fix regression in x86_64 math asm with old binutils
the implicit-operand form of fucomip is rejected by binutils 2.19 and
perhaps other versions still in use. writing both operands explicitly
fixes the issue. there is no change to the resulting output.
use CAS instead of swap since it's lighter for most archs, and keep
EBUSY in the lock value so that the old value obtained by CAS can be
used directly as the return value for pthread_spin_trylock.
in visibility preinclude, remove overrides for stdin/stdout/stderr
the motivation for this change is that the extra declaration (with or
without visibility) using "struct _IO_FILE" instead of "FILE" seems to
trigger a bug in gcc 3.x where it considers the types mismatched.
however, this change also results in slightly better code and it is
valid because (1) these three objects are constant, and (2) applying
the & operator to any of them is invalid C, since they are not even
specified to be objects. thus it does not matter if the application
and libc see different addresses for them, as long as the (initial,
unchanging) value is seen the same by both.
remove cruft for libc struct accessor function and broken visibility
these were hacks to work around toolchains that could not properly
optimize PIC accesses based on visibility and would generate GOT
lookups even for hidden data, which broke the old dynamic linker.
since commit f3ddd173806fd5c60b3f034528ca24542aecc5b9 it no longer
matters; the dynamic linker does not assume accessibility of this data
until stage 3.
make configure check for visibility preinclude compatible with pcc
pcc does not search for -include relative to the working directory
unless -I. is used. rather than adding -I., which could be problematic
if there's extra junk in the top-level directory, switch back to the
old method (reverting commit 60ed988fd6c67b489d7cc186ecaa9db4e5c25b8c)
of using -include vis.h and relying on -I./src/internal being present
on the command line (which the Makefile guarantees). to fix the
breakage that was present in trycppif checks with the old method,
$CFLAGS_AUTO is removed from the command line passed to trycppif; this
is valid since $CFLAGS_AUTO should not contain options that alter
compiler semantics or ABI, only optimizations, warnings, etc.
fix duplocale clobbering of new locale struct with memcpy of old
when the non-stub duplocale code was added as part of the locale
framework in commit 0bc03091bb674ebb9fa6fe69e4aec1da3ac484f2, the old
code to memcpy the old locale object to the new one was left behind.
the conditional for the memcpy no longer makes sense, because the
conditions are now always-true when it's reached, and the memcpy is
wrong because it clobbers the new->messages_name pointer setup just
above.
since the messages_name and ctype_utf8 members have already been
copied, all that remains is the cat[] array. these pointers are
volatile, so using memcpy to copy them is formally wrong; use a for
loop instead.
Andre McCurdy [Tue, 21 Apr 2015 17:34:05 +0000 (10:34 -0700)]
configure: check for -march and -mtune passed via CC
Some build environments pass -march and -mtune as part of CC, therefore
update configure to check both CC and CFLAGS before making the decision
to fall back to generic -march and -mtune options for x86.
Signed-off-by: Andre McCurdy <armccurdy@gmail.com>
the first switch already returns in the F_SETLKW code path so it need
not be handled in the second switch. moreover the code in the second
switch is wrong for the F_SETLKW command: it's not cancellable.
fix mmap leak in sem_open failure path for link call
the leak was found by static analysis (reported by Alexander Monakov),
not tested/observed, but seems to have occured both when failing due
to O_EXCL, and in a race condition with O_CREAT but not O_EXCL where a
semaphore by the same name was created concurrently.
remove always-true conditional in dynamic linker TLSDESC processing
the allocating path which can fail is for dynamic TLS, which can only
occur at runtime, and the check for runtime was already made in the
outer conditional.
commit 637dd2d383cc1f63bf02a732f03786857b22c7bd introduced the checks
for RTLD_DEFAULT and RTLD_NEXT here, claiming they fixed a regression,
but the above conditional block clearly already covered these cases,
and removing the checks produces no difference in the generated code.
fix breakage in x32 dynamic linker due to mismatching register size
the jmp instruction requires a 64-bit register, so cast the desired PC
address up to uint64_t, going through uintptr_t to ensure that it's
zero-extended rather than possibly sign-extended.
