Alex Lorenz [Tue, 7 Jul 2015 02:08:46 +0000 (02:08 +0000)]
MIR Parser: Verify the implicit machine register operands.
This commit verifies that the parsed machine instructions contain the implicit
register operands as specified by the MCInstrDesc. Variadic and call
instructions aren't verified.
[StackMap Liveness] Calling the base class' getAnalysisUsage method. NFCI.
Calling into the base class' getAnalysisUsage method after we did our pass
specific modifications. This shouldn't really matter since this is the last
pass in the pipeline anyways.
Alex Lorenz [Mon, 6 Jul 2015 23:07:26 +0000 (23:07 +0000)]
MIR Serialization: Serialize the implicit register flag.
This commit serializes the implicit flag for the register machine operands. It
introduces two new keywords into the machine instruction syntax: 'implicit' and
'implicit-def'. The 'implicit' keyword is used for the implicit register
operands, and the 'implicit-def' keyword is used for the register operands that
have both the implicit and the define flags set.
Simon Pilgrim [Mon, 6 Jul 2015 22:46:46 +0000 (22:46 +0000)]
[X86][AVX] Add support for shuffle decoding of vperm2f128/vperm2i128 with zero'd lanes
The vperm2f128/vperm2i128 shuffle mask decoding was not attempting to deal with shuffles that give zero lanes. This patch fixes this so that the assembly printer can provide shuffle comments.
As this decoder is also used in X86ISelLowering for shuffle combining, I've added an early-out to match existing behaviour. The hope is that we can add zero support in the future, this would allow other ops' decodes (e.g. insertps) to be combined as well.
Simon Pilgrim [Mon, 6 Jul 2015 20:46:41 +0000 (20:46 +0000)]
[X86][SSE4A] Shuffle lowering using SSE4A EXTRQ/INSERTQ instructions
This patch adds support for v8i16 and v16i8 shuffle lowering using the immediate versions of the SSE4A EXTRQ and INSERTQ instructions. Although rather limited (they can only act on the lower 64-bits of the source vectors, leave the upper 64-bits of the result vector undefined and don't have VEX encoded variants), the instructions are still useful for the zero extension of any lane (EXTRQ) or inserting a lane into another vector (INSERTQ). Testing demonstrated that it wasn't typically worth it to use these instructions for v2i64 or v4i32 vector shuffles although they are capable of it.
As well as adding specific pattern matching for the shuffles, the patch uses EXTRQ for zero extension cases where SSE41 isn't available and its more efficient than the SSE2 'unpack' default approach. It also adds shuffle decode support for the EXTRQ / INSERTQ cases when the instructions are handling full byte-sized extractions / insertions.
From this foundation, future patches will be able to make use of the instructions for situations that use their ability to extract/insert at the bit level.
Simon Pilgrim [Mon, 6 Jul 2015 20:30:47 +0000 (20:30 +0000)]
[X86][SSE] Use the general SMAX/SMIN/UMAX/UMIN opcodes and remove the X86 implementation
With the completion of D9746 there is now a common implementation of integer signed/unsigned min/max nodes, removing the need for the equivalent X86 specific implementations.
This patch removes the old X86ISD nodes, legalizes the relevant SSE2/SSE41/AVX2/AVX512 instructions for the ISD versions and converts the small amount of existing X86 code.
Alex Lorenz [Mon, 6 Jul 2015 17:44:26 +0000 (17:44 +0000)]
llc: Add a 'run-pass' option.
This commit adds a 'run-pass' option to llc, which instructs the compiler to run
one specific code generation pass only.
Llc already has the 'start-after' and the 'stop-after' options, and this new
option complements the other two by making it easier to write tests that want
to invoke a single pass only.
Daniel Sanders [Mon, 6 Jul 2015 16:56:07 +0000 (16:56 +0000)]
Change the last few internal StringRef triples into Triple objects.
Summary:
This concludes the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
At this point, the StringRef-form of GNU Triples should only be used in the
public API (including IR serialization) and a couple objects that directly
interact with the API (most notably the Module class). The next step is to
replace these Triple objects with the TargetTuple object that will represent
our authoratative/unambiguous internal equivalent to GNU Triples.
Teresa Johnson [Mon, 6 Jul 2015 16:22:42 +0000 (16:22 +0000)]
Resubmit "Add new EliminateAvailableExternally module pass" (r239480)
This change includes a fix for https://code.google.com/p/chromium/issues/detail?id=499508#c3,
which required updating the visibility for symbols with eliminated definitions.
--Original Commit Message--
Add new EliminateAvailableExternally module pass, which is performed in
O2 compiles just before GlobalDCE, unless we are preparing for LTO.
This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.
If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.
Matt Arsenault [Mon, 6 Jul 2015 16:01:58 +0000 (16:01 +0000)]
AMDGPU/SI: Add debugging subtarget feature for DS offsets
We don't have a good way to detect most situations where
DS offsets are usable on SI, so add an option to force using
them even if unsafe for debugging performance problems.
Back then it didn't actually get the address, it got whatever value the
relocation used: address or offset.
The values in different object formats are:
* MachO: Always an offset.
* COFF: Always an address, but when talking about the virtual address of
sections it says: "for simplicity, compilers should set this to zero".
* ELF: An offset for .o files and and address for .so files. In the case of the
.so, the relocation in not linked to any section (sh_info is 0). We can't
really compute an offset.
