -help            --Write this message and exit.\n"
+#ifdef FLOATX80
+"    -precision32     --Only time rounding precision equivalent to float32.\n"
+"    -precision64     --Only time rounding precision equivalent to float64.\n"
+"    -precision80     --Only time maximum rounding precision.\n"
+#endif
+"    -nearesteven     --Only time rounding to nearest/even.\n"
+"    -tozero          --Only time rounding to zero.\n"
+"    -down            --Only time rounding down.\n"
+"    -up              --Only time rounding up.\n"
+"    -tininessbefore  --Only time underflow tininess before rounding.\n"
+"    -tininessafter   --Only time underflow tininess after rounding.\n"
+"  <function>:\n"
+"    int32_to_<float>                 <float>_add   <float>_eq\n"
+"    <float>_to_int32                 <float>_sub   <float>_le\n"
+"    <float>_to_int32_round_to_zero   <float>_mul   <float>_lt\n"
+"    int64_to_<float>                 <float>_div   <float>_eq_signaling\n"
+"    <float>_to_int64                 <float>_rem   <float>_le_quiet\n"
+"    <float>_to_int64_round_to_zero                 <float>_lt_quiet\n"
+"    <float>_to_<float>\n"
+"    <float>_round_to_int\n"
+"    <float>_sqrt\n"
+"    -all1            --All 1-operand functions.\n"
+"    -all2            --All 2-operand functions.\n"
+"    -all             --All functions.\n"
+"  <float>:\n"
+"    float32          --Single precision.\n"
+"    float64          --Double precision.\n"
+#ifdef FLOATX80
+"    floatx80         --Extended double precision.\n"
+#endif
+#ifdef FLOAT128
+"    float128         --Quadruple precision.\n"
+#endif
+                ,
+                stdout
+            );
+            return EXIT_SUCCESS;
+        }
+#ifdef FLOATX80
+        else if ( strcmp( argPtr, "precision32" ) == 0 ) {
+            roundingPrecision = 32;
+        }
+        else if ( strcmp( argPtr, "precision64" ) == 0 ) {
+            roundingPrecision = 64;
+        }
+        else if ( strcmp( argPtr, "precision80" ) == 0 ) {
+            roundingPrecision = 80;
+        }
+#endif
+        else if (    ( strcmp( argPtr, "nearesteven" ) == 0 )
+                  || ( strcmp( argPtr, "nearest_even" ) == 0 ) ) {
+            roundingMode = ROUND_NEAREST_EVEN;
+        }
+        else if (    ( strcmp( argPtr, "tozero" ) == 0 )
+                  || ( strcmp( argPtr, "to_zero" ) == 0 ) ) {
+            roundingMode = ROUND_TO_ZERO;
+        }
+        else if ( strcmp( argPtr, "down" ) == 0 ) {
+            roundingMode = ROUND_DOWN;
+        }
+        else if ( strcmp( argPtr, "up" ) == 0 ) {
+            roundingMode = ROUND_UP;
+        }
+        else if ( strcmp( argPtr, "tininessbefore" ) == 0 ) {
+            tininessMode = TININESS_BEFORE_ROUNDING;
+        }
+        else if ( strcmp( argPtr, "tininessafter" ) == 0 ) {
+            tininessMode = TININESS_AFTER_ROUNDING;
+        }
+        else if ( strcmp( argPtr, "all1" ) == 0 ) {
+            functionArgument = TRUE;
+            functionCode = 0;
+            operands = 1;
+        }
+        else if ( strcmp( argPtr, "all2" ) == 0 ) {
+            functionArgument = TRUE;
+            functionCode = 0;
+            operands = 2;
+        }
+        else if ( strcmp( argPtr, "all" ) == 0 ) {
+            functionArgument = TRUE;
+            functionCode = 0;
+            operands = 0;
+        }
+        else {
+            for ( functionCode = 1;
+                  functionCode < NUM_FUNCTIONS;
+                  ++functionCode 
+                ) {
+                if ( strcmp( argPtr, functions[ functionCode ].name ) == 0 ) {
+                    break;
+                }
+            }
+            if ( functionCode == NUM_FUNCTIONS ) {
+                fail( "Invalid option or function `%s'", argv[ 0 ] );
+            }
+            functionArgument = TRUE;
+        }
+        --argc;
+        ++argv;
+    }
+    if ( ! functionArgument ) fail( "Function argument required" );
+    if ( functionCode ) {
+        timeFunction(
+            functionCode, roundingPrecision, roundingMode, tininessMode );
+    }
+    else if ( operands == 1 ) {
+        for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
+            ) {
+            if ( functions[ functionCode ].numInputs == 1 ) {
+                timeFunction(
+                    functionCode, roundingPrecision, roundingMode, tininessMode
+                );
+            }
+        }
+    }
+    else if ( operands == 2 ) {
+        for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
+            ) {
+            if ( functions[ functionCode ].numInputs == 2 ) {
+                timeFunction(
+                    functionCode, roundingPrecision, roundingMode, tininessMode
+                );
+            }
+        }
+    }
+    else {
+        for ( functionCode = 1; functionCode < NUM_FUNCTIONS; ++functionCode
+            ) {
+            timeFunction(
+                functionCode, roundingPrecision, roundingMode, tininessMode );
+        }
+    }
+    return EXIT_SUCCESS;
+
+}
+
diff --git a/float/softfloat/softfloat/timesoftfloat.txt b/float/softfloat/softfloat/timesoftfloat.txt
new file mode 100644
index 00000000..f38f465d
--- /dev/null
+++ b/float/softfloat/softfloat/timesoftfloat.txt
@@ -0,0 +1,151 @@
+
+Documentation for the `timesoftfloat' Program of SoftFloat Release 2b
+
+John R. Hauser
+2002 May 27
+
+
+----------------------------------------------------------------------------
+Introduction
+
+The `timesoftfloat' program evaluates the speed of SoftFloat's floating-
+point routines.  Each routine can be evaluated for every relevant rounding
+mode, tininess mode, and/or rounding precision.