fix regression in configure script with new visibility option
commit de2b67f8d41e08caa56bf6540277f6561edb647f introduced a
regression by adding a -include option to CFLAGS_AUTO which did not
work without additional -I options. this broke subsequent trycppif
tests and caused x86_64 to be misdetected as x32, among other issues.
simply using the full relative pathname to vis.h rather than -I is the
cleanest way to fix the problem.
this is implemented via the build system and does not affect source
files. the idea is to use protected or hidden visibility to prevent
the compiler from pessimizing function calls within a shared (or
position-independent static) libc in the form of overhead setting up
for a call through the PLT. the ld-time symbol binding via the
-Bsymbolic-functions option already optimized out the PLT itself, but
not the code in the caller needed to support a call through the PLT.
on some archs this overhead can be substantial; on others it's
trivial.
these are perfectly fine with ld-time symbol binding, but otherwise
result in textrels. they cannot be replaced with @PLT jump targets
because the PLT thunks require a GOT register to be setup, so use a
hidden alias instead.
these are perfectly fine with ld-time symbol binding, but if the calls
go through a PLT thunk, they are invalid because the caller does not
setup a GOT register. use a hidden alias to bypass the issue.
remove the last of possible-textrels from i386 asm
none of these are actual textrels because of ld-time binding performed
by -Bsymbolic-functions, but I'm changing them with the goal of making
ld-time binding purely an optimization rather than relying on it for
semantic purposes.
in the case of memmove's call to memcpy, making it explicit that the
memmove asm is assuming the forward-copying behavior of the memcpy asm
is desirable anyway; in case memcpy is ever changed, the semantic
mismatch would be apparent while editing memmcpy.s.
make dlerror state and message thread-local and dynamically-allocated
this fixes truncation of error messages containing long pathnames or
symbol names.
the dlerror state was previously required by POSIX to be global. the
resolution of bug 97 relaxed the requirements to allow thread-safe
implementations of dlerror with thread-local state and message buffer.
Szabolcs Nagy [Sat, 11 Apr 2015 00:35:07 +0000 (00:35 +0000)]
math: fix pow(+-0,-inf) not to raise divbyzero flag
this reverts the commit f29fea00b5bc72d4b8abccba2bb1e312684d1fce
which was based on a bug in C99 and POSIX and did not match IEEE-754
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1515.pdf
apply hidden visibility to tlsdesc accessor functions
these functions are never called directly; only their addresses are
used, so PLT indirections should never happen unless a broken
application tries to redefine them, but it's still best to make them
hidden.
the casts of the argument to unsigned int suppressed diagnosis of
errors like passing a pointer instead of a character. putting the
actual function call in an unreachable branch restores any diagnostics
that would be present if the macros didn't exist and functions were
used.
the braf instruction's destination register is an offset from the
address of the braf instruction plus 4 (or equivalently, the address
of the next instruction after the delay slot). the code for dlsym was
incorrectly computing the offset to pass using the address of the
delay slot itself. in other places, a label was placed after the delay
slot, but I find this confusing. putting the label on the branch
instruction itself, and manually adding 4, makes it more clear which
branch the offset in the constant pool goes with.
redesign sigsetjmp so that signal mask is restored after longjmp
the conventional way to implement sigsetjmp is to save the signal mask
then tail-call to setjmp; siglongjmp then restores the signal mask and
calls longjmp. the problem with this approach is that a signal already
pending, or arriving between unmasking of signals and restoration of
the saved stack pointer, will have its signal handler run on the stack
that was active before siglongjmp was called. this can lead to
unbounded stack usage when siglongjmp is used to leave a signal
handler.
in the new design, sigsetjmp saves its own return address inside the
extended part of the sigjmp_buf (outside the __jmp_buf part used by
setjmp) then calls setjmp to save a jmp_buf inside its own execution.
it then tail-calls to __sigsetjmp_tail, which uses the return value of
setjmp to determine whether to save the current signal mask or restore
a previously-saved mask.
