This patch does the following:
* Fix FIXME on `needsStackRealignment`: it is now shared between multiple targets, implemented in `TargetRegisterInfo`, and isn't `virtual` anymore. This will break out-of-tree targets, silently if they used `virtual` and with a build error if they used `override`.
* Factor out `canRealignStack` as a `virtual` function on `TargetRegisterInfo`, by default only looks for the `no-realign-stack` function attribute.
Multiple targets duplicated the same `needsStackRealignment` code:
- Aarch64.
- ARM.
- Mips almost: had extra `DEBUG` diagnostic, which the default implementation now has.
- PowerPC.
- WebAssembly.
- x86 almost: has an extra `-force-align-stack` option, which the default implementation now has.
The default implementation of `needsStackRealignment` used to just return `false`. My current patch changes the behavior by simply using the above shared behavior. This affects:
- AMDGPU
- BPF
- CppBackend
- MSP430
- NVPTX
- Sparc
- SystemZ
- XCore
- Out-of-tree targets
This is a breaking change! `make check` passes.
The only implementation of the `virtual` function (besides the slight different in x86) was Hexagon (which did `MF.getFrameInfo()->getMaxAlignment() > 8`), and potentially some out-of-tree targets. Hexagon now uses the default implementation.
`needsStackRealignment` was being overwritten in `<Target>GenRegisterInfo.inc`, to return `false` as the default also did. That was odd and is now gone.
Don't try to instrument allocas used by outlined SEH funclets
Summary:
Arguments to llvm.localescape must be static allocas. They must be at
some statically known offset from the frame or stack pointer so that
other functions can access them with localrecover.
If we ever want to instrument these, we can use more indirection to
recover the addresses of these local variables. We can do it during
clang irgen or with the asan module pass.
MachineScheduler: Restrict macroop fusion to data-dependent instructions.
Before creating a schedule edge to encourage MacroOpFusion check that:
- The predecessor actually writes a register that the branch reads.
- The predecessor has no successors in the ScheduleDAG so we can
schedule it in front of the branch.
This avoids skewing the scheduling heuristic in cases where macroop
fusion cannot happen.
Avoid early pipefail exits due to grep failures in stage comparisons.
If objects or executables did not contain any RPATH, grep would return
nonzero, and the whole stage comparison loop would unexpectedly exit.
Fix this by checking the grep result explicitly.
Since BSD cmp(1) does not support the --ignore-initial option, use the
more portable 3rd and 4th arguments to skip the first 16 bytes during
the comparison of Phase2 and Phase3 objects.
[ARM] Refactor the prologue/epilogue emission to be more robust.
This is the first step toward supporting shrink-wrapping for this target.
The changes could be summarized by these items:
- Expand the tail-call return as part of the expand pseudo pass.
- Get rid of the assumptions that the epilogue is the exit block:
* Do not assume which registers are free in the epilogue. (This indirectly
improve the lowering of the code for the segmented stacks, see the test
cases.)
* Take into account that the basic block can be empty.
[NVPTX] make load on global readonly memory to use ldg
Summary:
[NVPTX] make load on global readonly memory to use ldg
Summary:
As describe in [1], ld.global.nc may be used to load memory by nvcc when
__restrict__ is used and compiler can detect whether read-only data cache
is safe to use.
This patch will try to check whether ldg is safe to use and use them to
replace ld.global when possible. This change can improve the performance
by 18~29% on affected kernels (ratt*_kernel and rwdot*_kernel) in
S3D benchmark of shoc [2].
Suppress two warnings from MSVC 2015 that are triggered under /W4. Since we turn off exceptions in the code base, C4577 is moot. C4091 triggers on system headers and is a benign construct.
Alex Lorenz [Mon, 20 Jul 2015 20:51:18 +0000 (20:51 +0000)]
MIR Serialization: Initial serialization of machine constant pools.
This commit implements the initial serialization of machine constant pools and
the constant pool index machine operands. The constant pool is serialized using
a YAML sequence of YAML mappings that represent the constant values.
The target-specific constant pool items aren't serialized by this commit.
Chris Bieneman [Mon, 20 Jul 2015 20:36:06 +0000 (20:36 +0000)]
[CMake] Cleanup tools/CMakeLists.txt to take advantage of the auto-registration that was already partially working.
Re-landing r242059 which re-landed r241621... I'm really bad at this.
