this code worked in strtod, but not in scanf. more evidence that i
should design a better interface for discarding multiple tail
characters than just calling unget repeatedly...
introduce new wide scanf code and remove the last remnants of old scanf
at this point, strto* and all scanf family functions are using the new
unified integer and floating point parser/converter code.
the wide scanf is largely a wrapper for ordinary byte-based scanf;
since numbers can only contain ascii characters, only strings need to
be handled specially.
fix buffer overflow in vfprintf on long writes to unbuffered files
vfprintf temporarily swaps in a local buffer (for the duration of the
operation) when the target stream is unbuffered; this both simplifies
the implementation of functions like dprintf (they don't need their
own buffers) and eliminates the pathologically bad performance of
writing the formatted output with one or more write syscalls per
formatting field.
in cases like dprintf where we are dealing with a virgin FILE
structure, everything worked correctly. however for long-lived files
(like stderr), it's possible that the buffer bounds were already set
for the internal zero-size buffer. on the next write, __stdio_write
would pick up and use the new buffer provided by vfprintf, but the
bound (wend) field was still pointing at the internal zero-size
buffer's end. this in turn allowed unbounded writes to the temporary
buffer.
the l prefix is redundant/no-op with printf, since default promotions
always promote floats to double; however, it is valid, and printf was
wrongly rejecting it.
shunget cannot unget eof status, causing wcstol to leave endptr
pointing to the wrong place when scanning, for example, L"0x". cheap
fix is to make the read function provide an infinite stream of bogus
characters rather than eof. really this is something of a design flaw
in how the shgetc system is used for strto* and wcsto*; in the long
term, I believe multi-character unget should be scrapped and replaced
with a function that can subtract from the f->shcnt counter.
new scanf implementation and corresponding integer parser/converter
advantages over the old code:
- correct results for floating point (old code was bogus)
- wide/regular scanf separated so scanf does not pull in wide code
- well-defined behavior on integers that overflow dest type
- support for %[a-b] ranges with %[ (impl-defined by widely used)
- no intermediate conversion of fmt string to wide string
- cleaner, easier to share code with strto* functions
- better standards conformance for corner cases
the old code remains in the source tree, as the wide versions of the
scanf-family functions are still using it. it will be removed when no
longer needed.
fix crash in wordfree if we_offs is not initialized by the caller
I'm not sure if it's legal for wordexp to modify this field, but this
is the only easy/straightforward fix, and applications should not
care. if it's an issue, i can work out a different (but more complex)
solution later.
floatscan: fix incorrect count of leading nonzero digits
this off-by-one error was causing values with just one digit past the
decimal point to be treated by the integer case. in many cases it
would yield the correct result, but if expressions are evaluated in
excess precision, double rounding may occur.
fcntl values 1024 and up are universal, arch-independent. later I'll
add some of the other linux-specific ones for notify, leases, pipe
size, etc. here too.
fix signedness error handling invalid multibyte sequences in regexec
the "< 0" test was always false due to use of an unsigned type. this
resulted in infinite loops on 32-bit machines (adding -1U to a pointer
is the same as adding -1) and crashes on 64-bit machines (offsetting
the string pointer by 4gb-1b when an illegal sequence was hit).
rename __sa_restorer to sa_restorer in struct sigaction
this is legal since sa_* is in the reserved namespace for signal.h,
per posix. note that the sa_restorer field is not used anywhere, so
programs that are trying to use it may still break, but at least
they'll compile. if it turns out such programs actually need to be
able to set their own sa_restorer to function properly, i'll add the
necessary code to sigaction.c later.
TRE wants to treat + and ? after a +, ?, or * as special; ? means
ungreedy and + is reserved for future use. however, this is
non-conformant. although redundant, these redundant characters have
well-defined (no-op) meaning for POSIX ERE, and are actually _literal_
characters (which TRE is wrongly ignoring) in POSIX BRE mode.
the simplest fix is to simply remove the unneeded nonstandard
functionality. as a plus, this shaves off a small amount of bloat.
use macros instead of inline functions in shgetc.h
at -Os optimization level, gcc refuses to inline these functions even
though the inlined code would roughly the same size as the function
call, and much faster. the easy solution is to make them into macros.
fix spurious overflows in strtoull with small bases
whenever the base was small enough that more than one digit could
still fit after UINTMAX_MAX/36-1 was reached, only the first would be
allowed; subsequent digits would trigger spurious overflow, making it
impossible to read the largest values in low bases.