as an added bonus, this design makes it so that siglongjmp and longjmp
are identical. this is useful because the __longjmp_chk function we
need to add for ABI-compatibility assumes siglongjmp and longjmp are
the same, but for different reasons -- it was designed assuming either
can access a flag just past the __jmp_buf indicating whether the
signal masked was saved, and act on that flag. however, early versions
of musl did not have space past the __jmp_buf for the non-sigjmp_buf
version of jmp_buf, so our setjmp cannot store such a flag without
risking clobbering memory on (very) old binaries.
use hidden __tls_get_new for tls/tlsdesc lookup fallback cases
previously, the dynamic tlsdesc lookup functions and the i386
special-ABI ___tls_get_addr (3 underscores) function called
__tls_get_addr when the slot they wanted was not already setup;
__tls_get_addr would then in turn also see that it's not setup and
call __tls_get_new.
calling __tls_get_new directly is both more efficient and avoids the
issue of calling a non-hidden (public API/ABI) function from asm.
for the special i386 function, a weak reference to __tls_get_new is
used since this function is not defined when static linking (the code
path that needs it is unreachable in static-linked programs).
cleanup use of visibility attributes in pthread_cancel.c
applying the attribute to a weak_alias macro was a hack. instead use a
separate declaration to apply the visibility, and consolidate
declarations together to avoid having visibility mess all over the
file.
consistently use hidden visibility for cancellable syscall internals
in a few places, non-hidden symbols were referenced from asm in ways
that assumed ld-time binding. while these is no semantic reason these
symbols need to be hidden, fixing the references without making them
hidden was going to be ugly, and hidden reduces some bloat anyway.
in the asm files, .global/.hidden directives have been moved to the
top to unclutter the actual code.
fix inconsistent visibility for internal __tls_get_new function
at the point of call it was declared hidden, but the definition was
not hidden. for some toolchains this inconsistency produced textrels
without ld-time binding.
remove initializers for decoded aux/dyn arrays in dynamic linker
the zero initialization is redundant since decode_vec does its own
clearing, and it increases the risk that buggy compilers will generate
calls to memset. as long as symbols are bound at ld time, such a call
will not break anything, but it may be desirable to turn off ld-time
binding in the future.
allow libc itself to be built with stack protector enabled
this was already essentially possible as a result of the previous
commits changing the dynamic linker/thread pointer bootstrap process.
this commit mainly adds build system infrastructure:
configure no longer attempts to disable stack protector. instead it
simply determines how so the makefile can disable stack protector for
a few translation units used during early startup.
stack protector is also disabled for memcpy and memset since compilers
(incorrectly) generate calls to them on some archs to implement
struct initialization and assignment, and such calls may creep into
early initialization.
no explicit attempt to enable stack protector is made by configure at
this time; any stack protector option supported by the compiler can be
passed to configure in CFLAGS, and if the compiler uses stack
protector by default, this default is respected.
remove remnants of support for running in no-thread-pointer mode
since 1.1.0, musl has nominally required a thread pointer to be setup.
most of the remaining code that was checking for its availability was
doing so for the sake of being usable by the dynamic linker. as of
commit 71f099cb7db821c51d8f39dfac622c61e54d794c, this is no longer
necessary; the thread pointer is now valid before any libc code
(outside of dynamic linker bootstrap functions) runs.
this commit essentially concludes "phase 3" of the "transition path
for removing lazy init of thread pointer" project that began during
the 1.1.0 release cycle.
move thread pointer setup to beginning of dynamic linker stage 3
this allows the dynamic linker itself to run with a valid thread
pointer, which is a prerequisite for stack protector on archs where
the ssp canary is stored in TLS. it will also allow us to remove some
remaining runtime checks for whether the thread pointer is valid.
as long as the application and its libraries do not require additional
size or alignment, this early thread pointer will be kept and reused
at runtime. otherwise, a new static TLS block is allocated after
library loading has finished and the thread pointer is switched over.
previously, the layout of the static TLS block was perturbed by the
size of the dtv; dtv size increasing from 0 to 1 perturbed both TLS
arch types, and the TLS-above-TP type's layout was perturbed by the
specific number of dtv slots (libraries with TLS). this behavior made
it virtually impossible to setup a tentative thread pointer address
before loading libraries and keep it unchanged as long as the
libraries' TLS size/alignment requirements fit.