Summary (r242059):
This change re-lands r241621, with an additional fix that was required to allow tool sources to live outside the llvm checkout. It also no longer renames LLVM_EXTERNAL_*_SOURCE_DIR. This change was reverted in r241663, because it renamed several variables of the format LLVM_EXTERNAL_*_* to LLVM_TOOL_*_*.
Summary (r241621):
The tools CMakeLists file already had implicit tool registration, but there were a few things off about it that needed to be altered to make it work. This change addresses all that. The changes in this patch are:
* factored out canonicalizing tool names from paths to CMake variables * removed the LLVM_IMPLICIT_PROJECT_IGNORE mechanism in favor of LLVM_EXTERNAL_${nameUPPER}_BUILD which I renamed to LLVM_TOOL_${nameUPPER}_BUILD because it applies to internal and external tools
* removed ignore_llvm_tool_subdirectory() in favor of just setting LLVM_TOOL_${nameUPPER}_BUILD to Off
* Added create_llvm_tool_options() to resolve a bug in add_llvm_external_project() - the old LLVM_EXTERNAL_${nameUPPER}_BUILD would not work on a clean CMake directory because the option could be created after it was set in code.
* Removed all but the minimum required calls to add_llvm_external_project from tools/CMakeLists.txt
Sanjoy Das [Mon, 20 Jul 2015 20:31:39 +0000 (20:31 +0000)]
[ImplicitNullChecks] Work with implicit defs.
Summary:
This change generalizes the implicit null checks pass to work with
instructions that don't have any explicit register defs. This lets us
use X86's `cmp` against memory as faulting load instructions.
Alex Lorenz [Mon, 20 Jul 2015 20:31:01 +0000 (20:31 +0000)]
MIR Parser: Add support for quoted named global value operands.
This commit extends the machine instruction lexer and implements support for
the quoted global value tokens. With this change the syntax for the global value
identifier tokens becomes identical to the syntax for the global identifier
tokens from the LLVM's assembly language.
The MSys 2 version of 'env' cannot be used to set 'TZ' in the
environment due to some portability hacks in the process spawning
compatibility layer[1]. This affects test/Object/archive-toc.test, which
tries to set TZ in the environment.
Other than that, this saves a subprocess invocation of a small unix
utility, which is makes the tests faster.
The internal shell does not support shell variable expansion, so this
idiom in the ASan tests isn't supported yet:
RUN: env ASAN_OPTIONS=$ASAN_OPTIONS:opt=1 ...
Reordered the data tables at the top and placed the lookups after. The first stage in the yak shaving necessary to get more accurate costs for a variety of targets given the recent improvements to SINT_TO_FP/UINT_TO_FP/SIGN_EXTEND vector lowering.
Simon Pilgrim [Sun, 19 Jul 2015 10:50:53 +0000 (10:50 +0000)]
Remove TargetInstrInfo::canFoldMemoryOperand
canFoldMemoryOperand is not actually used anywhere in the codebase - all existing users instead call foldMemoryOperand directly when they wish to fold and can correctly deduce what they need from the return value.
This patch removes the canFoldMemoryOperand base function and the target implementations; only x86 had a real (bit-rotted) implementation, although AMDGPU had a preparatory stub that had never needed to be completed.
AVX-512: Floating point conversions for SKX - DAG Lowering.
SKX supports conversion for all FP types. Integer types include doublewords and quardwords.
I added "Legal" status for these nodes and a bunch of tests.
I added "NoVLX" for AVX DAG selection to force VLX instructions selection when VLX is supported.
[PM/AA] Remove the addEscapingUse update API that won't be easy to
directly model in the new PM.
This also was an incredibly brittle and expensive update API that was
never fully utilized by all the passes that claimed to preserve AA, nor
could it reasonably have been extended to all of them. Any number of
places add uses of values. If we ever wanted to reliably instrument
this, we would want a callback hook much like we have with ValueHandles,
but doing this for every use addition seems *extremely* expensive in
terms of compile time.
The only user of this update mechanism is GlobalsModRef. The idea of
using this to keep it up to date doesn't really work anyways as its
analysis requires a symmetric analysis of two different memory
locations. It would be very hard to make updates be sufficiently
rigorous to *guarantee* symmetric analysis in this way, and it pretty
certainly isn't true today.
