From 604ab08145d0dde91279c430e08d570717c12b30 Mon Sep 17 00:00:00 2001 From: Robert Haas Date: Tue, 19 Oct 2010 09:51:06 -0400 Subject: [PATCH] Add levenshtein_less_equal, optimized version for small distances. Alexander Korotkov, heavily revised by me. --- contrib/fuzzystrmatch/fuzzystrmatch.c | 244 ++--------- contrib/fuzzystrmatch/fuzzystrmatch.sql.in | 8 + contrib/fuzzystrmatch/levenshtein.c | 397 ++++++++++++++++++ .../fuzzystrmatch/uninstall_fuzzystrmatch.sql | 4 + doc/src/sgml/fuzzystrmatch.sgml | 19 + 5 files changed, 459 insertions(+), 213 deletions(-) create mode 100644 contrib/fuzzystrmatch/levenshtein.c diff --git a/contrib/fuzzystrmatch/fuzzystrmatch.c b/contrib/fuzzystrmatch/fuzzystrmatch.c index 01084da407..7265841dc5 100644 --- a/contrib/fuzzystrmatch/fuzzystrmatch.c +++ b/contrib/fuzzystrmatch/fuzzystrmatch.c @@ -9,15 +9,6 @@ * Copyright (c) 2001-2010, PostgreSQL Global Development Group * ALL RIGHTS RESERVED; * - * levenshtein() - * ------------- - * Written based on a description of the algorithm by Michael Gilleland - * found at http://www.merriampark.com/ld.htm - * Also looked at levenshtein.c in the PHP 4.0.6 distribution for - * inspiration. - * Configurable penalty costs extension is introduced by Volkan - * YAZICI . - * * metaphone() * ----------- * Modified for PostgreSQL by Joe Conway. @@ -61,6 +52,8 @@ PG_MODULE_MAGIC; */ extern Datum levenshtein_with_costs(PG_FUNCTION_ARGS); extern Datum levenshtein(PG_FUNCTION_ARGS); +extern Datum levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS); +extern Datum levenshtein_less_equal(PG_FUNCTION_ARGS); extern Datum metaphone(PG_FUNCTION_ARGS); extern Datum soundex(PG_FUNCTION_ARGS); extern Datum difference(PG_FUNCTION_ARGS); @@ -85,16 +78,6 @@ soundex_code(char letter) return letter; } - -/* - * Levenshtein - */ -#define MAX_LEVENSHTEIN_STRLEN 255 - -static int levenshtein_internal(text *s, text *t, - int ins_c, int del_c, int sub_c); - - /* * Metaphone */ @@ -197,224 +180,59 @@ rest_of_char_same(const char *s1, const char *s2, int len) return true; } -/* - * levenshtein_internal - Calculates Levenshtein distance metric - * between supplied strings. Generally - * (1, 1, 1) penalty costs suffices common - * cases, but your mileage may vary. - */ -static int -levenshtein_internal(text *s, text *t, - int ins_c, int del_c, int sub_c) -{ - int m, - n, - s_bytes, - t_bytes; - int *prev; - int *curr; - int *s_char_len = NULL; - int i, - j; - const char *s_data; - const char *t_data; - const char *y; - - /* Extract a pointer to the actual character data. */ - s_data = VARDATA_ANY(s); - t_data = VARDATA_ANY(t); - - /* Determine length of each string in bytes and characters. */ - s_bytes = VARSIZE_ANY_EXHDR(s); - t_bytes = VARSIZE_ANY_EXHDR(t); - m = pg_mbstrlen_with_len(s_data, s_bytes); - n = pg_mbstrlen_with_len(t_data, t_bytes); - - /* - * We can transform an empty s into t with n insertions, or a non-empty t - * into an empty s with m deletions. - */ - if (!m) - return n * ins_c; - if (!n) - return m * del_c; - - /* - * For security concerns, restrict excessive CPU+RAM usage. (This - * implementation uses O(m) memory and has O(mn) complexity.) - */ - if (m > MAX_LEVENSHTEIN_STRLEN || - n > MAX_LEVENSHTEIN_STRLEN) - ereport(ERROR, - (errcode(ERRCODE_INVALID_PARAMETER_VALUE), - errmsg("argument exceeds the maximum length of %d bytes", - MAX_LEVENSHTEIN_STRLEN))); - - /* - * In order to avoid calling pg_mblen() repeatedly on each character in s, - * we cache all the lengths before starting the main loop -- but if all the - * characters in both strings are single byte, then we skip this and use - * a fast-path in the main loop. If only one string contains multi-byte - * characters, we still build the array, so that the fast-path needn't - * deal with the case where the array hasn't been initialized. - */ - if (m != s_bytes || n != t_bytes) - { - int i; - const char *cp = s_data; - - s_char_len = (int *) palloc((m + 