the new code fixes the location of the dtv and pthread structure at
opposite ends of the static TLS block so that they will not move
unless size or alignment changes.
allow i386 __set_thread_area to be called more than once
previously a new GDT slot was requested, even if one had already been
obtained by a previous call. instead extract the old slot number from
GS and reuse it if it was already set. the formula (GS-3)/8 for the
slot number automatically yields -1 (request for new slot) if GS is
zero (unset).
this overhaul further reduces the amount of arch-specific code needed
by the dynamic linker and removes a number of assumptions, including:
- that symbolic function references inside libc are bound at link time
via the linker option -Bsymbolic-functions.
- that libc functions used by the dynamic linker do not require
access to data symbols.
- that static/internal function calls and data accesses can be made
without performing any relocations, or that arch-specific startup
code handled any such relocations needed.
removing these assumptions paves the way for allowing libc.so itself
to be built with stack protector (among other things), and is achieved
by a three-stage bootstrap process:
1. relative relocations are processed with a flat function.
2. symbolic relocations are processed with no external calls/data.
3. main program and dependency libs are processed with a
fully-functional libc/ldso.
reduction in arch-specific code is achived through the following:
- crt_arch.h, used for generating crt1.o, now provides the entry point
for the dynamic linker too.
- asm is no longer responsible for skipping the beginning of argv[]
when ldso is invoked as a command.
- the functionality previously provided by __reloc_self for heavily
GOT-dependent RISC archs is now the arch-agnostic stage-1.
- arch-specific relocation type codes are mapped directly as macros
rather than via an inline translation function/switch statement.
this global lock allows certain unlock-type primitives to exclude
mmap/munmap operations which could change the identity of virtual
addresses while references to them still exist.
the original design mistakenly assumed mmap/munmap would conversely
need to exclude the same operations which exclude mmap/munmap, so the
vmlock was implemented as a sort of 'symmetric recursive rwlock'. this
turned out to be unnecessary.
commit 25d12fc0fc51f1fae0f85b4649a6463eb805aa8f already shortened the
interval during which mmap/munmap held their side of the lock, but
left the inappropriate lock design and some inefficiency.
the new design uses a separate function, __vm_wait, which does not
hold any lock itself and only waits for lock users which were already
present when it was called to release the lock. this is sufficient
because of the way operations that need to be excluded are sequenced:
the "unlock-type" operations using the vmlock need only block
mmap/munmap operations that are precipitated by (and thus sequenced
after) the atomic-unlock they perform while holding the vmlock.
this allows for a spectacular lack of synchronization in the __vm_wait
function itself.
optimize out setting up robust list with kernel when not needed
as a result of commit 12e1e324683a1d381b7f15dd36c99b37dd44d940, kernel
processing of the robust list is only needed for process-shared
mutexes. previously the first attempt to lock any owner-tracked mutex
resulted in robust list initialization and a set_robust_list syscall.
this is no longer necessary, and since the kernel's record of the
robust list must now be cleared at thread exit time for detached
threads, optimizing it out is more worthwhile than before too.
process robust list in pthread_exit to fix detached thread use-after-unmap
the robust list head lies in the thread structure, which is unmapped
before exit for detached threads. this leaves the kernel unable to
process the exiting thread's robust list, and with a dangling pointer
which may happen to point to new unrelated data at the time the kernel
processes it.
userspace processing of the robust list was already needed for
non-pshared robust mutexes in order to perform private futex wakes
rather than the shared ones the kernel would do, but it was
conditional on linking pthread_mutexattr_setrobust and did not bother
processing the pshared mutexes in the list, which requires additional
logic for the robust list pending slot in case pthread_exit is
interrupted by asynchronous process termination.
the new robust list processing code is linked unconditionally (inlined
in pthread_exit), handles both private and shared mutexes, and also
removes the kernel's reference to the robust list before unmapping and
exit if the exiting thread is detached.