However, folks have been using GMR with this update for a long time and
seem to not be hitting the issues. The reported issue that the update
hook fixes isn't even a problem any more as other changes to
GetUnderlyingObject worked around it, and that issue stemmed from *many*
years ago. As a consequence, a prior patch provided a flag to control
the unsafe behavior of GMR, and this patch removes the update mechanism
that has questionable compile-time tradeoffs and is causing problems
with moving to the new pass manager. Note the lack of test updates --
not one test in tree actually requires this update, even for a contrived
case.
All of this was extensively discussed on the dev list, this patch will
just enact what that discussion decides on. I'm sending it for review in
part to show what I'm planning, and in part to show the *amazing* amount
of work this avoids. Every call to the AA here is something like three
to six indirect function calls, which in the non-LTO pipeline never do
any work! =[
ARM: Enable MachineScheduler and disable PostRAScheduler for swift.
Reapply r242500 now that the swift schedmodel includes LDRLIT.
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
ARM: Add scheduling information for LDRLIT instructions to swift scheduling model
These pseudo instructions are only lowered after register allocation and
are therefore still present when the machine scheduler runs.
Add a run: line to a testcase that uses the uncommon flags necessary to
actually produce a LDRLIT instruction on swift.
[RAGreedy] Add an experimental deferred spilling feature.
The idea of deferred spilling is to delay the insertion of spill code until the
very end of the allocation. A "candidate" to spill variable might not required
to be spilled because of other evictions that happened after this decision was
taken. The spirit is similar to the optimistic coloring strategy implemented in
Preston and Briggs graph coloring algorithm.
For now, this feature is highly experimental. Although correct, it would require
much more modification to properly model the effect of spilling.
Anyway, this early patch helps prototyping this feature.
Note: The test case cannot unfortunately be reduced and is probably fragile.
Alex Lorenz [Fri, 17 Jul 2015 22:48:04 +0000 (22:48 +0000)]
MIR Parser: Allow the dollar characters in all of the identifier tokens.
This commit modifies the machine instruction lexer so that it now accepts the
'$' characters in identifier tokens.
This change makes the syntax for unquoted global value tokens consistent with
the syntax for the global idenfitier tokens in the LLVM's assembly language.
Peter Zotov [Fri, 17 Jul 2015 17:33:23 +0000 (17:33 +0000)]
[OCaml] Do not use -warn-error in tests.
This -warn-error flag invariably gets into release tarballs
and breaks builds on distributions that run tests as a part
of release process. The OCaml binding tests are especially
critical, since they often expose lingering toolchain bugs,
and so it is replaced with -w +A (equivalent to -Wall).
Daniel Sanders [Fri, 17 Jul 2015 10:40:40 +0000 (10:40 +0000)]
test-release.sh: Add ability to do a test build using the trunk or branches.
Summary:
Adds '--svn-path BRANCH' that causes the script to export the specified path
from each project. Otherwise the tag specified by -release, -rc, etc. will be
used. The version portion of the package name will be 'test-$path' (any forward
slashes in the branch name are replaced with underscores), for example:
-svn-path trunk => clang+llvm-test-trunk-mips-linux-gnu.tar.xz
-svn-path branches/release_35 => clang+llvm-test-branches_release_35-mips-linux-gnu.tar.xz
This is primarily useful for bringing new release packages up to standard
without needing to create and maintain a tag for the purpose.
[PM/AA] Disable the core unsafe aspect of GlobalsModRef in the face of
basic changes to the IR such as folding pointers through PHIs, Selects,
integer casts, store/load pairs, or outlining.
This leaves the feature available behind a flag. This flag's default
could be flipped if necessary, but the real-world performance impact of
this particular feature of GMR may not be sufficiently significant for
many folks to want to run the risk.
Currently, the risk here is somewhat mitigated by half-hearted attempts
to update GlobalsModRef when the rest of the optimizer changes
something. However, I am currently trying to remove that update
mechanism as it makes migrating the AA infrastructure to a form that can
be readily shared between new and old pass managers very challenging.
Without this update mechanism, it is possible that this still unlikely
failure mode will start to trip people, and so I wanted to try to
proactively avoid that.
There is a lengthy discussion on the mailing list about why the core
approach here is flawed, and likely would need to look totally different
to be both reasonably effective and resilient to basic IR changes
occuring. This patch is essentially the first of two which will enact
the result of that discussion. The next patch will remove the current
update mechanism.
