Jakub Kuderski [Thu, 19 Sep 2019 19:39:42 +0000 (19:39 +0000)]
Don't use invalidated iterators in FlattenCFGPass
Summary:
FlattenCFG may erase unnecessary blocks, which also invalidates iterators to those erased blocks.
Before this patch, `iterativelyFlattenCFG` could try to increment a BB iterator after that BB has been removed and crash.
This patch makes FlattenCFGPass use `WeakVH` to skip over erased blocks.
[Analysis] Allow -scalar-evolution-max-iterations more than once
At present, `-scalar-evolution-max-iterations` is a `cl::Optional`
option, which means it demands to be passed exactly zero or one times.
Our build system makes it pretty tricky to guarantee this. We often
accidentally pass the flag more than once (but always with the same
value) which results in an error, after which compilation fails:
```
clang (LLVM option parsing): for the -scalar-evolution-max-iterations option: may only occur zero or one times!
```
It seems reasonable to allow -scalar-evolution-max-iterations to be
passed more than once. Quoting the [[ http://llvm.org/docs/CommandLine.html#controlling-the-number-of-occurrences-required-and-allowed | documentation ]]:
> The cl::ZeroOrMore modifier ... indicates that your program will allow the option to be specified zero or more times.
> ...
> If an option is specified multiple times for an option of the cl::opt class, only the last value will be retained.
Original patch by: Enrico Bern Hardy Tanuwidjaja <etanuwid@fb.com>
This patch implements the demangling functionality as described in the
Vector Function ABI. This patch will be used to implement the
SearchVectorFunctionSystem (SVFS) as described in the RFC:
Summary:
This is again motivated by D67122 sanitizer check enhancement.
That patch seemingly worsens `-fsanitize=pointer-overflow`
overhead from 25% to 50%, which strongly implies missing folds.
In this particular case, given
```
char* test(char& base, unsigned long offset) {
return &base - offset;
}
```
it will end up producing something like
https://godbolt.org/z/luGEju
which after optimizations reduces down to roughly
```
declare void @use64(i64)
define i1 @test(i8* dereferenceable(1) %base, i64 %offset) {
%base_int = ptrtoint i8* %base to i64
%adjusted = sub i64 %base_int, %offset
call void @use64(i64 %adjusted)
%not_null = icmp ne i64 %adjusted, 0
%no_underflow = icmp ule i64 %adjusted, %base_int
%no_underflow_and_not_null = and i1 %not_null, %no_underflow
ret i1 %no_underflow_and_not_null
}
```
Without D67122 there was no `%not_null`,
and in this particular case we can "get rid of it", by merging two checks:
Here we are checking: `Base u>= Offset && (Base u- Offset) != 0`, but that is simply `Base u> Offset`
Alive proofs:
https://rise4fun.com/Alive/QOs
The `@llvm.usub.with.overflow` pattern itself is not handled here
because this is the main pattern, that we currently consider canonical.
[Float2Int] avoid crashing on unreachable code (PR38502)
In the example from:
https://bugs.llvm.org/show_bug.cgi?id=38502
...we hit infinite looping/crashing because we have non-standard IR -
an instruction operand is used before defined.
This and other unusual constructs are allowed in unreachable blocks,
so avoid the problem by using DominatorTree to step around landmines.
Andrea Di Biagio [Thu, 19 Sep 2019 16:05:11 +0000 (16:05 +0000)]
[MCA] Improved cost computation for loop carried dependencies in the bottleneck analysis.
This patch introduces a cut-off threshold for dependency edge frequences with
the goal of simplifying the critical sequence computation. This patch also
removes the cost normalization for loop carried dependencies. We didn't really
need to artificially amplify the cost of loop-carried dependencies since it is
already computed as the integral over time of the delay (in cycle).
In the absence of backend stalls there is no need for computing a critical
sequence. With this patch we early exit from the critical sequence computation
if no bottleneck was reported during the simulation.
Chris Bieneman [Thu, 19 Sep 2019 15:45:12 +0000 (15:45 +0000)]
Make appendCallNB lambda mutable
Lambdas are by deafult const so that they produce the same output every time they are run. This lambda needs to set the value on a captured promise which is a mutating operation, so it must be mutable.