1) * sizeof(int)); - for (i = 0; i < m; ++i) - { - s_char_len[i] = pg_mblen(cp); - cp += s_char_len[i]; - } - s_char_len[i] = 0; - } - - /* One more cell for initialization column and row. */ - ++m; - ++n; - - /* - * One way to compute Levenshtein distance is to incrementally construct - * an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number - * of operations required to transform the first i characters of s into - * the first j characters of t. The last column of the final row is the - * answer. - * - * We use that algorithm here with some modification. In lieu of holding - * the entire array in memory at once, we'll just use two arrays of size - * m+1 for storing accumulated values. At each step one array represents - * the "previous" row and one is the "current" row of the notional large - * array. - */ - prev = (int *) palloc(2 * m * sizeof(int)); - curr = prev + m; - - /* - * To transform the first i characters of s into the first 0 characters - * of t, we must perform i deletions. - */ - for (i = 0; i < m; i++) - prev[i] = i * del_c; - - /* Loop through rows of the notional array */ - for (y = t_data, j = 1; j < n; j++) - { - int *temp; - const char *x = s_data; - int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1; - - /* - * To transform the first 0 characters of s into the first j - * characters of t, we must perform j insertions. - */ - curr[0] = j * ins_c; - - /* - * This inner loop is critical to performance, so we include a - * fast-path to handle the (fairly common) case where no multibyte - * characters are in the mix. The fast-path is entitled to assume - * that if s_char_len is not initialized then BOTH strings contain - * only single-byte characters. - */ - if (s_char_len != NULL) - { - for (i = 1; i < m; i++) - { - int ins; - int del; - int sub; - int x_char_len = s_char_len[i - 1]; - - /* - * Calculate costs for insertion, deletion, and substitution. - * - * When calculating cost for substitution, we compare the last - * character of each possibly-multibyte character first, - * because that's enough to rule out most mis-matches. If we - * get past that test, then we compare the lengths and the - * remaining bytes. - */ - ins = prev[i] + ins_c; - del = curr[i - 1] + del_c; - if (x[x_char_len-1] == y[y_char_len-1] - && x_char_len == y_char_len && - (x_char_len == 1 || rest_of_char_same(x, y, x_char_len))) - sub = prev[i - 1]; - else - sub = prev[i - 1] + sub_c; - - /* Take the one with minimum cost. */ - curr[i] = Min(ins, del); - curr[i] = Min(curr[i], sub); - - /* Point to next character. */ - x += x_char_len; - } - } - else - { - for (i = 1; i < m; i++) - { - int ins; - int del; - int sub; +#include "levenshtein.c" +#define LEVENSHTEIN_LESS_EQUAL +#include "levenshtein.c" - /* Calculate costs for insertion, deletion, and substitution. */ - ins = prev[i] + ins_c; - del = curr[i - 1] + del_c; - sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c); - - /* Take the one with minimum cost. */ - curr[i] = Min(ins, del); - curr[i] = Min(curr[i], sub); +PG_FUNCTION_INFO_V1(levenshtein_with_costs); +Datum +levenshtein_with_costs(PG_FUNCTION_ARGS) +{ + text *src = PG_GETARG_TEXT_PP(0); + text *dst = PG_GETARG_TEXT_PP(1); + int ins_c = PG_GETARG_INT32(2); + int del_c = PG_GETARG_INT32(3); + int sub_c = PG_GETARG_INT32(4); - /* Point to next character. */ - x++; - } - } + PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c)); +} - /* Swap current row with previous row. */ - temp = curr; - curr = prev; - prev = temp; - /* Point to next character. */ - y += y_char_len; - } +PG_FUNCTION_INFO_V1(levenshtein); +Datum +levenshtein(PG_FUNCTION_ARGS) +{ + text *src = PG_GETARG_TEXT_PP(0); + text *dst = PG_GETARG_TEXT_PP(1); - /* - * Because the final value was swapped from the previous row to the - * current row, that's where we'll find it. - */ - return prev[m - 1]; + PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1)); } -PG_FUNCTION_INFO_V1(levenshtein_with_costs); +PG_FUNCTION_INFO_V1(levenshtein_less_equal_with_costs); Datum -levenshtein_with_costs(PG_FUNCTION_ARGS) +levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS) { text *src = PG_GETARG_TEXT_PP(0); text *dst = PG_GETARG_TEXT_PP(1); int ins_c = PG_GETARG_INT32(2); int del_c = PG_GETARG_INT32(3); int sub_c = PG_GETARG_INT32(4); + int max_d = PG_GETARG_INT32(5); - PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c)); + PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, ins_c, del_c, sub_c, max_d)); } -PG_FUNCTION_INFO_V1(levenshtein); +PG_FUNCTION_INFO_V1(levenshtein_less_equal); Datum -levenshtein(PG_FUNCTION_ARGS) +levenshtein_less_equal(PG_FUNCTION_ARGS) { text *src = PG_GETARG_TEXT_PP(0); text *dst = PG_GETARG_TEXT_PP(1); + int max_d = PG_GETARG_INT32(2); - PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1)); + PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, 1, 1, 1, max_d)); } diff --git a/contrib/fuzzystrmatch/fuzzystrmatch.sql.in b/contrib/fuzzystrmatch/fuzzystrmatch.sql.in index 05a347d6b8..0e75491cbe 100644 --- a/contrib/fuzzystrmatch/fuzzystrmatch.sql.in +++ b/contrib/fuzzystrmatch/fuzzystrmatch.sql.in @@ -11,6 +11,14 @@ CREATE OR REPLACE FUNCTION levenshtein (text,text,int,int,int) RETURNS int AS 'MODULE_PATHNAME','levenshtein_with_costs' LANGUAGE C IMMUTABLE STRICT; +CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int) RETURNS int +AS 'MODULE_PATHNAME','levenshtein_less_equal' +LANGUAGE C IMMUTABLE STRICT; + +CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int,int,int,int) RETURNS int +AS 'MODULE_PATHNAME','levenshtein_less_equal_with_costs' +LANGUAGE C IMMUTABLE STRICT; + CREATE OR REPLACE FUNCTION metaphone (text,int) RETURNS text AS 'MODULE_PATHNAME','metaphone' LANGUAGE C IMMUTABLE STRICT; diff --git a/contrib/fuzzystrmatch/levenshtein.c b/contrib/fuzzystrmatch/levenshtein.c new file mode 100644 index 0000000000..178d0e4d75 --- /dev/null +++ b/contrib/fuzzystrmatch/levenshtein.c @@ -0,0 +1,397 @@ +/* + * levenshtein.c + * + * Functions for "fuzzy" comparison of strings + * + * Joe Conway + * + * contrib/fuzzystrmatch/fuzzystrmatch.c + * Copyright (c) 2001-2010, PostgreSQL Global Development Group + * ALL RIGHTS RESERVED; + * + * levenshtein() + * ------------- + * Written based on a description of the algorithm by Michael Gilleland + * found at http://www.merriampark.com/ld.htm + * Also looked at levenshtein.c in the PHP 4.0.6 distribution for + * inspiration. + * Configurable penalty costs extension is introduced by Volkan + * YAZICI . + */ + +/* + * External declarations for exported functions + */ +#ifdef LEVENSHTEIN_LESS_EQUAL +static int levenshtein_less_equal_internal(text *s, text *t, + int ins_c, int del_c, int sub_c, int max_d); +#else +static int levenshtein_internal(text *s, text *t, + int ins_c, int del_c, int sub_c); +#endif + +#define MAX_LEVENSHTEIN_STRLEN 255 + + +/* + * Calculates Levenshtein distance metric between supplied strings. Generally + * (1, 1, 1) penalty costs suffices for common cases, but your mileage may + * vary. + * + * One way to compute Levenshtein distance is to incrementally construct + * an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number + * of operations required to transform the first i characters of s into + * the first j characters of t. The last column of the final row is the + * answer. + * + * We use that algorithm here with some modification. In lieu of holding + * the entire array in memory at once, we'll just use two arrays of size + * m+1 for storing accumulated values. At each step one array represents + * the "previous" row and one is the "current" row of the notional large + * array. + * + * If max_d >= 0, we only need to provide an accurate answer when that answer + * is less than or equal to the bound. From any cell in the matrix, there is + * theoretical "minimum residual distance" from that cell to the last column + * of the final row. This minimum