optimize floatscan downscaler to skip results that won't be needed
when upscaling, even the very last digit is needed in cases where the
input is exact; no digits can be discarded. but when downscaling, any
digits less significant than the mantissa bits are destined for the
great bitbucket; the only influence they can have is their presence
(being nonzero). thus, we simply throw them away early. the result is
nearly a 4x performance improvement for processing huge values.
the particular threshold LD_B1B_DIG+3 is not chosen sharply; it's
simply a "safe" distance past the significant bits. it would be nice
to replace it with a sharp bound, but i suspect performance will be
comparable (within a few percent) anyway.
simplify/debloat radix point alignment code in floatscan
now that this is the first operation, it can rely on the circular
buffer contents not being wrapped when it begins. we limit the number
of digits read slightly in the initial parsing loops too so that this
code does not have to consider the case where it might cause the
circular buffer to wrap; this is perfectly fine because KMAX is chosen
as a power of two for circular-buffer purposes and is much larger than
it otherwise needs to be, anyway.
these changes should not affect performance at all.
upscaling by even one step too much creates 3-29 extra iterations for
the next loop. this is still suboptimal since it always goes by 2^29
rather than using a smaller upscale factor when nearing the target,
but performance on common, small-magnitude, few-digit values has
already more than doubled with this change.
fix float scanning of certain values ending in zeros
for example, "1000000000" was being read as "1" due to this loop
exiting early. it's necessary to actually update z and zero the
entries so that the subsequent rounding code does not get confused;
before i did that, spurious inexact exceptions were being raised.
note that there's no need for a precise cutoff, because exponents this
large will always result in overflow or underflow (it's impossible to
read enough digits to compensate for the exponent magnitude; even at a
few nanoseconds per digit it would take hundreds of years).
add "scan helper getc" and rework strtod, etc. to use it
the immediate benefit is a significant debloating of the float parsing
code by moving the responsibility for keeping track of the number of
characters read to a different module.
by linking shgetc with the stdio buffer logic, counting logic is
defered to buffer refill time, keeping the calls to shgetc fast and
light.
in the future, shgetc will also be useful for integrating the new
float code with scanf, which needs to not only count the characters
consumed, but also limit the number of characters read based on field
width specifiers.
shgetc may also become a useful tool for simplifying the integer
parsing code.
this version is intended to be fully conformant to the ISO C, POSIX,
and IEEE standards for conversion of decimal/hex floating point
strings to float, double, and long double (ld64 or ld80 only at
present) values. in particular, all results are intended to be rounded
correctly according to the current rounding mode. further, this
implementation aims to set the floating point underflow, overflow, and
inexact flags to reflect the conversion performed.
a moderate amount of testing has been performed (by nsz and myself)
prior to integration of the code in musl, but it still may have bugs.
so far, only strto(d|ld|f) use the new code. scanf integration will be
done as a separate commit, and i will add implementations of the wide
character functions later.
alloca cannot be a function. #define it to the gcc builtin if possible
gcc makes this mapping by default anyway, but it will be disabled by
-fno-builtin (and presumably by -std=c99 or similar). for the main
program the error will be reported by the linker, and the issue can
easily be fixed, but for dynamic-loaded so files, the error cannot be
detected until dlopen time, at which point it has become very obscure.
when the "r" (register) constraint is used to let gcc choose a
register, gcc will sometimes assign the same register that was used
for one of the other fixed-register operands, if it knows the values
are the same. one common case is multiple zero arguments to a syscall.
this horribly breaks the intended usage, which is swapping the GOT
pointer from ebx into the temp register and back to perform the
syscall.
presumably there is a way to fix this with advanced usage of register
constaints on the inline asm, but having bad memories about hellish
compatibility issues with different gcc versions, for the time being
i'm just going to hard-code specific registers to be used. this may
hurt the compiler's ability to optimize, but it will fix serious
miscompilation issues.
so far the only function i know what compiled incorrectly is
getrlimit.c, and naturally the bug only applies to shared (PIC)
builds, but it may be more extensive and may have gone undetected..
the buffer in getaddrinfo really only matters when /etc/hosts is huge,
but in that case, the huge number of syscalls resulting from a tiny
buffer would seriously impact the performance of every name lookup.
the buffer in __dns.c has also been enlarged a bit so that typical
resolv.conf files will fit fully in the buffer. there's no need to
make it so large as to dominate the syscall overhead for large files,
because resolv.conf should never be large.
nsz [Thu, 29 Mar 2012 12:05:16 +0000 (14:05 +0200)]
math: remove x86 modf asm
the int part was wrong when -1 < x <= -0 (+0.0 instead of -0.0)
and the size and performace gain of the asm version was negligible
nsz [Tue, 27 Mar 2012 20:49:37 +0000 (22:49 +0200)]
math: fix a regression in powl and do some cleanups
previously a division was accidentally turned into integer div
(w = -i/NXT;) instead of long double div (w = -i; w /= NXT;)
Rich Felker [Fri, 23 Mar 2012 05:52:49 +0000 (01:52 -0400)]
asm for hypot and hypotf
special care is made to avoid any inexact computations when either arg
is zero (in which case the exact absolute value of the other arg
should be returned) and to support the special condition that
hypot(±inf,nan) yields inf.
hypotl is not yet implemented since avoiding overflow is nontrivial.