Simon Pilgrim [Thu, 19 Sep 2019 15:02:47 +0000 (15:02 +0000)]
[DAG][X86] Convert isNegatibleForFree/GetNegatedExpression to a target hook (PR42863)
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks and includes a demonstration X86 implementation.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
I've only begun to replace X86's FNEG handling here, handling FMADDSUB/FMSUBADD negation and some low impact codegen changes (some FMA negatation propagation). We can build on this in future patches.
James Molloy [Thu, 19 Sep 2019 13:39:54 +0000 (13:39 +0000)]
[TableGen] Support encoding per-HwMode
Much like ValueTypeByHwMode/RegInfoByHwMode, this patch allows targets
to modify an instruction's encoding based on HwMode. When the
EncodingInfos field is non-empty the Inst and Size fields of the Instruction
are ignored and taken from EncodingInfos instead.
As part of this promote getHwMode() from TargetSubtargetInfo to MCSubtargetInfo.
This is NFC for all existing targets - new code is generated only if targets
use EncodingByHwMode.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
Matt Arsenault [Thu, 19 Sep 2019 01:33:14 +0000 (01:33 +0000)]
GlobalISel: Don't materialize immarg arguments to intrinsics
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
Make the method MachOUniversalBinary::getObjectForArch return MachOUniversalBinary::ObjectForArch
and add helper methods MachOUniversalBinary::getMachOObjectForArch, MachOUniversalBinary::getArchiveForArch
for those who explicitly expect to get a MachOObjectFile or an Archive.
Roman Tereshin [Wed, 18 Sep 2019 23:44:17 +0000 (23:44 +0000)]
[utils] Add minimal support for MIR inputs to update_llc_test_checks.py
update_{llc,mir}_test_checks.py applicability is determined by the
output (assembly or MIR), not the input, which makes
update_llc_test_checks.py the right tool to generate tests that start at
MIR and stop at the final assembly.
This commit adds the minimal support for this path. Main limitation that
remains:
- MIR has to have LLVM IR section, and the CHECK lines will be inserted
into the LLVM IR functions that correspond to the MIR functions.
Running
../utils/update_llc_test_checks.py --llc-binary ./bin/llc
on a slightly modified ../test/CodeGen/X86/bad-tls-fold.mir
produces the following diff:
+# NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
+# RUN: llc %s -o - | FileCheck %s
--- |
target triple = "x86_64-unknown-linux-gnu"
@@ -6,17 +7,31 @@
@i = external thread_local global i32
Roman Tereshin [Wed, 18 Sep 2019 23:44:16 +0000 (23:44 +0000)]
[utils] Amend update_llc_test_checks.py to non-llc tooling, NFC
Very minor change aiming to make it easier to extend the script
downstream to support non-llc, but llc-like tools. The main objective is
to decrease the probability of merge conflicts.
Thomas Lively [Wed, 18 Sep 2019 23:18:16 +0000 (23:18 +0000)]
[WebAssembly] Restore defaults for stores per memop
Summary:
Large slowdowns were observed in Rust due to many small, constant
sized copies in conjunction with poorly-optimized memory.copy
implementations. Since memory.copy cannot be expected to be inlined
efficiently by engines at this time, stop using it for the smallest
copies. We continue to lower all memcpy intrinsics to memory.copy,
though.
[AArch64][GlobalISel] Support lowering musttail calls
Since we now lower most tail calls, it makes sense to support musttail.
Instead of always falling back to SelectionDAG, only fall back when a musttail
call was not able to be emitted as a tail call. Once we can handle most
incoming and outgoing arguments, we can change this to a `report_fatal_error`
like in ISelLowering.
Remove the assert that we don't have varargs and a musttail, and replace it
with a return false. Implementing this requires that we implement
`saveVarArgRegisters` from AArch64ISelLowering, which is an entirely different
patch.
Add GlobalISel lines to vararg-tallcall.ll to make sure that we produce correct
code. Right now we only fall back, but eventually this will be relevant.
Adrian Prantl [Wed, 18 Sep 2019 22:38:56 +0000 (22:38 +0000)]
Remove the obsolete BlockByRefStruct flag from LLVM IR
DIFlagBlockByRefStruct is an unused DIFlag that originally was used by
clang to express (Objective-)C block captures in debug info. For the
last year Clang has been emitting complex DIExpressions to describe
block captures instead, which makes all the code supporting this flag
redundant.