fix possible clobbering of syscall return values on mips
depending on the compiler's interpretation of __asm__ register names
for register class objects, it may be possible for the return value in
r2 to be clobbered by the function call to __stat_fix. I have not
observed any such breakage in normal builds and suspect it only
happens with -O0 or other unusual build options, but since there's an
ambiguity as to the semantics of this feature, it's best to use an
explicit temporary to avoid the issue.
when dlopen fails, all partially-loaded libraries need to be unmapped
and freed. any of these libraries using an rpath with $ORIGIN
expansion may have an allocated string for the expanded rpath;
previously, this string was not freed when freeing the library data
structures.
halt dynamic linker library search on errors resolving $ORIGIN in rpath
this change hardens the dynamic linker against the possibility of
loading the wrong library due to inability to expand $ORIGIN in rpath.
hard failures such as excessively long paths or absence of /proc (when
resolving /proc/self/exe for the main executable's origin) do not stop
the path search, but memory allocation failures and any other
potentially transient failures do.
to implement this change, the meaning of the return value of
fixup_rpath function is changed. returning zero no longer indicates
that the dso's rpath string pointer is non-null; instead, the caller
needs to check. a return value of -1 indicates a failure that should
stop further path search.
the C standard specifies that setjmp is a macro, but longjmp is a
normal function. a macro version of it would be permitted (albeit
useless) for C (not C++), but would have to be a function-like macro,
not an object-like one.
transient errors during the path search should not allow the search to
continue and possibly open the wrong file. this patch eliminates most
conditions where that could happen, but there is still a possibility
that $ORIGIN-based rpath processing will have an allocation failure,
causing the search to skip such a path. fixing this is left as a
separate task.
a small bug where overly-long path components caused an infinite loop
rather than being skipped/ignored is also fixed.
while it's the same for all presently supported archs, it differs at
least on sparc, and conceptually it's no less arch-specific than the
other O_* macros. O_SEARCH and O_EXEC are still defined in terms of
O_PATH in the main fcntl.h.
aarch64: fix definition of sem_nsems in semid_ds structure
POSIX requires the sem_nsems member to have type unsigned short. we
have to work around the incorrect kernel type using matching
endian-specific padding.
Szabolcs Nagy [Wed, 1 Apr 2015 20:21:50 +0000 (20:21 +0000)]
aarch64: fix namespace pollution in bits/shm.h
The shm_info struct is a gnu extension and some of its members do
not have shm* prefix. This is worked around in sys/shm.h by macros,
but aarch64 didn't use those.
Szabolcs Nagy [Wed, 25 Mar 2015 18:25:09 +0000 (18:25 +0000)]
regex: fix character class repetitions
Internally regcomp needs to copy some iteration nodes before
translating the AST into TNFA representation.
Literal nodes were not copied correctly: the class type and list
of negated class types were not copied so classes were ignored
(in the non-negated case an ignored char class caused the literal
to match everything).
This affects iterations when the upper bound is finite, larger
than one or the lower bound is larger than one. So eg. the EREs
[[:digit:]]{2}
[^[:space:]ab]{1,4}
were treated as
.{2}
[^ab]{1,4}
The fix is done with minimal source modification to copy the
necessary fields, but the AST preparation and node handling
code of tre will need to be cleaned up for clarity.
Rich Felker [Mon, 23 Mar 2015 15:26:51 +0000 (11:26 -0400)]
fix FLT_ROUNDS regression in C++ applications
commit 559de8f5f06da9022cbba70e22e14a710eb74513 redefined FLT_ROUNDS
to use an external function that can report the actual current
rounding mode, rather than always reporting round-to-nearest. however,
float.h did not include 'extern "C"' wrapping for C++, so C++ programs
using FLT_ROUNDS ended up with an unresolved reference to a
name-mangled C++ function __flt_rounds.
Rich Felker [Mon, 23 Mar 2015 13:44:18 +0000 (09:44 -0400)]
fix internal buffer overrun in inet_pton
one stop condition for parsing abbreviated ipv6 addressed was missed,
allowing the internal ip[] buffer to overflow. this patch adds the
missing stop condition and masks the array index so that, in case
there are any remaining stop conditions missing, overflowing the
buffer is not possible.