Rich Felker [Fri, 23 Mar 2012 04:28:20 +0000 (00:28 -0400)]
make dlerror conform to posix
the error status is required to be sticky after failure of dlopen or
dlsym until cleared by dlerror. applications and especially libraries
should never rely on this since it is not thread-safe and subject to
race conditions, but glib does anyway.
nsz [Thu, 22 Mar 2012 13:54:47 +0000 (14:54 +0100)]
acos.s fix: use the formula acos(x) = atan2(sqrt(1-x),sqrt(1+x))
the old formula atan2(1,sqrt((1+x)/(1-x))) was faster but
could give nan result at x=1 when the rounding mode is
FE_DOWNWARD (so 1-1 == -0 and 2/-0 == -inf), the new formula
gives -0 at x=+-1 with downward rounding.
Rich Felker [Wed, 21 Mar 2012 16:42:48 +0000 (12:42 -0400)]
fix DECIMAL_DIG definitions
DECIMAL_DIG is not the same as LDBL_DIG
type_DIG is the maximimum number of decimal digits that can survive a
round trip from decimal to type and back to decimal.
DECIMAL_DIG is the minimum number of decimal digits required in order
for any floating point type to survive the round trip to decimal and
back, and it is generally larger than LDBL_DIG. since the exact
formula is non-trivial, and defining it larger than necessary may be
legal but wasteful, just define the right value in bits/float.h.
Rich Felker [Wed, 21 Mar 2012 03:29:24 +0000 (23:29 -0400)]
x86_64 math asm, long double functions only
this has not been tested heavily, but it's known to at least assemble
and run in basic usage cases. it's nearly identical to the
corresponding i386 code, and thus expected to be just as correct or
just as incorrect.
Rich Felker [Tue, 20 Mar 2012 23:44:05 +0000 (19:44 -0400)]
upgrade to latest upstream TRE regex code (0.8.0)
the main practical results of this change are
1. the regex code is no longer subject to LGPL; it's now 2-clause BSD
2. most (all?) popular nonstandard regex extensions are supported
I hesitate to call this a "sync" since both the old and new code are
heavily modified. in one sense, the old code was "more severely"
modified, in that it was actively hostile to non-strictly-conforming
expressions. on the other hand, the new code has eliminated the
useless translation of the entire regex string to wchar_t prior to
compiling, and now only converts multibyte character literals as
needed.
in the future i may use this modified TRE as a basis for writing the
long-planned new regex engine that will avoid multibyte-to-wide
character conversion entirely by compiling multibyte bracket
expressions specific to UTF-8.
nsz [Tue, 20 Mar 2012 21:49:19 +0000 (22:49 +0100)]
nearbyint optimization (only clear inexact when necessary)
old code saved/restored the fenv (the new code is only as slow
as that when inexact is not set before the call, but some other
flag is set and the rounding is inexact, which is rare)
before:
bench_nearbyint_exact 5000000 N 261 ns/op
bench_nearbyint_inexact_set 5000000 N 262 ns/op
bench_nearbyint_inexact_unset 5000000 N 261 ns/op
after:
bench_nearbyint_exact 10000000 N 94.99 ns/op
bench_nearbyint_inexact_set 25000000 N 65.81 ns/op
bench_nearbyint_inexact_unset 10000000 N 94.97 ns/op
Rich Felker [Tue, 20 Mar 2012 04:51:32 +0000 (00:51 -0400)]
optimize scalbn family
the fscale instruction is slow everywhere, probably because it
involves a costly and unnecessary integer truncation operation that
ends up being a no-op in common usages. instead, construct a floating
point scale value with integer arithmetic and simply multiply by it,
when possible.
for float and double, this is always possible by going to the
next-larger type. we use some cheap but effective saturating
arithmetic tricks to make sure even very large-magnitude exponents
fit. for long double, if the scaling exponent is too large to fit in
the exponent of a long double value, we simply fallback to the
expensive fscale method.
on atom cpu, these changes speed up scalbn by over 30%. (min rdtsc
timing dropped from 110 cycles to 70 cycles.)