Some API mappings would be:
* Use getAddress for everything. It would be quite cumbersome. To compute the
address elf has to follow sh_info, which can be corrupted and therefore the
method has to return an ErrorOr. The address of the section is also the same
for every relocation in a section, so we shouldn't have to check the error
and fetch the value for every relocation.
* Use a getValue and make it up to the user to know what it is getting.
* Use a getOffset and:
* Assert for dynamic ELF objects. That is a very peculiar case and it is
probably fair to ask any tool that wants to support it to use ELF.h. The
only tool we have that reads those (llvm-readobj) already does that. The
only other use case I can think of is a dynamic linker.
* Check that COFF .obj files have sections with zero virtual address spaces. If
it turns out that some assembler/compiler produces these, we can change
COFFObjectFile::getRelocationOffset to subtract it. Given COFF format,
this can be done without the need for ErrorOr.
The getRelocationAddress method was never implemented for COFF. It also
had exactly one use in a very peculiar case: a shortcut for adding the
section value to a pcrel reloc on MachO.
Given that, I don't expect that there is any use out there of the C API. If
that is not the case, let me know and I will add it back with the implementation
inlined and do a proper deprecation.
Chad Rosier [Mon, 6 Jul 2015 14:46:34 +0000 (14:46 +0000)]
Fix a bug in the A57FPLoadBalancing register tracking/scavenger.
The code in AArch64A57FPLoadBalancing::scavengeRegister() to handle dead defs
was not correctly handling aliased registers. E.g. if the dead def was of D2,
then S2 was not being marked as unavailable, so it could potentially be used
across a live-range in which it would be clobbered.
Patch by Geoff Berry <gberry@codeaurora.org>!
Phabricator: http://reviews.llvm.org/D10900
Check that COFF .obj files have sections with zero virtual address spaces.
When talking about the virtual address of sections the coff spec says:
... for simplicity, compilers should set this to zero. Otherwise, it is an
arbitrary value that is subtracted from offsets during relocation.
We don't currently subtract it, so check that it is zero.
If some producer does create such files, we can change getRelocationOffset
instead.
IR: Do not consider available_externally linkage to be linker-weak.
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
[X86] Fix incorrect/inefficient pushw encodings for x86-64 targets
Correctly support assembling "pushw $imm8" on x86-64 targets.
Also some cleanup of the PUSH instructions (PUSH64i16 and PUSHi16 actually
represent the same instruction)
Simon Pilgrim [Sat, 4 Jul 2015 15:33:34 +0000 (15:33 +0000)]
[X86][SSE] Improved i8/i16 to f64 uint2fp vector conversions
Followup to D10433 and D10589 that fixes i8/i16 uint2fp vector conversions by zero extending to i32 and using the sint2fp path (unless the target does actually support uint2fp).
use valid bits to avoid unnecessary machine trace metric recomputations
Although this does cut the number of traces recomputed by ~10% for the
test case mentioned in http://reviews.llvm.org/D10460, it doesn't
make a dent in the overall performance. That example needs to be more
selective when invalidating traces.
LTO: expose LTO_SYMBOL_ALIAS, which indicates that the symbol is an alias.
This is needed for COFF linkers to distinguish between weak external aliases
and regular symbols with LLVM weak linkage, which are represented as strong
symbols in COFF.
Lang Hames [Sat, 4 Jul 2015 01:35:26 +0000 (01:35 +0000)]
[RuntimeDyld] Skip relocations for external symbols with 64-bit address ~0ULL.
Requested by Eugene Rozenfeld of the LLILC team, this feature allows JIT
clients to skip relocations for selected external symbols by returning ~0ULL
from their symbol resolver. If this value is returned for a given symbol,
RuntimeDyld will skip all relocations for that symbol. The client will be
responsible for applying the skipped relocations manually before the code
is executed.
Simon Atanasyan [Fri, 3 Jul 2015 23:00:54 +0000 (23:00 +0000)]
[ELFYAML] Fix handling SHT_NOBITS sections by obj2yaml/yaml2obj tools
SHT_NOBITS sections do not have content in an object file. Now the yaml2obj
tool does not accept `Content` field for such sections, and the obj2yaml
tool does not attempt to read the section content from a file.
Simon Atanasyan [Fri, 3 Jul 2015 14:07:06 +0000 (14:07 +0000)]
[ELFYAML] Fix handling SHT_NOBITS sections by obj2yaml/yaml2obj tools
SHT_NOBITS sections do not have content in an object file. Now yaml2obj
tool does not accept `Content` field for such sections, and obj2yaml
tool does not attempt to read the section content from a file.
Simon Pilgrim [Fri, 3 Jul 2015 07:51:01 +0000 (07:51 +0000)]
[X86][SSE] Sign extension for target vector sizes less than 128 bits (pt1)
This patch adds support for sign extension for sub 128-bit vectors, such as to v2i32. It concatenates with UNDEF subvectors up to 128-bits, performs the sign extension (i.e. as v4i32) and then extracts the target subvector.
Patch 1/2 of D10589 - the second patch covers the conversion of v2i8/v2i16 to v2f64.
Fix an overly aggressive assertion in getCopyFromPartsVector.
The assertion in getCopyFromPartsVector assumed that the vector 'part' must
match the type of argument (arguments are potentially split into multiple
parts). However, in some cases the targets return a 'part' of the right size
but with a different type. We already handle this case correctly later on
and generate a bitcast. This commit just makes sure that we are actually
checking the property that we care about.