residual distance is zero when the + * untransformed portions of the strings are of equal length (because we might + * get lucky and find all the remaining characters matching) and is otherwise + * based on the minimum number of insertions or deletions needed to make them + * equal length. The residual distance grows as we move toward the upper + * right or lower left corners of the matrix. When the max_d bound is + * usefully tight, we can use this property to avoid computing the entirety + * of each row; instead, we maintain a start_column and stop_column that + * identify the portion of the matrix close to the diagonal which can still + * affect the final answer. + */ +static int +#ifdef LEVENSHTEIN_LESS_EQUAL +levenshtein_less_equal_internal(text *s, text *t, + int ins_c, int del_c, int sub_c, int max_d) +#else +levenshtein_internal(text *s, text *t, + int ins_c, int del_c, int sub_c) +#endif +{ + int m, + n, + s_bytes, + t_bytes; + int *prev; + int *curr; + int *s_char_len = NULL; + int i, + j; + const char *s_data; + const char *t_data; + const char *y; + + /* + * For levenshtein_less_equal_internal, we have real variables called + * start_column and stop_column; otherwise it's just short-hand for 0 + * and m. + */ +#ifdef LEVENSHTEIN_LESS_EQUAL + int start_column, stop_column; +#undef START_COLUMN +#undef STOP_COLUMN +#define START_COLUMN start_column +#define STOP_COLUMN stop_column +#else +#undef START_COLUMN +#undef STOP_COLUMN +#define START_COLUMN 0 +#define STOP_COLUMN m +#endif + + /* Extract a pointer to the actual character data. */ + s_data = VARDATA_ANY(s); + t_data = VARDATA_ANY(t); + + /* Determine length of each string in bytes and characters. */ + s_bytes = VARSIZE_ANY_EXHDR(s); + t_bytes = VARSIZE_ANY_EXHDR(t); + m = pg_mbstrlen_with_len(s_data, s_bytes); + n = pg_mbstrlen_with_len(t_data, t_bytes); + + /* + * We can transform an empty s into t with n insertions, or a non-empty t + * into an empty s with m deletions. + */ + if (!m) + return n * ins_c; + if (!n) + return m * del_c; + + /* + * For security concerns, restrict excessive CPU+RAM usage. (This + * implementation uses O(m) memory and has O(mn) complexity.) + */ + if (m > MAX_LEVENSHTEIN_STRLEN || + n > MAX_LEVENSHTEIN_STRLEN) + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("argument exceeds the maximum length of %d bytes", + MAX_LEVENSHTEIN_STRLEN))); + +#ifdef LEVENSHTEIN_LESS_EQUAL + /* Initialize start and stop columns. */ + start_column = 0; + stop_column = m + 1; + + /* + * If max_d >= 0, determine whether the bound is impossibly tight. If so, + * return max_d + 1 immediately. Otherwise, determine whether it's tight + * enough to limit the computation we must perform. If so, figure out + * initial stop column. + */ + if (max_d >= 0) + { + int min_theo_d; /* Theoretical minimum distance. */ + int max_theo_d; /* Theoretical maximum distance. */ + int net_inserts = n - m; + + min_theo_d = net_inserts < 0 ? + -net_inserts * del_c : net_inserts * ins_c; + if (min_theo_d > max_d) + return max_d + 1; + if (ins_c + del_c < sub_c) + sub_c = ins_c + del_c; + max_theo_d = min_theo_d + sub_c * Min(m, n); + if (max_d >= max_theo_d) + max_d = -1; + else if (ins_c + del_c > 0) + { + /* + * Figure out how much of the first row of the notional matrix + * we need to fill in. If the string is growing, the theoretical + * minimum distance already incorporates the cost of deleting the + * number of characters necessary to make the two strings equal + * in length. Each additional deletion forces another insertion, + * so the best-case total cost increases by ins_c + del_c. + * If the string is shrinking, the minimum theoretical cost + * assumes no excess deletions; that is, we're starting no futher + * right than column n - m. If we do start further right, the + * best-case total cost increases by ins_c + del_c for each move + * right. + */ + int slack_d = max_d - min_theo_d; + int best_column = net_inserts < 