Summary:
Constant stores of f16 vectors can create NvCast nodes from various
operand types to v4f16 or v8f16 depending on patterns in the stored
constants. This patch adds nvcast rules with v4f16 and v8f16 values.
AArchISelLowering::LowerBUILD_VECTOR has the details on which constant
patterns generate the nvcast nodes.
[AArch64] Handle vec4, vec8, vec16 *itofp for half
Summary:
Set operation action for SINT_TO_FP and UINT_TO_FP nodes with v4i32,
v8i8, v8i16 inputs to allow promotion of v4f16 results.
Add tests for sitofp and uitofp for vec4, vec8, vec16, and i8, i16, i32,
and i64 vectors. Only missing tests are for v16i8 and v16i16 as the
shift operations are too complicated to write a proper check sequence.
The conversions from v4i64 to v4f16 do not depend on this patch - v4i64
is split and the conversion gets handled while lowering v2i64. I am
adding a test here for completeness.
Hans Wennborg [Thu, 23 Apr 2015 16:45:24 +0000 (16:45 +0000)]
Re-commit r235560: Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.
Revert r235560; this commit was causing several failed assertions in Debug builds using MSVC's STL. The iterator is being used outside of its valid range.
Simon Pilgrim [Thu, 23 Apr 2015 08:43:13 +0000 (08:43 +0000)]
[DAGCombiner] Remove extra bitcasts surrounding vector shuffles
Patch to remove extra bitcasts from shuffles, this is often a legacy of XformToShuffleWithZero being used to combine bitmaskings (of float vectors bitcast to integer vectors) into shuffles: bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
Move common loop utility function isInductionPHI into LoopUtils.cpp
This patch refactors the definition of common utility function "isInductionPHI" to LoopUtils.cpp.
This fixes compilation error when configured with -DBUILD_SHARED_LIBS=ON
Add support to interchange loops with reductions.
This patch enables interchanging of tightly nested loops with reductions.
Differential Revision: http://reviews.llvm.org/D8314
Hans Wennborg [Wed, 22 Apr 2015 23:14:56 +0000 (23:14 +0000)]
Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
This is a re-commit of r235101, which also fixes the problems with the previous patch:
- Switches with only a default case and non-fallthrough were handled incorrectly
- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.
> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649
David Majnemer [Wed, 22 Apr 2015 22:42:05 +0000 (22:42 +0000)]
[InstCombine] Use a more targeted fix instead of r235544
Only clear out the NSW/NUW flags if we are optimizing 'add'/'sub' while
taking advantage that the sign bit is not set. We do this optimization
to further shrink the mask but shrinking the mask isn't NSW/NUW
preserving in this case.
[WinEH] Demote values and phis live across exception handlers up front
In particular, this handles SSA values that are live *out* of a handler.
The existing code only handles values that are live *in* to a handler.
It also handles phi nodes in the block where normal control should
resume after the end of a catch handler. When EH return points have phi
nodes, we need to split the return edge. It is impossible for phi
elimination to emit copies in the previous block if that block gets
outlined. The indirectbr that we leave in the function is only notional,
and is eliminated from the MachineFunction CFG early on.
David Majnemer [Wed, 22 Apr 2015 20:59:28 +0000 (20:59 +0000)]
[InstCombine] Clear out nsw/nuw if we modify computation in the chain
An nsw/nuw operation relies on the values feeding into it to not
overflow if 'poison' is not to be produced. This means that
optimizations which make modifications to the bottom of a chain (like
SimplifyDemandedBits) must strip out nsw/nuw if they cannot ensure that
they will be preserved.
[Allocator] Remove memory poisoning before deallocation
I added the poisoning back in r76891 (2009) because of some bugs in
Unladen Swallow, and then Evan Cheng added the setRangeWritable() call
in r81308. Profiling a Release+Asserts build on Windows shows that this
memory protection call is actually very expensive. 4 seconds of a 70
second Clang compilation are spent in VirtualQuery. These days we have
more reliable tools like ASan to find these kinds of bugs, so we can go
ahead and retire these checks.
