From 1c5106c6bff9faf73654282d7727f1af3f1186a3 Mon Sep 17 00:00:00 2001 From: Yann Ylavic <ylavic@apache.org> Date: Thu, 18 Jan 2018 17:45:40 +0000 Subject: [PATCH] Share fdqueue code between MPMs event and worker. This first step moves the content of server/mpm/event/fdqueue.c to the existing server/mpm_unix.c file, and the server/mpm/event/fdqueue.h file to trunk/server/mpm_unix.h (untouched for now, simple svn move). Will follow up with the necessary changes to mpm_unix.* for common code. [Reverted by r1821619] git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1821526 13f79535-47bb-0310-9956-ffa450edef68 --- server/mpm/event/config3.m4 | 2 +- server/mpm/event/event.c | 2 +- server/mpm/event/fdqueue.c | 524 --------------------- server/mpm_unix.c | 515 ++++++++++++++++++++ server/{mpm/event/fdqueue.h => mpm_unix.h} | 0 5 files changed, 517 insertions(+), 526 deletions(-) delete mode 100644 server/mpm/event/fdqueue.c rename server/{mpm/event/fdqueue.h => mpm_unix.h} (100%) diff --git a/server/mpm/event/config3.m4 b/server/mpm/event/config3.m4 index e15f235314..b4dc5e38bc 100644 --- a/server/mpm/event/config3.m4 +++ b/server/mpm/event/config3.m4 @@ -8,7 +8,7 @@ if test "$ac_cv_serf" = yes ; then fi APACHE_SUBST(MOD_MPM_EVENT_LDADD) -APACHE_MPM_MODULE(event, $enable_mpm_event, event.lo fdqueue.lo,[ +APACHE_MPM_MODULE(event, $enable_mpm_event, event.lo,[ AC_CHECK_FUNCS(pthread_kill) ], , [\$(MOD_MPM_EVENT_LDADD)]) diff --git a/server/mpm/event/event.c b/server/mpm/event/event.c index 8065ae287c..55a7e562d5 100644 --- a/server/mpm/event/event.c +++ b/server/mpm/event/event.c @@ -91,7 +91,7 @@ #include "mpm_common.h" #include "ap_listen.h" #include "scoreboard.h" -#include "fdqueue.h" +#include "mpm_unix.h" #include "mpm_default.h" #include "http_vhost.h" #include "unixd.h" diff --git a/server/mpm/event/fdqueue.c b/server/mpm/event/fdqueue.c deleted file mode 100644 index 5b0192b2ee..0000000000 --- a/server/mpm/event/fdqueue.c +++ /dev/null @@ -1,524 +0,0 @@ -/* Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "fdqueue.h" -#include "apr_atomic.h" - -static const apr_uint32_t zero_pt = APR_UINT32_MAX/2; - -struct recycled_pool -{ - apr_pool_t *pool; - struct recycled_pool *next; -}; - -struct fd_queue_info_t -{ - apr_uint32_t volatile idlers; /** - * >= zero_pt: number of idle worker threads - * < zero_pt: number of threads blocked, - * waiting for an idle worker - */ - apr_thread_mutex_t *idlers_mutex; - apr_thread_cond_t *wait_for_idler; - int terminated; - int max_idlers; - int max_recycled_pools; - apr_uint32_t recycled_pools_count; - struct recycled_pool *volatile recycled_pools; -}; - -static apr_status_t queue_info_cleanup(void *data_) -{ - fd_queue_info_t *qi = data_; - apr_thread_cond_destroy(qi->wait_for_idler); - apr_thread_mutex_destroy(qi->idlers_mutex); - - /* Clean up any pools in the recycled list */ - for (;;) { - struct recycled_pool *first_pool = qi->recycled_pools; - if (first_pool == NULL) { - break; - } - if (apr_atomic_casptr - ((void*) &(qi->recycled_pools), first_pool->next, - first_pool) == first_pool) { - apr_pool_destroy(first_pool->pool); - } - } - - return APR_SUCCESS; -} - -apr_status_t ap_queue_info_create(fd_queue_info_t ** queue_info, - apr_pool_t * pool, int max_idlers, - int max_recycled_pools) -{ - apr_status_t rv; - fd_queue_info_t *qi; - - qi = apr_pcalloc(pool, sizeof(*qi)); - - rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT, - pool); - if (rv != APR_SUCCESS) { - return rv; - } - rv = apr_thread_cond_create(&qi->wait_for_idler, pool); - if (rv != APR_SUCCESS) { - return rv; - } - qi->recycled_pools = NULL; - qi->max_recycled_pools = max_recycled_pools; - qi->max_idlers = max_idlers; - qi->idlers = zero_pt; - apr_pool_cleanup_register(pool, qi, queue_info_cleanup, - apr_pool_cleanup_null); - - *queue_info = qi; - - return APR_SUCCESS; -} - -apr_status_t ap_queue_info_set_idle(fd_queue_info_t * queue_info, - apr_pool_t * pool_to_recycle) -{ - apr_status_t rv; - - ap_push_pool(queue_info, pool_to_recycle); - - /* If other threads are waiting on a worker, wake one up */ - if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) { - rv = apr_thread_mutex_lock(queue_info->idlers_mutex); - if (rv != APR_SUCCESS) { - AP_DEBUG_ASSERT(0); - return rv; - } - rv = apr_thread_cond_signal(queue_info->wait_for_idler); - if (rv != APR_SUCCESS) { - apr_thread_mutex_unlock(queue_info->idlers_mutex); - return rv; - } - rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); - if (rv != APR_SUCCESS) { - return rv; - } - } - - return APR_SUCCESS; -} - -apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t * queue_info) -{ - /* Don't block if there isn't any idle worker. */ - for (;;) { - apr_uint32_t idlers = queue_info->idlers; - if (idlers <= zero_pt) { - return APR_EAGAIN; - } - if (apr_atomic_cas32(&queue_info->idlers, idlers - 1, - idlers) == idlers) { - return APR_SUCCESS; - } - } -} - -apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t * queue_info, - int *had_to_block) -{ - apr_status_t rv; - - /* Block if there isn't any idle worker. - * apr_atomic_add32(x, -1) does the same as dec32(x), except - * that it returns the previous value (unlike dec32's bool). - */ - if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) { - rv = apr_thread_mutex_lock(queue_info->idlers_mutex); - if (rv != APR_SUCCESS) { - AP_DEBUG_ASSERT(0); - apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */ - return rv; - } - /* Re-check the idle worker count to guard against a - * race condition. Now that we're in the mutex-protected - * region, one of two things may have happened: - * - If the idle worker count is still negative, the - * workers are all still busy, so it's safe to - * block on a condition variable. - * - If the idle worker count is non-negative, then a - * worker has become idle since the first check - * of queue_info->idlers above. It's possible - * that the worker has also signaled the condition - * variable--and if so, the listener missed it - * because it wasn't yet blocked on the condition - * variable. But if the idle worker count is - * now non-negative, it's safe for this function to - * return immediately. - * - * A "negative value" (relative to zero_pt) in - * queue_info->idlers tells how many - * threads are waiting on an idle worker. - */ - if (queue_info->idlers < zero_pt) { - *had_to_block = 1; - rv = apr_thread_cond_wait(queue_info->wait_for_idler, - queue_info->idlers_mutex); - if (rv != APR_SUCCESS) { - apr_status_t rv2; - AP_DEBUG_ASSERT(0); - rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex); - if (rv2 != APR_SUCCESS) { - return rv2; - } - return rv; - } - } - rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); - if (rv != APR_SUCCESS) { - return rv; - } - } - - if (queue_info->terminated) { - return APR_EOF; - } - else { - return APR_SUCCESS; - } -} - -apr_uint32_t ap_queue_info_get_idlers(fd_queue_info_t * queue_info) -{ - apr_uint32_t val; - val = apr_atomic_read32(&queue_info->idlers); - if (val <= zero_pt) - return 0; - return val - zero_pt; -} - -void ap_push_pool(fd_queue_info_t * queue_info, - apr_pool_t * pool_to_recycle) -{ - struct recycled_pool *new_recycle; - /* If we have been given a pool to recycle, atomically link - * it into the