0 ? -net_inserts : 0; + stop_column = best_column + (slack_d / (ins_c + del_c)) + 1; + if (stop_column > m) + stop_column = m + 1; + } + } +#endif + + /* + * In order to avoid calling pg_mblen() repeatedly on each character in s, + * we cache all the lengths before starting the main loop -- but if all the + * characters in both strings are single byte, then we skip this and use + * a fast-path in the main loop. If only one string contains multi-byte + * characters, we still build the array, so that the fast-path needn't + * deal with the case where the array hasn't been initialized. + */ + if (m != s_bytes || n != t_bytes) + { + int i; + const char *cp = s_data; + + s_char_len = (int *) palloc((m + 1) * sizeof(int)); + for (i = 0; i < m; ++i) + { + s_char_len[i] = pg_mblen(cp); + cp += s_char_len[i]; + } + s_char_len[i] = 0; + } + + /* One more cell for initialization column and row. */ + ++m; + ++n; + + /* Previous and current rows of notional array. */ + prev = (int *) palloc(2 * m * sizeof(int)); + curr = prev + m; + + /* + * To transform the first i characters of s into the first 0 characters + * of t, we must perform i deletions. + */ + for (i = START_COLUMN; i < STOP_COLUMN; i++) + prev[i] = i * del_c; + + /* Loop through rows of the notional array */ + for (y = t_data, j = 1; j < n; j++) + { + int *temp; + const char *x = s_data; + int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1; + +#ifdef LEVENSHTEIN_LESS_EQUAL + /* + * In the best case, values percolate down the diagonal unchanged, so + * we must increment stop_column unless it's already on the right end + * of the array. The inner loop will read prev[stop_column], so we + * have to initialize it even though it shouldn't affect the result. + */ + if (stop_column < m) + { + prev[stop_column] = max_d + 1; + ++stop_column; + } + + /* + * The main loop fills in curr, but curr[0] needs a special case: + * to transform the first 0 characters of s into the first j + * characters of t, we must perform j insertions. However, if + * start_column > 0, this special case does not apply. + */ + if (start_column == 0) + { + curr[0] = j * ins_c; + i = 1; + } + else + i = start_column; +#else + curr[0] = j * ins_c; + i = 1; +#endif + + /* + * This inner loop is critical to performance, so we include a + * fast-path to handle the (fairly common) case where no multibyte + * characters are in the mix. The fast-path is entitled to assume + * that if s_char_len is not initialized then BOTH strings contain + * only single-byte characters. + */ + if (s_char_len != NULL) + { + for (; i < STOP_COLUMN; i++) + { + int ins; + int del; + int sub; + int x_char_len = s_char_len[i - 1]; + + /* + * Calculate costs for insertion, deletion, and substitution. + * + * When calculating cost for substitution, we compare the last + * character of each possibly-multibyte character first, + * because that's enough to rule out most mis-matches. If we + * get past that test, then we compare the lengths and the + * remaining bytes. + */ + ins = prev[i] + ins_c; + del = curr[i - 1] + del_c; + if (x[x_char_len-1] == y[y_char_len-1] + && x_char_len == y_char_len && + (x_char_len == 1 || rest_of_char_same(x, y, x_char_len))) + sub = prev[i - 1]; + else + sub = prev[i - 1] + sub_c; + + /* Take the one with minimum cost. */ + curr[i] = Min(ins, del); + curr[i] = Min(curr[i], sub); + + /* Point to next character. */ + x += x_char_len; + } + } + else + { + for (; i < STOP_COLUMN; i++) + { + int ins; + int del; + int sub; + + /* Calculate costs for insertion, deletion, and substitution. */ + ins = prev[i] + ins_c; + del = curr[i - 1] + del_c; + sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c); + + /* Take the one with minimum cost. */ + curr[i] = Min(ins, del); + curr[i] = Min(curr[i], sub); + + /* Point to next character. */ + x++; + } + } + + /* Swap current row with previous row. */ + temp = curr; + curr = prev; + prev = temp; + + /* Point to next character. */ + y += y_char_len; + +#ifdef LEVENSHTEIN_LESS_EQUAL + /* + * This chunk of code represents a significant performance hit if used + * in the case where there is no max_d bound. This is probably not + * because the max_d >= 0 test itself is expensive, but rather because + * the possibility of needing to execute this code prevents tight + * optimization of the loop as a whole. + */ + if (max_d >= 0) + { + /* + * The "zero point" is the column of the current row where the + * remaining portions of the strings are of equal length. There + * are (n - 1) characters in the target string, of which j have + * been transformed. There are (m - 1) characters in the source + * string, so we want to find the value for zp where where (n - 1) + * - j = (m - 1) - zp. + */ + int zp = j - (n - m); + + /* Check whether the stop column can slide left. */ + while (stop_column > 0) + { + int ii = stop_column - 1; + int net_inserts = ii - zp; + if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c : + -net_inserts * del_c) <= max_d) + break; + stop_column--; + } + + /* Check whether the start column can slide right. */ + while (start_column < stop_column) + { + int net_inserts = start_column - zp; + if (prev[start_column] + + (net_inserts > 0 ? net_inserts * ins_c : + -net_inserts * del_c) <= max_d) + break; + /* + * We'll never again update these values, so we must make + * sure there's nothing here that could confuse any future + * iteration of the outer loop. + */ + prev[start_column] = max_d + 1; + curr[start_column] = max_d + 1; + if (start_column != 0) + s_data += n != t_bytes + 1 ? pg_mblen(s_data) : 1; + start_column++; + } + + /* If they cross, we're going to exceed the bound. */ + if (start_column >= stop_column) + return max_d + 1; + } +#endif + } + + /* + * Because the final value was swapped from the previous row to the + * current row, that's where we'll find it. + */ + return prev[m - 1]; +} diff --git a/contrib/fuzzystrmatch/uninstall_fuzzystrmatch.sql b/contrib/fuzzystrmatch/uninstall_fuzzystrmatch.sql index 99d2548569..a39c7bfc94 100644 --- a/contrib/fuzzystrmatch/uninstall_fuzzystrmatch.sql +++ b/contrib/fuzzystrmatch/uninstall_fuzzystrmatch.sql @@ -18,3 +18,7 @@ DROP FUNCTION metaphone (text,int); DROP FUNCTION levenshtein (text,text,int,int,int); DROP FUNCTION levenshtein (text,text); + +DROP FUNCTION levenshtein_less_equal (text,text,int); + +DROP FUNCTION levenshtein_less_equal (text,text,int,int,int,int); diff --git a/doc/src/sgml/fuzzystrmatch.sgml b/doc/src/sgml/fuzzystrmatch.sgml index 69777e4935..01b6e127ba 100644 --- a/doc/src/sgml/fuzzystrmatch.sgml +++ b/doc/src/sgml/fuzzystrmatch.sgml @@ -84,6 +84,8 @@ SELECT * FROM s WHERE difference(s.nm, 'john') > 2; levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns int levenshtein(text source, text target) returns int +levenshtein_less_equal(text source, text target, int ins_cost, int del_cost, int sub_cost, int max_d) returns int +levenshtein_less_equal(text source, text target, int max_d) returns int @@ -92,6 +94,11 @@ levenshtein(text source, text target) returns int specify how much to charge for a character insertion, deletion, or substitution, respectively. You can omit the cost parameters, as in the second version of the function; in that case they all default to 1. + levenshtein_less_equal is accelerated version of + levenshtein functon for low values of distance. If actual distance + is less or equal then max_d, then levenshtein_less_equal + returns accurate value of it. Otherwise this function returns value + which is greater than max_d. @@ -110,6 +117,18 @@ test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2,1,1); ------------- 3 (1 row) + +test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',2); + levenshtein_less_equal +------------------------ + 3 +(1 row) + +test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',4); + levenshtein_less_equal +------------------------ + 4 +(1 row) -- 2.40.0