Pete Cooper [Wed, 22 Apr 2015 18:05:13 +0000 (18:05 +0000)]
[AArch64] Use MachineRegisterInfo instead of LiveIntervals to calculate liveness. NFC.
The CondOpt pass currently uses LiveIntervals to set the dead flag on a def. This patch uses MachineRegisterInfo::use_empty instead as that is equivalent to the def being dead.
This removes an instance of LiveIntervals in the pass manager pipeline and saves 3.8% of compile time on llc conpiled for AArch64.
ARM32 ELF R_ARM_V4BX relocation format is a special relocation type
that records the location of an ARMv4t BX instruction to enable a
static linker to generate ARMv4 compatible instructions. This
relocation does not contain a reference symbol.
This patch enabled its creation by removing the requeriment of a
relocation symbol target in ELFState<ELFT>::writeSectionContent.
An assert was triggered when attempting to create a new SCEV
with operands of different types in the visitAddRecExpr. In this
test case, the operand types of the numerator and denominator
are different. The SCEV division code should generate a
conservative answer when this happens.
Andrea Di Biagio [Wed, 22 Apr 2015 14:53:39 +0000 (14:53 +0000)]
[X86][AVX] Fix failure due to a missing ISel pattern to select VBROADCAST nodes (PR23259).
This fixes a regression introduced at revision 218263.
On AVX, if we optimize for size, a splat build_vector of a load
is lowered into a VBROADCAST node. This is done even if the value type of the
splat build_vector node is v2i64.
Since AVX doesn't support v2f64/v2i64 broadcasts, revision 218263 added two
extra tablegen patterns to allow selecting a VMOVDDUPrm from an X86VBroadcast
where the scalar element comes from a loadi64/loadf64.
However, revision 218263 forgot to add an extra fallback pattern for the case
where we have a X86VBroadcast of a loadi64 with multiple uses.
This patch adds the missing tablegen pattern in X86InstrSSE.td.
This patch also adds an extra test to 'splat-for-size.ll' to verify that ISel
doesn't crash with a 'fatal error in the backend' due to a missing AVX pattern
to select v2i64 X86ISD::BROADCAST nodes.
Hal Finkel [Wed, 22 Apr 2015 11:32:25 +0000 (11:32 +0000)]
[DAGCombine] Disable select(c, load,load) for indexed loads
This turned up after r235333, but was a pre-existing bug. The optimization
which transforms select(c, load, load) into a load of a select of the addresses
does not handle indexed loads (pre/post inc/dec). However, it did not check for
them either, leading to a crash if it tried to transform one of them.
James Molloy [Wed, 22 Apr 2015 09:11:38 +0000 (09:11 +0000)]
[AArch64] Disable complex GEP optimization by default.
Enough concerns were raised that this optimization is pessimising some code patterns.
The obvious fix, to add a Reassociate run afterwards, causes even more pessimisation in some cases due to fewer complex addressing modes being matched. As there isn't a trivial fix for this, backing this out by default until someone gets a chance to fix the addressing mode matcher.
Lang Hames [Wed, 22 Apr 2015 06:02:31 +0000 (06:02 +0000)]
[patchpoint] Add support for symbolic patchpoint targets to SelectionDAG and the
X86 backend.
The code generated for symbolic targets is identical to the code generated for
constant targets, except that a relocation is emitted to fix up the actual
target address at link-time. This allows IR and object files containing
patchpoints to be cached across JIT-invocations where the target address may
change.
[TableGen] Remove some deletes that violate ownership semantics. These don't seem to execute in our codebase today and date back to a time when there was an allocation in this function.
[TableGen] Make BitRecTy::baseClassOf return true when RHS is an IntRecTy.