queue_info's list of recycled pools - */ - if (!pool_to_recycle) - return; - - if (queue_info->max_recycled_pools >= 0) { - apr_uint32_t cnt = apr_atomic_read32(&queue_info->recycled_pools_count); - if (cnt >= queue_info->max_recycled_pools) { - apr_pool_destroy(pool_to_recycle); - return; - } - apr_atomic_inc32(&queue_info->recycled_pools_count); - } - - apr_pool_clear(pool_to_recycle); - new_recycle = (struct recycled_pool *) apr_palloc(pool_to_recycle, - sizeof (*new_recycle)); - new_recycle->pool = pool_to_recycle; - for (;;) { - /* - * Save queue_info->recycled_pool in local variable next because - * new_recycle->next can be changed after apr_atomic_casptr - * function call. For gory details see PR 44402. - */ - struct recycled_pool *next = queue_info->recycled_pools; - new_recycle->next = next; - if (apr_atomic_casptr((void*) &(queue_info->recycled_pools), - new_recycle, next) == next) - break; - } -} - -void ap_pop_pool(apr_pool_t ** recycled_pool, fd_queue_info_t * queue_info) -{ - /* Atomically pop a pool from the recycled list */ - - /* This function is safe only as long as it is single threaded because - * it reaches into the queue and accesses "next" which can change. - * We are OK today because it is only called from the listener thread. - * cas-based pushes do not have the same limitation - any number can - * happen concurrently with a single cas-based pop. - */ - - *recycled_pool = NULL; - - - /* Atomically pop a pool from the recycled list */ - for (;;) { - struct recycled_pool *first_pool = queue_info->recycled_pools; - if (first_pool == NULL) { - break; - } - if (apr_atomic_casptr - ((void*) &(queue_info->recycled_pools), - first_pool->next, first_pool) == first_pool) { - *recycled_pool = first_pool->pool; - if (queue_info->max_recycled_pools >= 0) - apr_atomic_dec32(&queue_info->recycled_pools_count); - break; - } - } -} - -void ap_free_idle_pools(fd_queue_info_t *queue_info) -{ - apr_pool_t *p; - - queue_info->max_recycled_pools = 0; - do { - ap_pop_pool(&p, queue_info); - if (p != NULL) - apr_pool_destroy(p); - } while (p != NULL); -} - - -apr_status_t ap_queue_info_term(fd_queue_info_t * queue_info) -{ - apr_status_t rv; - rv = apr_thread_mutex_lock(queue_info->idlers_mutex); - if (rv != APR_SUCCESS) { - return rv; - } - queue_info->terminated = 1; - apr_thread_cond_broadcast(queue_info->wait_for_idler); - return apr_thread_mutex_unlock(queue_info->idlers_mutex); -} - -/** - * Detects when the fd_queue_t is full. This utility function is expected - * to be called from within critical sections, and is not threadsafe. - */ -#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds) - -/** - * Detects when the fd_queue_t is empty. This utility function is expected - * to be called from within critical sections, and is not threadsafe. - */ -#define ap_queue_empty(queue) ((queue)->nelts == 0 && APR_RING_EMPTY(&queue->timers ,timer_event_t, link)) - -/** - * Callback routine that is called to destroy this - * fd_queue_t when its pool is destroyed. - */ -static apr_status_t ap_queue_destroy(void *data) -{ - fd_queue_t *queue = data; - - /* Ignore errors here, we can't do anything about them anyway. - * XXX: We should at least try to signal an error here, it is - * indicative of a programmer error. -aaron */ - apr_thread_cond_destroy(queue->not_empty); - apr_thread_mutex_destroy(queue->one_big_mutex); - - return APR_SUCCESS; -} - -/** - * Initialize the fd_queue_t. - */ -apr_status_t ap_queue_init(fd_queue_t * queue, int queue_capacity, - apr_pool_t * a) -{ - int i; - apr_status_t rv; - - if ((rv = apr_thread_mutex_create(&queue->one_big_mutex, - APR_THREAD_MUTEX_DEFAULT, - a)) != APR_SUCCESS) { - return