Juergen Ributzka [Tue, 19 Aug 2014 19:44:02 +0000 (19:44 +0000)]
Reapply [FastISel][AArch64] Make use of the zero register when possible (r215591).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.
Original commit message:
This change materializes now the value "0" from the zero register.
The zero register can be folded by several instruction, so no
materialization is need at all.
Juergen Ributzka [Tue, 19 Aug 2014 19:05:24 +0000 (19:05 +0000)]
Reapply [FastISel] Let the target decide first if it wants to materialize a constant (215588).
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Rafael Espindola [Tue, 19 Aug 2014 18:44:46 +0000 (18:44 +0000)]
Don't own the buffer in object::Binary.
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
Renato Golin [Tue, 19 Aug 2014 17:30:43 +0000 (17:30 +0000)]
Small refactor on VectorizerHint for deduplication
Previously, the hint mechanism relied on clean up passes to remove redundant
metadata, which still showed up if running opt at low levels of optimization.
That also has shown that multiple nodes of the same type, but with different
values could still coexist, even if temporary, and cause confusion if the
next pass got the wrong value.
This patch makes sure that, if metadata already exists in a loop, the hint
mechanism will never append a new node, but always replace the existing one.
It also enhances the algorithm to cope with more metadata types in the future
by just adding a new type, not a lot of code.
Rafael Espindola [Tue, 19 Aug 2014 16:58:54 +0000 (16:58 +0000)]
Modernize the .ll parsing interface.
* Use StringRef instead of std::string&
* Return a std::unique_ptr<Module> instead of taking an optional module to write
to (was not really used).
* Use current comment style.
* Use current naming convention.
Reapply r215966, r215965, r215964, r215963, r215960, r215959, r215958, and r215957
This reverts commit r215981, which reverted the above commits because
MSVC std::equal asserts on nullptr iterators, and thes commits
introduced an `ArrayRef::equals()` on empty ArrayRefs.
ArrayRef was changed not to use std::equal in r215986.
MSVC's STL has a bug in `std::equal()`: it asserts on nullptr iterators,
causing a block revert in r215981. This works around that by re-writing
`ArrayRef::equals()` to do the work itself.
Aaron Ballman [Tue, 19 Aug 2014 14:59:02 +0000 (14:59 +0000)]
Reverting r215966, r215965, r215964, r215963, r215960, r215959, r215958, and r215957 (these commits all rely on previous commits) due to build breakage. These commits cause failed assertions when testing Clang using MSVC 2013. The asserts are triggered from the std::equal call within ArrayRef::equals due to being passed invalid input (ArrayRef.begin() is returning a nullptr which is problematic).
Toma Tabacu [Tue, 19 Aug 2014 14:22:52 +0000 (14:22 +0000)]
[mips] Add assembler support for .set arch=x directive.
Summary:
This directive is similar to ".set mipsX".
It is used to change the CPU target of the assembler, enabling it to accept instructions for a specific CPU.
This patch only implements the r4000 CPU (which is treated internally as generic mips3) and the generic ISAs.
Craig Topper [Tue, 19 Aug 2014 06:57:14 +0000 (06:57 +0000)]
Prevent use of the implicit copy constructor on SmallPtrSetImpl. An accidental copy caused my SmallPtrSet->SmallPtrSetImpl conversion commit to fail the other day.
Previously, `ConstantArray::replaceUsesOfWithOnConstant()` neglected to
check whether it becomes a `ConstantDataArray`. Call
`ConstantArray::getImpl()` to check for that.
Introduce `getImpl()` that tries the simplification logic from `get()`
and then gives up. This allows the logic to be reused elsewhere in a
follow-up commit.
Avoid RAUW-ing `ConstantExpr` when an operand changes unless the new
`ConstantExpr` already has users. This prevents the RAUW from rippling
up the expression tree unnecessarily.
This commit indirectly adds test coverage for r215953 (this is how I
came across the bug).
Rewrite `ConstantUniqueMap` to be more similar to
`ConstantAggrUniqueMap`.
- Use a `DenseMap` with custom MapInfo instead of a `std::map` with
linear lookups and deletion.
- Don't waste memory explicitly storing (heavyweight) keys.
Only `ConstantExpr` and `InlineAsm` actually use this data structure, so
I also updated them to use it.
This code cleanup is a precursor to reducing RAUW traffic on
`ConstantExpr` -- I felt badly adding a new (linear) call to
`ConstantUniqueMap::FindExistingKey`, so this designs away the concern.
A follow-up commit will transition the users of `ConstantAggrUniqueMap`
over.
This code had a homemade RAUW that was incorrect when a user was a
constant: instead of calling `replaceUsersWithOnConstant()` it would
incorrectly update the operand in-place, invalidating
`LLVMContextImpl::ExprConstants`. RAUW does the job better.
The ValueHandle that `GVMap` is holding onto needs to be removed first,
so this commit also removes each variable from the map on-the-fly.
Since deletions from `ExprConstants` use a linear search that compares
directly on the pointer value (instead of using the key), there isn't an
obvious way to expose this with a testcase.