+
+
+----------------------------------------------------------------------------
+Contents
+
+    Introduction
+    Contents
+    Legal Notice
+    Executing `timesoftfloat'
+    Options
+        -help
+        -precision32, -precision64, -precision80
+        -nearesteven, -tozero, -down, -up
+        -tininessbefore, -tininessafter
+    Function Sets
+
+
+
+----------------------------------------------------------------------------
+Legal Notice
+
+The `timesoftfloat' program was written by John R. Hauser.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
+LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
+FURTHERMORE EFFECTIVELY INDEMNIFY THE AUTHOR, JOHN HAUSER, (possibly via
+similar legal warning) AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS INCURRED
+BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+
+----------------------------------------------------------------------------
+Executing `timesoftfloat'
+
+The `timesoftfloat' program is intended to be invoked from a command line
+interpreter as follows:
+
+    timesoftfloat [<option>...] <function>
+
+Here square brackets ([]) indicate optional items, while angled brackets
+(<>) denote parameters to be filled in.  The `<function>' argument is
+the name of the SoftFloat routine to evaluate, such as `float32_add' or
+`float64_to_int32'.  The allowed options are detailed in the next section,
+_Options_.  If `timesoftfloat' is executed without any arguments, a summary
+of usage is written.  It is also possible to evaluate all machine functions
+in a single invocation as explained in the section _Function Sets_ later in
+this document.
+
+Ordinarily, a function's speed will be evaulated separately for each of
+the four rounding modes, one after the other.  If the rounding mode is not
+supposed to have any effect on the results of a function--for instance,
+some operations do not require rounding--only the nearest/even rounding mode
+is timed.  In the same way, if a function is affected by the way in which
+underflow tininess is detected, `timesoftfloat' times the function both with
+tininess detected before rounding and after rounding.  For extended double-
+precision operations affected by rounding precision control, `timesoftfloat'
+also times the function for all three rounding precision modes, one after
+the other.  Evaluation of a function can be limited to a single rounding
+mode, a single tininess mode, and/or a single rounding precision with
+appropriate options (see _Options_).
+
+For each function and mode evaluated, `timesoftfloat' reports the speed of
+the function in kops/s, or ``thousands of operations per second''.  This
+unit of measure differs from the traditional MFLOPS (``millions of floating-
+point operations per second'') only in being a factor of 1000 smaller.
+(1000 kops/s is exactly 1 MFLOPS.)  Speeds are reported in thousands
+instead of millions because software floating-point may execute at less than
+1 MFLOPS.
+
+The speeds reported by `timesoftfloat' may be affected somewhat by other
+programs executing at the same time as `timesoftfloat'.
+
+Note that the remainder operations (`float32_rem', `float64_rem',
+`floatx80_rem' and `float128_rem') will be markedly slower than other
+operations, particularly for extended double precision (`floatx80') and
+quadruple precision (`float128').  This is inherent to the remainder
+function itself and is not a failing of the SoftFloat implementation.
+
+
+----------------------------------------------------------------------------
+Options
+
+The `timesoftfloat' program accepts several command options.  If mutually
+contradictory options are given, the last one has priority.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+-help
+
+The `-help' option causes a summary of program usage to be written, after
+which the program exits.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+-precision32, -precision64, -precision80
+
+For extended double-precision functions affected by rounding precision
+control, the `-precision32' option restricts evaluation to only the cases
+in which rounding precision is equivalent to single precision.  The other
+rounding precision options are not timed.  Likewise, the `-precision64'
+and `-precision80' options fix the rounding precision equivalent to double
+precision or extended double precision, respectively.  These options are
+ignored for functions not affected by rounding precision control.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+-nearesteven, -tozero, -down, -up
+
+The `-nearesteven' option restricts evaluation to only the cases in which
+the rounding mode is nearest/even.  The other rounding mode options are
+not timed.  Likewise, `-tozero' forces rounding toward zero; `-down' forces
+rounding down; and `-up' forces rounding up.  These options are ignored for
+functions that are exact and thus do not round.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+-tininessbefore, -tininessafter
+
+The `-tininessbefore' option restricts evaluation to only the cases
+detecting underflow tininess before rounding.  Tininess after rounding
+is not timed.  Likewise, `-tininessafter' forces underflow tininess to be
+detected after rounding only.  These options are ignored for functions not
+affected by the way in which underflow tininess is detected.
+
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
+
+----------------------------------------------------------------------------
+Function Sets
+
+Just as `timesoftfloat' can test an operation for all four rounding modes in
+sequence, multiple operations can also be tested with a single invocation.
+Three sets are recognized:  `-all1', `-all2', and `-all'.  The set `-all1'
+comprises all one-operand functions; `-all2' is all two-operand functions;
+and `-all' is all functions.  A function set can be used in place of a
+function name in the command line, as in
+
+    timesoftfloat [<option>...] -all
+
+
-- 
2.40.0