rv; - } - if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) { - return rv; - } - - APR_RING_INIT(&queue->timers, timer_event_t, link); - - queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t)); - queue->bounds = queue_capacity; - queue->nelts = 0; - queue->in = 0; - queue->out = 0; - - /* Set all the sockets in the queue to NULL */ - for (i = 0; i < queue_capacity; ++i) - queue->data[i].sd = NULL; - - apr_pool_cleanup_register(a, queue, ap_queue_destroy, - apr_pool_cleanup_null); - - return APR_SUCCESS; -} - -/** - * Push a new socket onto the queue. - * - * precondition: ap_queue_info_wait_for_idler has already been called - * to reserve an idle worker thread - */ -apr_status_t ap_queue_push(fd_queue_t * queue, apr_socket_t * sd, - event_conn_state_t * ecs, apr_pool_t * p) -{ - fd_queue_elem_t *elem; - apr_status_t rv; - - if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { - return rv; - } - - AP_DEBUG_ASSERT(!queue->terminated); - AP_DEBUG_ASSERT(!ap_queue_full(queue)); - - elem = &queue->data[queue->in]; - queue->in++; - if (queue->in >= queue->bounds) - queue->in -= queue->bounds; - elem->sd = sd; - elem->ecs = ecs; - elem->p = p; - queue->nelts++; - - apr_thread_cond_signal(queue->not_empty); - - if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { - return rv; - } - - return APR_SUCCESS; -} - -apr_status_t ap_queue_push_timer(fd_queue_t * queue, timer_event_t *te) -{ - apr_status_t rv; - - if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { - return rv; - } - - AP_DEBUG_ASSERT(!queue->terminated); - - APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link); - - apr_thread_cond_signal(queue->not_empty); - - if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { - return rv; - } - - return APR_SUCCESS; -} - -/** - * Retrieves the next available socket from the queue. If there are no - * sockets available, it will block until one becomes available. - * Once retrieved, the socket is placed into the address specified by - * 'sd'. - */ -apr_status_t ap_queue_pop_something(fd_queue_t * queue, apr_socket_t ** sd, - event_conn_state_t ** ecs, apr_pool_t ** p, - timer_event_t ** te_out) -{ - fd_queue_elem_t *elem; - apr_status_t rv; - - if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { - return rv; - } - - /* Keep waiting until we wake up and find that the queue is not empty. */ - if (ap_queue_empty(queue)) { - if (!queue->terminated) { - apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex); - } - /* If we wake up and it's still empty, then we were interrupted */ - if (ap_queue_empty(queue)) { - rv = apr_thread_mutex_unlock(queue->one_big_mutex); - if (rv != APR_SUCCESS) { - return rv; - } - if (queue->terminated) { - return APR_EOF; /* no more elements ever again */ - } - else { - return APR_EINTR; - } - } - } - - *te_out = NULL; - - if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) { - *te_out = APR_RING_FIRST(&queue->timers); - APR_RING_REMOVE(*te_out, link); - } - else { - elem = &queue->data[queue->out]; - queue->out++; - if (queue->out >= queue->bounds) - queue->out -= queue->bounds; - queue->nelts--; - *sd = elem->sd; - *ecs = elem->ecs; - *p = elem->p; -#ifdef AP_DEBUG - elem->sd = NULL; - elem->p = NULL; -#endif /* AP_DEBUG */ - } - - rv = apr_thread_mutex_unlock(queue->one_big_mutex); - return rv; -} - -static apr_status_t queue_interrupt(fd_queue_t *queue, int all, int term) -{ - apr_status_t rv; - - if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { - return rv; - } - /* we must hold one_big_mutex when setting this... otherwise, - * we could end