Thanks to lots of folks that helped look at this from different angles.
Especial thanks to Michael Zolotukhin for doing some very prelimanary
benchmarking of LTO without GlobalsModRef to get a rough idea of the
impact we could be facing here. So far, it looks very small, but there
are some concerns lingering from other benchmarking. The default here
may get flipped if performance results end up pointing at this as a more
significant issue.
Kuba Brecka [Fri, 17 Jul 2015 06:29:57 +0000 (06:29 +0000)]
[asan] Fix invalid debug info for promotable allocas
Since r230724 ("Skip promotable allocas to improve performance at -O0"), there is a regression in the generated debug info for those non-instrumented variables. When inspecting such a variable's value in LLDB, you often get garbage instead of the actual value. ASan instrumentation is inserted before the creation of the non-instrumented alloca. The only allocas that are considered standard stack variables are the ones declared in the first basic-block, but the initial instrumentation setup in the function breaks that invariant.
This patch makes sure uninstrumented allocas stay in the first BB.
ARM: Enable MachineScheduler and disable PostRAScheduler for swift.
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Add new constructors for LoopInfo/DominatorTree/BFI/BPI
Those new constructors make it more natural to construct an object for a function. For example, previously to build a LoopInfo for a function, we need four statements:
Arm: Don't define a label twice with two setjmps in a function.
Constructing a name based on the function name didn't give us a unique
symbol if we had more than one setjmp in a function. Using
MCContext::createTempSymbol() always gives us a unique name.
Fix __builtin_setjmp in combination with sjlj exception handling.
llvm.eh.sjlj.setjmp was used as part of the SjLj exception handling
style but is also used in clang to implement __builtin_setjmp. The ARM
backend needs to output additional dispatch tables for the SjLj
exception handling style, these tables however can't be emitted if
llvm.eh.sjlj.setjmp is simply used for __builtin_setjmp and no actual
landing pad blocks exist.
To solve this issue a new llvm.eh.sjlj.setup_dispatch intrinsic is
introduced which is used instead of llvm.eh.sjlj.setjmp in the SjLj
exception handling lowering, so we can differentiate between the case
where we actually need to setup a dispatch table and the case where we
just need the __builtin_setjmp semantic.
Tim Northover [Thu, 16 Jul 2015 21:30:21 +0000 (21:30 +0000)]
AArch64: make inexact signalling on round Darwin-specific
C11 leaves the choice on whether round-to-integer operations set the inexact
flag implementation-defined. Darwin does expect it to be set, but this seems to
be against the intent of the IEEE document and slower to implement anyway. So
it should be opt-in.
Bill Schmidt [Thu, 16 Jul 2015 21:14:07 +0000 (21:14 +0000)]
[PowerPC] v4i32 is a VSRCRegClass
I was looking at some vector code generation and kept seeing
unnecessary vector copies into the Altivec half of the VSX registers.
I discovered that we overlooked v4i32 when adding the register classes
for VSX; we only added v4f32 and v2f64. This means that anything that
canonicalizes into v4i32 (which is a LOT of stuff) ends up being
forced into VRRC on its way to VSRC.
The fix is one line. The rest of the patch is fixing up some test
cases whose code generation has changed as a result.
This seems like it would be a good candidate for backport to 3.7.
Summary:
SpeculativeExecution enables a series straight line optimizations (such
as SLSR and NaryReassociate) on conditional code. For example,
if (...)
... b * s ...
if (...)
... (b + 1) * s ...
speculative execution can hoist b * s and (b + 1) * s from then-blocks,
so that we have
... b * s ...
if (...)
...
... (b + 1) * s ...
if (...)
...
Then, SLSR can rewrite (b + 1) * s to (b * s + s) because after
speculative execution b * s dominates (b + 1) * s.
The performance impact of this change is significant. It speeds up the
benchmarks running EigenFloatContractionKernelInternal16x16
(https://bitbucket.org/eigen/eigen/src/ba68f42fa69e4f43417fe1e52669d4dd5d2b3bee/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h?at=default#cl-526)
by roughly 2%. Some internal benchmarks that have the above code pattern
are improved by up to 40%. No significant slowdowns are observed on
Eigen CUDA microbenchmarks.