Previously the code was accidentally checking if 'this' was an IntRecTy which it can't be since 'this' is a BitRecTy. Looking back at the history it appears it was intended to check RHS.
David Blaikie [Wed, 22 Apr 2015 04:14:46 +0000 (04:14 +0000)]
[opaque pointer types] Serialize the value type for atomic store instructions
Without pointee types the space optimization of storing only the pointer
type and not the value type won't be viable - so add the extra type
information that would be missing.
David Blaikie [Wed, 22 Apr 2015 04:14:42 +0000 (04:14 +0000)]
[opaque pointer types] Serialize the value type for store instructions
Without pointee types the space optimization of storing only the pointer
type and not the value type won't be viable - so add the extra type
information that would be missing.
Add a flag to lib/Linker (and `llvm-link`) to override linkage rules.
When set, the functions in the source module *always* replace those in
the destination module.
The `llvm-link` option is `-override=abc.ll`. All the "regular" modules
are loaded and linked first, followed by the `-override` modules. This
is useful for debugging workflows where some subset of the module (e.g.,
a single function) is extracted into a separate file where it's
optimized differently, before being merged back in.
Factor the loop for linking input files together into a combined module
into a separate function. This is in preparation for an upcoming patch
that runs the logic twice.
Revert "[TableGen] Use cast instead of dyn_cast where result isn't checked before being dereferenced."
Turns out I misread the parentheses. Though I'm pretty sure its always a RecordRecTy and non of the callers really seem to expect null. But until I'm completely sure I'm going to revert this.
[TableGen] Use 'isa' to identify UnsetInits rather than comparing with the singleton object created by UnsetInit::get(). Makes it more consistent with the other types.
David Blaikie [Tue, 21 Apr 2015 23:26:57 +0000 (23:26 +0000)]
[opaque pointer type] Avoid using PointerType::getElementType for a few cases of CallInst
Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)
Wei Mi [Tue, 21 Apr 2015 23:02:15 +0000 (23:02 +0000)]
Limiting gep merging to fix the performance problem described in
https://llvm.org/bugs/show_bug.cgi?id=23163.
Gep merging sometimes behaves like a reverse CSE/LICM optimization,
which has negative impact on performance. In this patch we restrict
gep merging to happen only when the indexes to be merged are both consts,
which ensures such merge is always beneficial.
The patch makes gep merging only happen in very restrictive cases.
It is possible that some analysis/optimization passes rely on the merged
geps to get better result, and we havn't notice them yet. We will be ready
to further improve it once we see the cases.
Wei Mi [Tue, 21 Apr 2015 22:37:09 +0000 (22:37 +0000)]
Limiting gep merging to fix the performance problem described in
https://llvm.org/bugs/show_bug.cgi?id=23163.
Gep merging sometimes behaves like a reverse CSE/LICM optimizations,
which has negative impact on performance. In this patch we restrict
gep merging to happen only when the indexes to be merged are both consts,
which ensures such merge is always beneficial.
The patch makes gep merging only happen in very restrictive cases.
It is possible that some analysis/optimization passes rely on the merged
geps to get better result, and we havn't notice them yet. We will be ready
to further improve it once we see the cases.
Instead, use getRawDest, which just gives you the i8* value.
While there, use the memcpy's dest, as it's live anyway.
In most cases, when the optimization triggers, the memset and memcpy
sizes are the same, so the built memset is 0-sized and eliminated.
The problem occurs when they're different.
Summary:
After we rewrite a candidate, the instructions used by the old form may
become unused. This patch cleans up these unused instructions so that we
needn't run DCE after SLSR.
DebugInfo: Assert dbg.declare/value insts are valid
Remove early returns for when `getVariable()` is null, and just assert
that it never happens. The Verifier already confirms that there's a
valid variable on these intrinsics, so we should assume the debug info
isn't broken. I also updated a check for a `!dbg` attachment, which the
Verifier similarly guarantees.