up setting it and waking everybody up just after a - * would-be popper checks it but right before they block - */ - if (term) { - queue->terminated = 1; - } - if (all) - apr_thread_cond_broadcast(queue->not_empty); - else - apr_thread_cond_signal(queue->not_empty); - return apr_thread_mutex_unlock(queue->one_big_mutex); -} - -apr_status_t ap_queue_interrupt_all(fd_queue_t * queue) -{ - return queue_interrupt(queue, 1, 0); -} - -apr_status_t ap_queue_interrupt_one(fd_queue_t * queue) -{ - return queue_interrupt(queue, 0, 0); -} - -apr_status_t ap_queue_term(fd_queue_t * queue) -{ - return queue_interrupt(queue, 1, 1); -} diff --git a/server/mpm_unix.c b/server/mpm_unix.c index 29bc3a2b00..2aa2d3bbe3 100644 --- a/server/mpm_unix.c +++ b/server/mpm_unix.c @@ -36,6 +36,7 @@ #include "apr_getopt.h" #include "apr_optional.h" #include "apr_allocator.h" +#include "apr_atomic.h" #include "httpd.h" #include "http_config.h" @@ -48,6 +49,8 @@ #include "scoreboard.h" #include "util_mutex.h" +#include "mpm_unix.h" + #ifdef HAVE_PWD_H #include <pwd.h> #endif @@ -1104,4 +1107,516 @@ AP_DECLARE(apr_status_t) ap_fatal_signal_setup(server_rec *s, return APR_SUCCESS; } + +/* + * fdqueue code used by MPMs event and worker. + * Not part of the API, so not AP_DECLARE()d. + */ + +static const apr_uint32_t zero_pt = APR_UINT32_MAX/2; + +struct recycled_pool +{ + apr_pool_t *pool; + struct recycled_pool *next; +}; + +struct fd_queue_info_t +{ + apr_uint32_t volatile idlers; /** + * >= zero_pt: number of idle worker threads + * < zero_pt: number of threads blocked, + * waiting for an idle worker + */ + apr_thread_mutex_t *idlers_mutex; + apr_thread_cond_t *wait_for_idler; + int terminated; + int max_idlers; + int max_recycled_pools; + apr_uint32_t recycled_pools_count; + struct recycled_pool *volatile recycled_pools; +}; + +static apr_status_t queue_info_cleanup(void *data_) +{ + fd_queue_info_t *qi = data_; + apr_thread_cond_destroy(qi->wait_for_idler); + apr_thread_mutex_destroy(qi->idlers_mutex); + + /* Clean up any pools in the recycled list */ + for (;;) { + struct recycled_pool *first_pool = qi->recycled_pools; + if (first_pool == NULL) { + break; + } + if (apr_atomic_casptr + ((void*) &(qi->recycled_pools), first_pool->next, + first_pool) == first_pool) { + apr_pool_destroy(first_pool->pool); + } + } + + return APR_SUCCESS; +} + +apr_status_t ap_queue_info_create(fd_queue_info_t ** queue_info, + apr_pool_t * pool, int max_idlers, + int max_recycled_pools) +{ + apr_status_t rv; + fd_queue_info_t *qi; + + qi = apr_pcalloc(pool, sizeof(*qi)); + + rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT, + pool); + if (rv != APR_SUCCESS) { + return rv; + } + rv = apr_thread_cond_create(&qi->wait_for_idler, pool); + if (rv != APR_SUCCESS) { + return rv; + } + qi->recycled_pools = NULL; + qi->max_recycled_pools = max_recycled_pools; + qi->max_idlers = max_idlers; + qi->idlers = zero_pt; + apr_pool_cleanup_register(pool, qi, queue_info_cleanup, + apr_pool_cleanup_null); + + *queue_info = qi; + + return APR_SUCCESS; +} + +apr_status_t ap_queue_info_set_idle(fd_queue_info_t * queue_info, + apr_pool_t * pool_to_recycle) +{ + apr_status_t rv; + + ap_push_pool(queue_info, pool_to_recycle); + + /* If other threads are waiting on a worker, wake one up */ + if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) { + rv = apr_thread_mutex_lock(queue_info->idlers_mutex); + if (rv != APR_SUCCESS) { + AP_DEBUG_ASSERT(0); + return rv; + } + rv = apr_thread_cond_signal(queue_info->wait_for_idler); + if (rv != APR_SUCCESS) { + apr_thread_mutex_unlock(queue_info->idlers_mutex); + return