Rich Felker [Fri, 20 Mar 2015 22:25:01 +0000 (18:25 -0400)]
suppress backref processing in ERE regcomp
one of the features of ERE is that it's actually a regular language
and does not admit expressions which cannot be matched in linear time.
introduction of \n backref support into regcomp's ERE parsing was
unintentional.
Rich Felker [Fri, 20 Mar 2015 22:06:04 +0000 (18:06 -0400)]
fix memory-corruption in regcomp with backslash followed by high byte
the regex parser handles the (undefined) case of an unexpected byte
following a backslash as a literal. however, instead of correctly
decoding a character, it was treating the byte value itself as a
character. this was not only semantically unjustified, but turned out
to be dangerous on archs where plain char is signed: bytes in the
range 252-255 alias the internal codes -4 through -1 used for special
types of literal nodes in the AST.
Rich Felker [Wed, 18 Mar 2015 03:12:48 +0000 (23:12 -0400)]
fix MINSIGSTKSZ values for archs with large signal contexts
the previous values (2k min and 8k default) were too small for some
archs. aarch64 reserves 4k in the signal context for future extensions
and requires about 4.5k total, and powerpc reportedly uses over 2k.
the new minimums are chosen to fit the saved context and also allow a
minimal signal handler to run.
since the default (SIGSTKSZ) has always been 6k larger than the
minimum, it is also increased to maintain the 6k usable by the signal
handler. this happens to be able to store one pathname buffer and
should be sufficient for calling any function in libc that doesn't
involve conversion between floating point and decimal representations.
x86 (both 32-bit and 64-bit variants) may also need a larger minimum
(around 2.5k) in the future to support avx-512, but the values on
these archs are left alone for now pending further analysis.
the value for PTHREAD_STACK_MIN is not increased to match MINSIGSTKSZ
at this time. this is so as not to preclude applications from using
extremely small thread stacks when they know they will not be handling
signals. unfortunately cancellation and multi-threaded set*id() use
signals as an implementation detail and therefore require a stack
large enough for a signal context, so applications which use extremely
small thread stacks may still need to avoid using these features.
Rich Felker [Tue, 17 Mar 2015 00:12:49 +0000 (20:12 -0400)]
block all signals (even internal ones) in cancellation signal handler
previously the implementation-internal signal used for multithreaded
set*id operations was left unblocked during handling of the
cancellation signal. however, on some archs, signal contexts are huge
(up to 5k) and the possibility of nested signal handlers drastically
increases the minimum stack requirement. since the cancellation signal
handler will do its job and return in bounded time before possibly
passing execution to application code, there is no need to allow other
signals to interrupt it.
Rich Felker [Mon, 16 Mar 2015 03:33:59 +0000 (23:33 -0400)]
simplify nscd lookup code for alt passwd/group backends
previously, a sentinel value of (FILE *)-1 was used to inform the
caller of __nscd_query that nscd is not in use. aside from being an
ugly hack, this resulted in duplicate code paths for two logically
equivalent cases: no nscd, and "not found" result from nscd.
now, __nscd_query simply skips closing the socket and returns a valid
FILE pointer when nscd is not in use, and produces a fake "not found"
response header. the caller is then responsible for closing the socket
just like it would do if it had gotten a real "not found" response.
Josiah Worcester [Mon, 16 Mar 2015 00:20:53 +0000 (19:20 -0500)]
add alternate backend support for getgrouplist
This completes the alternate backend support that was previously added
to the getpw* and getgr* functions. Unlike those, though, it
unconditionally queries nscd. Any groups from nscd that aren't in the
/etc/groups file are added to the returned list, and any that are
present in the file are ignored. The purpose of this behavior is to
provide a view of the group database consistent with what is observed
by the getgr* functions. If group memberships reported by nscd were
honored when the corresponding group already has a definition in the
/etc/groups file, the user's getgrouplist-based membership in the
group would conflict with their non-membership in the reported
gr_mem[] for the group.
The changes made also make getgrouplist thread-safe and eliminate its
clobbering of the global getgrent state.