This patch removes the flag and all supporting "dead" code, so we can
reuse the bit for something else in the future.
Since this only affects debug info generated by Clang with the block
extension this mostly affects Apple platforms and I don't have any
bitcode compatibility concerns for removing this. The Verifier will
reject debug info that uses the bit and thus degrade gracefully when
LTO'ing older bitcode with a newer compiler.
Add AutoUpgrade function to add new address space datalayout string to existing datalayouts.
Summary:
Add function to AutoUpgrade to change the datalayout of old X86 datalayout strings.
This adds "-p270:32:32-p271:32:32-p272:64:64" to X86 datalayouts that are otherwise valid
and don't already contain it.
This also removes the compatibility changes in https://reviews.llvm.org/D66843.
Datalayout change in https://reviews.llvm.org/D64931.
Roman Lebedev [Wed, 18 Sep 2019 21:04:39 +0000 (21:04 +0000)]
[SimplifyCFG] mergeConditionalStoreToAddress(): try to pacify MSAN
MSAN bot complains that there is use-of-uninitialized-value
of this FreeStores later in IsWorthwhile().
Perhaps FreeStores needs to be stored in a vector?
On PowerPC, Secure-PLT by default for FreeBSD 13 and higher
Summary:
In https://svnweb.freebsd.org/changeset/base/349351, FreeBSD 13 and
higher transitioned to Secure-PLT for PowerPC. This part contains the
changes in llvm's PPC subtarget.
Roman Lebedev [Wed, 18 Sep 2019 20:10:07 +0000 (20:10 +0000)]
[InstCombine] foldUnsignedUnderflowCheck(): handle last few cases (PR43251)
Summary:
I don't have a direct motivational case for this,
but it would be good to have this for completeness/symmetry.
This pattern is basically the motivational pattern from
https://bugs.llvm.org/show_bug.cgi?id=43251
but with different predicate that requires that the offset is non-zero.
The completeness bit comes from the fact that a similar pattern (offset != zero)
will be needed for https://bugs.llvm.org/show_bug.cgi?id=43259,
so it'd seem to be good to not overlook very similar patterns..
Proofs: https://rise4fun.com/Alive/21b
Also, there is something odd with `isKnownNonZero()`, if the non-zero
knowledge was specified as an assumption, it didn't pick it up (PR43267)
With this, i see no other missing folds for
https://bugs.llvm.org/show_bug.cgi?id=43251
Roman Lebedev [Wed, 18 Sep 2019 19:34:41 +0000 (19:34 +0000)]
[MIPS] For vectors, select `add %x, C` as `sub %x, -C` if it results in inline immediate
Summary:
As discussed in https://reviews.llvm.org/D62341#1515637,
for MIPS `add %x, -1` isn't optimal. Unlike X86 there
are no fastpaths to matearialize such `-1`/`1` vector constants,
and `sub %x, 1` results in better codegen,
so undo canonicalization
Simon Atanasyan [Wed, 18 Sep 2019 19:19:47 +0000 (19:19 +0000)]
[mips] Expand 'lw/sw' instructions for 32-bit GOT
In case of using 32-bit GOT access to the table requires two instructions
with attached %got_hi and %got_lo relocations. This patch implements
correct expansion of 'lw/sw' instructions in that case.
Roman Lebedev [Wed, 18 Sep 2019 18:38:32 +0000 (18:38 +0000)]
[NFC][InstCombine] More tests for PR42563 "Dropping pointless masking before left shift"
For patterns c/d/e we too can deal with the pattern even if we can't
just drop the mask, we can just apply it afterwars:
https://rise4fun.com/Alive/gslRa
Daniel Sanders [Wed, 18 Sep 2019 18:14:42 +0000 (18:14 +0000)]
Fix compile-time regression caused by rL371928
Summary:
Also fixup rL371928 for cases that occur on our out-of-tree backend
There were still quite a few intermediate APInts and this caused the
compile time of MCCodeEmitter for our target to jump from 16s up to
~5m40s. This patch, brings it back down to ~17s by eliminating pretty
much all of them using two new APInt functions (extractBitsAsZExtValue(),
insertBits() but with a uint64_t). The exact conditions for eliminating
them is that the field extracted/inserted must be <=64-bit which is
almost always true.