rv; + } + rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); + if (rv != APR_SUCCESS) { + return rv; + } + } + + return APR_SUCCESS; +} + +apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t * queue_info) +{ + /* Don't block if there isn't any idle worker. */ + for (;;) { + apr_uint32_t idlers = queue_info->idlers; + if (idlers <= zero_pt) { + return APR_EAGAIN; + } + if (apr_atomic_cas32(&queue_info->idlers, idlers - 1, + idlers) == idlers) { + return APR_SUCCESS; + } + } +} + +apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t * queue_info, + int *had_to_block) +{ + apr_status_t rv; + + /* Block if there isn't any idle worker. + * apr_atomic_add32(x, -1) does the same as dec32(x), except + * that it returns the previous value (unlike dec32's bool). + */ + if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) { + rv = apr_thread_mutex_lock(queue_info->idlers_mutex); + if (rv != APR_SUCCESS) { + AP_DEBUG_ASSERT(0); + apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */ + return rv; + } + /* Re-check the idle worker count to guard against a + * race condition. Now that we're in the mutex-protected + * region, one of two things may have happened: + * - If the idle worker count is still negative, the + * workers are all still busy, so it's safe to + * block on a condition variable. + * - If the idle worker count is non-negative, then a + * worker has become idle since the first check + * of queue_info->idlers above. It's possible + * that the worker has also signaled the condition + * variable--and if so, the listener missed it + * because it wasn't yet blocked on the condition + * variable. But if the idle worker count is + * now non-negative, it's safe for this function to + * return immediately. + * + * A "negative value" (relative to zero_pt) in + * queue_info->idlers tells how many + * threads are waiting on an idle worker. + */ + if (queue_info->idlers < zero_pt) { + *had_to_block = 1; + rv = apr_thread_cond_wait(queue_info->wait_for_idler, + queue_info->idlers_mutex); + if (rv != APR_SUCCESS) { + apr_status_t rv2; + AP_DEBUG_ASSERT(0); + rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex); + if (rv2 != APR_SUCCESS) { + return rv2; + } + return rv; + } + } + rv = apr_thread_mutex_unlock(queue_info->idlers_mutex); + if (rv != APR_SUCCESS) { + return rv; + } + } + + if (queue_info->terminated) { + return APR_EOF; + } + else { + return APR_SUCCESS; + } +} + +apr_uint32_t ap_queue_info_get_idlers(fd_queue_info_t * queue_info) +{ + apr_uint32_t val; + val = apr_atomic_read32(&queue_info->idlers); + if (val <= zero_pt) + return 0; + return val - zero_pt; +} + +void ap_push_pool(fd_queue_info_t * queue_info, + apr_pool_t * pool_to_recycle) +{ + struct recycled_pool *new_recycle; + /* If we have been given a pool to recycle, atomically link + * it into the queue_info's list of recycled pools + */ + if (!pool_to_recycle) + return; + + if (queue_info->max_recycled_pools >= 0) { + apr_uint32_t cnt = apr_atomic_read32(&queue_info->recycled_pools_count); + if (cnt >= queue_info->max_recycled_pools) { + apr_pool_destroy(pool_to_recycle); + return; + } + apr_atomic_inc32(&queue_info->recycled_pools_count); + } + + apr_pool_clear(pool_to_recycle); + new_recycle = (struct recycled_pool *) apr_palloc(pool_to_recycle, + sizeof (*new_recycle)); + new_recycle->pool = pool_to_recycle; + for (;;) { + /* + * Save queue_info->recycled_pool in local variable next because + * new_recycle->next can be changed after apr_atomic_casptr + * function call. For gory details see PR 44402. + */ + struct recycled_pool *next = queue_info->recycled_pools; + new_recycle->next = next; + if (apr_atomic_casptr((void*) &(queue_info->recycled_pools), + new_recycle, next) == next) + break; + } +} + +void ap_pop_pool(apr_pool_t ** recycled_pool, fd_queue_info_t * queue_info) +{ + /* Atomically pop a pool from the recycled list */ + + /* This function is safe only as long as it is single threaded because + * it reaches into the queue and accesses "next" which can change. + * We are OK today because it is only called from the listener thread. + * cas-based pushes do not have the same limitation - any number can + * happen concurrently with a single cas-based pop. + */ + + *recycled_pool = NULL; + + + /* Atomically pop a pool from the recycled list */ + for (;;) { + struct recycled_pool *first_pool = queue_info->recycled_pools; + if (first_pool == NULL) { + break; + } + if (apr_atomic_casptr + ((void*) &(queue_info->recycled_pools), + first_pool->next, first_pool) == first_pool) { + *recycled_pool = first_pool->pool; + if (queue_info->max_recycled_pools >= 0) + apr_atomic_dec32(&queue_info->recycled_pools_count); + break; + } + } +} + +void ap_free_idle_pools(fd_queue_info_t *queue_info) +{ + apr_pool_t *p; + + queue_info->max_recycled_pools = 0; + do { + ap_pop_pool(&p, queue_info); + if (p != NULL) + apr_pool_destroy(p); + } while (p != NULL); +} + + +apr_status_t ap_queue_info_term(fd_queue_info_t * queue_info) +{ + apr_status_t rv; + rv = apr_thread_mutex_lock(queue_info->idlers_mutex); + if (rv != APR_SUCCESS) { + return rv; + } + queue_info->terminated = 1; + apr_thread_cond_broadcast(queue_info->wait_for_idler); + return apr_thread_mutex_unlock(queue_info->idlers_mutex); +} + +/** + * Detects when the fd_queue_t is full. This utility function is expected + * to be called from within critical sections, and is not threadsafe. + */ +#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds) + +/** + * Detects when the fd_queue_t is empty. This utility function is expected + * to be called from within critical sections, and is not threadsafe. + */ +#define ap_queue_empty(queue) ((queue)->nelts == 0 && APR_RING_EMPTY(&queue->timers ,timer_event_t, link)) + +/** + * Callback routine that is called to destroy this + * fd_queue_t when its pool is destroyed. + */ +static apr_status_t ap_queue_destroy(void *data) +{ + fd_queue_t *queue = data; + + /* Ignore errors here, we can't do anything about them anyway. + * XXX: We should at least try to signal an error here, it is + * indicative of a programmer error. -aaron */ + apr_thread_cond_destroy(queue->not_empty); + apr_thread_mutex_destroy(queue->one_big_mutex); + + return APR_SUCCESS; +} + +/** + * Initialize the fd_queue_t. + */ +apr_status_t ap_queue_init(fd_queue_t * queue, int queue_capacity, + apr_pool_t * a) +{ + int i; + apr_status_t rv; + + if ((rv = apr_thread_mutex_create(&queue->one_big_mutex, + APR_THREAD_MUTEX_DEFAULT, + a)) != APR_SUCCESS) { + return rv; + } + if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) { + return rv; + } + + APR_RING_INIT(&queue->timers, timer_event_t, link); + + queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t)); + queue->bounds = queue_capacity; + queue->nelts = 0; + queue->in = 0; + queue->out = 0; + + /* Set all the sockets in the queue to NULL */ + for (i = 0; i < queue_capacity; ++i) + queue->data[i].sd = NULL; + + apr_pool_cleanup_register(a, queue, ap_queue_destroy, + apr_pool_cleanup_null); + + return APR_SUCCESS; +} + +/** + * Push a new socket onto the queue. + * + * precondition: ap_queue_info_wait_for_idler has already been called + * to reserve an idle worker thread + */ +apr_status_t ap_queue_push(fd_queue_t * queue, apr_socket_t * sd, + event_conn_state_t * ecs, apr_pool_t * p) +{ + fd_queue_elem_t *elem; + apr_status_t rv; + + if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { + return rv; + } + + AP_DEBUG_ASSERT(!queue->terminated); + AP_DEBUG_ASSERT(!ap_queue_full(queue)); + + elem = &queue->data[queue->in]; + queue->in++; + if (queue->in >= queue->bounds) + queue->in -= queue->bounds; + elem->sd = sd; + elem->ecs = ecs; + elem->p = p; + queue->nelts++; + + apr_thread_cond_signal(queue->not_empty); + + if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { + return rv; + } + + return APR_SUCCESS; +} + +apr_status_t ap_queue_push_timer(fd_queue_t * queue, timer_event_t *te) +{ + apr_status_t rv; + + if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { + return rv; + } + + AP_DEBUG_ASSERT(!queue->terminated); + + APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link); + + apr_thread_cond_signal(queue->not_empty); + + if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) { + return rv; + } + + return APR_SUCCESS; +} + +/** + * Retrieves the next available socket from the queue. If there are no + * sockets available, it will block until one becomes available. + * Once retrieved, the socket is placed into the address specified by + * 'sd'. + */ +apr_status_t ap_queue_pop_something(fd_queue_t * queue, apr_socket_t ** sd, + event_conn_state_t ** ecs, apr_pool_t ** p, + timer_event_t ** te_out) +{ + fd_queue_elem_t *elem; + apr_status_t rv; + + if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { + return rv; + } + + /* Keep waiting until we wake up and find that the queue is not empty. */ + if (ap_queue_empty(queue)) { + if (!queue->terminated) { + apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex); + } + /* If we wake up and it's still empty, then we were interrupted */ + if (ap_queue_empty(queue)) { + rv = apr_thread_mutex_unlock(queue->one_big_mutex); + if (rv != APR_SUCCESS) { + return rv; + } + if (queue->terminated) { + return APR_EOF; /* no more elements ever again */ + } + else { + return APR_EINTR; + } + } + } + + *te_out = NULL; + + if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) { + *te_out = APR_RING_FIRST(&queue->timers); + APR_RING_REMOVE(*te_out, link); + } + else { + elem = &queue->data[queue->out]; + queue->out++; + if (queue->out >= queue->bounds) + queue->out -= queue->bounds; + queue->nelts--; + *sd = elem->sd; + *ecs = elem->ecs; + *p = elem->p; +#ifdef AP_DEBUG + elem->sd = NULL; + elem->p = NULL; +#endif /* AP_DEBUG */ + } + + rv = apr_thread_mutex_unlock(queue->one_big_mutex); + return rv; +} + +static apr_status_t queue_interrupt(fd_queue_t *queue, int all, int term) +{ + apr_status_t rv; + + if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) { + return rv; + } + /* we must hold one_big_mutex when setting this... otherwise, + * we could end up setting it and waking everybody up just after a + * would-be popper checks it but right before they block + */ + if (term) { + queue->terminated = 1; + } + if (all) + apr_thread_cond_broadcast(queue->not_empty); + else + apr_thread_cond_signal(queue->not_empty); + return apr_thread_mutex_unlock(queue->one_big_mutex); +} + +apr_status_t ap_queue_interrupt_all(fd_queue_t * queue) +{ + return queue_interrupt(queue, 1, 0); +} + +apr_status_t ap_queue_interrupt_one(fd_queue_t * queue) +{ + return queue_interrupt(queue, 0, 0); +} + +apr_status_t ap_queue_term(fd_queue_t * queue) +{ + return queue_interrupt(queue, 1, 1); +} + #endif /* WIN32 */ diff --git a/server/mpm/event/fdqueue.h b/server/mpm_unix.h similarity index 100% rename from server/mpm/event/fdqueue.h rename to server/mpm_unix.h -- 2.40.0