Previously all `blockaddress()` constants were treated as forward
references. They were resolved twice: once at the end of the function
in question, and again at the end of the module. Furthermore, if the
same blockaddress was referenced N times, the parser created N distinct
`GlobalVariable`s (one for each reference).
Instead, resolve all block addresses at the beginning of the function,
creating the standard `BasicBlock` forward references used for all other
basic block references. After the function, all references can be
resolved immediately. To check for the condition of parsing block
addresses from within the same function, I created a reference to the
current per-function-state in `BlockAddressPFS`.
Also, create only one forward-reference per basic block. Because
forward references to block addresses are rare, the data structure here
shouldn't matter. If somehow it does someday, this can be pretty easily
changed to a `DenseMap<std::pair<ValID, ValID>, GV>`.
verify-uselistorder: Call verifyModule() and improve output
Call `verifyModule()` after parsing and after every transformation.
Also convert some `DEBUG(dbgs())` to `errs()` to increase visibility
into what's going on.
Robin Morisset [Mon, 18 Aug 2014 22:18:14 +0000 (22:18 +0000)]
Answer to Philip Reames comments
- add check for volatile (probably unneeded, but I agree that we should be conservative about it).
- strengthen condition from isUnordered() to isSimple(), as I don't understand well enough Unordered semantics (and it also matches the comment better this way) to be confident in the previous behaviour (thanks for catching that one, I had missed the case Monotonic/Unordered).
- separate a condition in two.
- lengthen comment about aliasing and loads
- add tests in GVN/atomic.ll
Kevin Enderby [Mon, 18 Aug 2014 20:21:02 +0000 (20:21 +0000)]
Make llvm-objdump handle both arm and thumb disassembly from the same Mach-O
file with -macho, the Mach-O specific object file parser option.
After some discussion I chose to do this implementation contained in the logic
of llvm-objdump’s MachODump.cpp using a second disassembler for thumb when
needed and with updates mostly contained in the MachOObjectFile class.
Aaron Ballman [Mon, 18 Aug 2014 14:54:22 +0000 (14:54 +0000)]
Disabling an MSVC warning ('var' : definition from the for loop is ignored; the definition from the enclosing scope is used) which will trigger false positives more than true positives.
Oliver Stannard [Mon, 18 Aug 2014 12:42:15 +0000 (12:42 +0000)]
[ARM,AArch64] Do not tail-call to an externally-defined function with weak linkage
Externally-defined functions with weak linkage should not be
tail-called on ARM or AArch64, as the AAELF spec requires normal calls
to undefined weak functions to be replaced with a NOP or jump to the
next instruction. The behaviour of branch instructions in this
situation (as used for tail calls) is implementation-defined, so we
cannot rely on the linker replacing the tail call with a return.
Tim Northover [Mon, 18 Aug 2014 11:49:42 +0000 (11:49 +0000)]
TableGen: allow use of uint64_t for available features mask.
ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
The set of functions defined in the RTABI was separated for no real reason.
This brings us closer to proper utilisation of the functions defined by the
RTABI. It also sets the ground for correctly emitting function calls to AEABI
functions on all AEABI conforming platforms.
The previously existing lie on the behaviour of __ldivmod and __uldivmod is
propagated as it is beyond the scope of the change.
The changes to the test are due to the fact that we now use the divmod functions
which return both the quotient and remainder and thus we no longer need to
invoke two functions on Linux (making it closer to EABI's behaviour).
Daniel Sanders [Sun, 17 Aug 2014 19:47:47 +0000 (19:47 +0000)]
Revert: r215698 - Current implementation of c.cond.fmt instructions only accept default cc0 register...
It causes a number of regressions when -fintegrated-as is enabled. This happens
because there are codegen-only instructions that incorrectly uses the first
operand as the encoding for the $fcc register. The regressions do not occur when
-via-file-asm is also given.
This was a thinko. The intent was to flip the explicit bits that need toggling
rather than all bits. This would result in incorrect behaviour (which now is
tested).
We already handle the no-slabs case when checking whether the current slab
is large enough: if no slabs have been allocated, CurPtr and End are both 0.
alignPtr(0), will still be 0, and so "if (Ptr + Size <= End)" fails.
Added a table for intrinsics on X86.
It should remove dosens of lines in handling instrinsics (in a huge switch) and give an easy way to add new intrinsics.
I did not completed to move al intrnsics to the table, I'll do this in the upcomming commits.
Owen Anderson [Sun, 17 Aug 2014 03:51:29 +0000 (03:51 +0000)]
Remove an InstCombine that transformed patterns like (x * uitofp i1 y) to (select y, x, 0.0) when the multiply has fast math flags set.
While this might seem like an obvious canonicalization, there is one subtle problem with it. The result of the original expression
is undef when x is NaN (remember, fast math flags), but the result of the select is always defined when x is NaN. This means that the
new expression is strictly more defined than the original one. One unfortunate consequence of this is that the transform is not reversible!
It's always legal to make increase the defined-ness of an expression, but it's not legal to reduce it. Thus, targets that prefer the original
form of the expression cannot reverse the transform to recover it. Another way to think of it is that the transform has lost source-level
information (the fast math flags), which is undesirable.