Note: The two new APInt API's assume that APInt::WordSize is at least
64-bit because that means they touch at most 2 APInt words. They
statically assert that's true. It seems very unlikely that someone
is patching it to be smaller so this should be fine.
Summary:
This is the first patch in a series of patches that will implement data dependence graph in LLVM. Many of the ideas used in this implementation are based on the following paper:
D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe (1981). DEPENDENCE GRAPHS AND COMPILER OPTIMIZATIONS.
This patch contains support for a basic DDGs containing only atomic nodes (one node for each instruction). The edges are two fold: def-use edges and memory-dependence edges.
The implementation takes a list of basic-blocks and only considers dependencies among instructions in those basic blocks. Any dependencies coming into or going out of instructions that do not belong to those basic blocks are ignored.
The algorithm for building the graph involves the following steps in order:
1. For each instruction in the range of basic blocks to consider, create an atomic node in the resulting graph.
2. For each node in the graph establish def-use edges to/from other nodes in the graph.
3. For each pair of nodes containing memory instruction(s) create memory edges between them. This part of the algorithm goes through the instructions in lexicographical order and creates edges in reverse order if the sink of the dependence occurs before the source of it.
[Alignment][NFC] Align(1) to Align::None() conversions
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Wei Mi [Wed, 18 Sep 2019 16:06:28 +0000 (16:06 +0000)]
[SampleFDO] Minimize performance impact when profile-sample-accurate
is enabled.
We can save memory and reduce binary size significantly by enabling
ProfileSampleAccurate. However when ProfileSampleAccurate is true,
function without sample will be regarded as cold and this could
potentially cause performance regression.
To minimize the potential negative performance impact, we want to be
a little conservative here saying if a function shows up in the profile,
no matter as outline instance, inline instance or call targets, treat
the function as not being cold. This will handle the cases such as most
callsites of a function are inlined in sampled binary (thus outline copy
don't get any sample) but not inlined in current build (because of source
code drift, imprecise debug information, or the callsites are all cold
individually but not cold accumulatively...), so that the outline function
showing up as cold in sampled binary will actually not be cold after current
build. After the change, such function will be treated as not cold even
profile-sample-accurate is enabled.
At the same time we lower the hot criteria of callsiteIsHot check when
profile-sample-accurate is enabled. callsiteIsHot is used to determined
whether a callsite is hot and qualified for early inlining. When
profile-sample-accurate is enabled, functions without profile will be
regarded as cold and much less inlining will happen in CGSCC inlining pass,
so we can worry less about size increase and be aggressive to allow more
early inlining to happen for warm callsites and it is helpful for performance
overall.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Revert "[AArch64][DebugInfo] Do not recompute CalleeSavedStackSize"
Summary:
This reverts commit r372204.
This change causes build bot failures under msan:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/35236/steps/check-llvm%20msan/logs/stdio:
```
FAIL: LLVM :: DebugInfo/AArch64/asan-stack-vars.mir (19531 of 33579)
******************** TEST 'LLVM :: DebugInfo/AArch64/asan-stack-vars.mir' FAILED ********************
Script:
--
: 'RUN: at line 1'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/llc -O0 -start-before=livedebugvalues -filetype=obj -o - /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/DebugInfo/AArch64/asan-stack-vars.mir | /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/llvm-dwarfdump -v - | /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/FileCheck /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/DebugInfo/AArch64/asan-stack-vars.mir
--
Exit Code: 2
Command Output (stderr):
--
==62894==WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0xdfcafb in llvm::AArch64FrameLowering::resolveFrameOffsetReference(llvm::MachineFunction const&, int, bool, unsigned int&, bool, bool) const /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1658:3
#1 0xdfae8a in resolveFrameIndexReference /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1580:10
#2 0xdfae8a in llvm::AArch64FrameLowering::getFrameIndexReference(llvm::MachineFunction const&, int, unsigned int&) const /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1536