Szabolcs Nagy [Sat, 14 Mar 2015 17:40:09 +0000 (17:40 +0000)]
aarch64: add struct _aarch64_ctx to signal.h
The unwind code in libgcc uses this type for unwinding across signal
handlers. On aarch64 the kernel may place a sequence of structs on the
signal stack on top of the ucontext to provide additional information.
The unwinder only needs the header, but added all the types the kernel
currently defines for this mechanism because they are part of the uapi.
Rich Felker [Thu, 12 Mar 2015 18:43:36 +0000 (14:43 -0400)]
align x32 pthread type sizes to be common with 32-bit archs
previously, commit e7b9887e8b65253087ab0b209dc8dd85c9f09614 aligned
the sizes with the glibc ABI. subsequent discussion during the merge
of the aarch64 port reached a conclusion that we should reject larger
arch-specific sizes, which have significant cost and no benefit, and
stick with the existing common 32-bit sizes for all 32-bit/ILP32 archs
and the x86_64 sizes for 64-bit archs.
one peculiarity of this change is that x32 pthread_attr_t is now
larger in musl than in the glibc x32 ABI, making it unsafe to call
pthread_attr_init from x32 code that was compiled against glibc. with
all the ABI issues of x32, it's not clear that ABI compatibility will
ever work, but if it's needed, pthread_attr_init and related functions
could be modified not to write to the last slot of the object.
this is not a regression versus previous releases, since on previous
releases the x32 pthread type sizes were all severely oversized
already (due to incorrectly using the x86_64 LP64 definitions).
moreover, x32 is still considered experimental and not ABI-stable.
Szabolcs Nagy [Tue, 10 Mar 2015 21:18:41 +0000 (21:18 +0000)]
add aarch64 port
This adds complete aarch64 target support including bigendian subarch.
Some of the long double math functions are known to be broken otherwise
interfaces should be fully functional, but at this point consider this
port experimental.
Initial work on this port was done by Sireesh Tripurari and Kevin Bortis.
Szabolcs Nagy [Tue, 10 Mar 2015 20:01:20 +0000 (20:01 +0000)]
math: add dummy implementations of 128 bit long double functions
This is in preparation for the aarch64 port only to have the long
double math symbols available on ld128 platforms. The implementations
should be fixed up later once we have proper tests for these functions.
Added bigendian handling for ld128 bit manipulations too.
Szabolcs Nagy [Wed, 11 Mar 2015 12:48:12 +0000 (12:48 +0000)]
copy the dtv pointer to the end of the pthread struct for TLS_ABOVE_TP archs
There are two main abi variants for thread local storage layout:
(1) TLS is above the thread pointer at a fixed offset and the pthread
struct is below that. So the end of the struct is at known offset.
(2) the thread pointer points to the pthread struct and TLS starts
below it. So the start of the struct is at known (zero) offset.
Assembly code for the dynamic TLSDESC callback needs to access the
dynamic thread vector (dtv) pointer which is currently at the front
of the pthread struct. So in case of (1) the asm code needs to hard
code the offset from the end of the struct which can easily break if
the struct changes.
This commit adds a copy of the dtv at the end of the struct. New members
must not be added after dtv_copy, only before it. The size of the struct
is increased a bit, but there is opportunity for size optimizations.
Rich Felker [Sat, 7 Mar 2015 19:11:01 +0000 (14:11 -0500)]
fix regression in pthread_cond_wait with cancellation disabled
due to a logic error in the use of masked cancellation mode,
pthread_cond_wait did not honor PTHREAD_CANCEL_DISABLE but instead
failed with ECANCELED when cancellation was pending.
Rich Felker [Fri, 6 Mar 2015 18:27:08 +0000 (13:27 -0500)]
fix over-alignment of TLS, insufficient builtin TLS on 64-bit archs
a conservative estimate of 4*sizeof(size_t) was used as the minimum
alignment for thread-local storage, despite the only requirements
being alignment suitable for struct pthread and void* (which struct
pthread already contains). additional alignment required by the
application or libraries is encoded in their headers and is already
applied.
over-alignment prevented the builtin_tls array from ever being used in
dynamic-linked programs on 64-bit archs, thereby requiring allocation
at startup even in programs with no TLS of their own.