#3 0x46642c1 in (anonymous namespace)::LiveDebugValues::extractSpillBaseRegAndOffset(llvm::MachineInstr const&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:582:21
#4 0x4647cb3 in transferSpillOrRestoreInst /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:883:11
#5 0x4647cb3 in process /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:1079
#6 0x4647cb3 in (anonymous namespace)::LiveDebugValues::ExtendRanges(llvm::MachineFunction&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:1361
#7 0x463ac0e in (anonymous namespace)::LiveDebugValues::runOnMachineFunction(llvm::MachineFunction&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp:1415:18
#8 0x4854ef0 in llvm::MachineFunctionPass::runOnFunction(llvm::Function&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/CodeGen/MachineFunctionPass.cpp:73:13
#9 0x53b0b01 in llvm::FPPassManager::runOnFunction(llvm::Function&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1648:27
#10 0x53b15f6 in llvm::FPPassManager::runOnModule(llvm::Module&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1685:16
#11 0x53b298d in runOnModule /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1750:27
#12 0x53b298d in llvm::legacy::PassManagerImpl::run(llvm::Module&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/IR/LegacyPassManager.cpp:1863
#13 0x905f21 in compileModule(char**, llvm::LLVMContext&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/llc/llc.cpp:601:8
#14 0x8fdc4e in main /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/llc/llc.cpp:355:22
#15 0x7f67673632e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
#16 0x882369 in _start (/b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/llc+0x882369)
MemorySanitizer: use-of-uninitialized-value /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp:1658:3 in llvm::AArch64FrameLowering::resolveFrameOffsetReference(llvm::MachineFunction const&, int, bool, unsigned int&, bool, bool) const
Exiting
error: -: The file was not recognized as a valid object file
FileCheck error: '-' is empty.
FileCheck command line: /b/sanitizer-x86_64-linux-fast/build/llvm_build_msan/bin/FileCheck /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/DebugInfo/AArch64/asan-stack-vars.mir
```
Jay Foad [Wed, 18 Sep 2019 13:40:22 +0000 (13:40 +0000)]
[SDA] Don't stop divergence propagation at the IPD.
Summary:
This fixes B42473 and B42706.
This patch makes the SDA propagate branch divergence until the end of the RPO traversal. Before, the SyncDependenceAnalysis propagated divergence only until the IPD in rpo order. RPO is incompatible with post dominance in the presence of loops. This made the SDA crash because blocks were missed in the propagation.
Simon Atanasyan [Wed, 18 Sep 2019 12:24:57 +0000 (12:24 +0000)]
[mips] Pass "xgot" flag as a subtarget feature
We need "xgot" flag in the MipsAsmParser to implement correct expansion
of some pseudo instructions in case of using 32-bit GOT (XGOT).
MipsAsmParser does not have reference to MipsSubtarget but has a
reference to "feature bit set".
Russell Gallop [Wed, 18 Sep 2019 09:43:13 +0000 (09:43 +0000)]
[cmake] Changes to get Windows self-host working with PGO
Fixes quoting of profile arguments to work on Windows
Suppresses adding profile arguments to linker flags when using lld-link
Avoids -fprofile-instr-use being added to rc.exe flags
Removes duplicated adding of -fprofile-instr-use to linker flags (since
r355541)
Move handling LLVM_PROFDATA_FILE to HandleLLVMOptions.cmake
Summary:
This will allow writing `if(A != llvm::Align::None())` which is clearer than `if(A > llvm::Align(1))`
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
[AArch64][DebugInfo] Do not recompute CalleeSavedStackSize
This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
[Support] Replace function with function_ref in writeFileAtomically. NFC
Summary:
The latter is slightly more efficient and communicates the intent of the
API: writeFileAtomically does not own or copy the callback, it merely
calls it at some point.
Yonghong Song [Wed, 18 Sep 2019 03:49:07 +0000 (03:49 +0000)]
[BPF] Permit all user instructed offset relocatiions
Currently, not all user specified relocations
(with clang intrinsic __builtin_preserve_access_index())
will turn into relocations.
In the current implementation, a __builtin_preserve_access_index()
chain is turned into relocation only if the result of the clang
intrinsic is used in a function call or a nonzero offset computation
of getelementptr. For all other cases, the relocatiion request
is ignored and the __builtin_preserve_access_index() is turned
into regular getelementptr instructions.
The main reason is to mimic bpf_probe_read() requirement.
But there are other use cases where relocatable offset is
generated but not used for bpf_probe_read(). This patch
relaxed previous constraints when to generate relocations.
Now, all user __builtin_preserve_access_index() will have
relocations generated.