Max Kazantsev [Thu, 24 Jan 2019 05:20:29 +0000 (05:20 +0000)]
[LoopSimplifyCFG] Fix inconsistency in live blocks markup
When we choose whether or not we should mark block as dead, we have an
inconsistent logic in markup of live blocks.
- We take candidate IF its terminator branches on constant AND it is immediately
in current loop;
- We mark successor live IF its terminator doesn't branch by constant OR it branches
by constant and the successor is its always taken block.
What we are missing here is that when the terminator branches on a constant but is
not taken as a candidate because is it not immediately in the current loop, we will
mark only one (always taken) successor as live. Therefore, we do NOT do the actual
folding but may NOT mark one of the successors as live. So the result of markup is
wrong in this case, and we may then hit various asserts.
Julian Lettner [Thu, 24 Jan 2019 01:06:19 +0000 (01:06 +0000)]
[Sanitizers] UBSan unreachable incompatible with ASan in the presence of `noreturn` calls
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
David Callahan [Thu, 24 Jan 2019 00:55:23 +0000 (00:55 +0000)]
Update entry count for cold calls
Summary:
Profile sample files include the number of times each entry or inlined
call site is sampled. This is translated into the entry count metadta
on functions.
When sample data is being read, if a call site that was inlined
in the sample program is considered cold and not inlined, then
the entry count of the out-of-line functions does not reflect
the current compilation.
In this patch, we note call sites where the function was not inlined
and as a last action of the sample profile loading, we update the
called function's entry count to reflect the calls from these
call sites which are not included in the profile file.
Douglas Yung [Thu, 24 Jan 2019 00:34:09 +0000 (00:34 +0000)]
[llvm-symbolizer] Add support for -i and -inlines as aliases for -inlining
This change adds two options, -i and -inlines as aliases for the -inlining option to llvm-symbolizer to improve compatibility with the GNU addr2line utility which accepts these options.
It also modifies existing tests that use -inlining to exercise these new aliases as well.
Mircea Trofin [Thu, 24 Jan 2019 00:10:25 +0000 (00:10 +0000)]
[llvm] Clarify responsiblity of some of DILocation discriminator APIs
Summary:
Renamed setBaseDiscriminator to cloneWithBaseDiscriminator, to match
similar APIs. Also changed its behavior to copy over the other
discriminator components, instead of eliding them.
Renamed cloneWithDuplicationFactor to
cloneByMultiplyingDuplicationFactor, which more closely matches what
this API does.
Reid Kleckner [Wed, 23 Jan 2019 22:59:52 +0000 (22:59 +0000)]
[ADT] Notify ilist traits about in-list transfers
Summary:
Previously no client of ilist traits has needed to know about transfers
of nodes within the same list, so as an optimization, ilist doesn't call
transferNodesFromList in that case. However, now there are clients that
want to use ilist traits to cache instruction ordering information to
optimize dominance queries of instructions in the same basic block.
This change updates the existing ilist traits users to detect in-list
transfers and do nothing in that case.
After this change, we can start caching instruction ordering information
in LLVM IR data structures. There are two main ways to do that:
- by putting an order integer into the Instruction class
- by maintaining order integers in a hash table on BasicBlock
I plan to implement and measure both, but I wanted to commit this change
first to enable other out of tree ilist clients to implement this
optimization as well.
Hideki Saito [Wed, 23 Jan 2019 22:43:12 +0000 (22:43 +0000)]
[LV][VPlan] Change to implement VPlan based predication for
VPlan-native path
Context: Patch Series #2 for outer loop vectorization support in LV
using VPlan. (RFC:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
Patch series #2 checks that inner loops are still trivially lock-step
among all vector elements. Non-loop branches are blindly assumed as
divergent.
Changes here implement VPlan based predication algorithm to compute
predicates for blocks that need predication. Predicates are computed
for the VPLoop region in reverse post order. A block's predicate is
computed as OR of the masks of all incoming edges. The mask for an
incoming edge is computed as AND of predecessor block's predicate and
either predecessor's Condition bit or NOT(Condition bit) depending on
whether the edge from predecessor block to the current block is true
or false edge.
hwasan: Read shadow address from ifunc if we don't need a frame record.
This saves a cbz+cold call in the interceptor ABI, as well as a realign
in both ABIs, trading off a dcache entry against some branch predictor
entries and some code size.
Unfortunately the functionality is hidden behind a flag because ifunc is
known to be broken on static binaries on Android.
Simon Atanasyan [Wed, 23 Jan 2019 22:02:53 +0000 (22:02 +0000)]
[mips] Handle MipsMCExpr sub-expression for the MEK_DTPREL tag
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
James Henderson [Wed, 23 Jan 2019 17:27:48 +0000 (17:27 +0000)]
[llvm-symbolizer] Improve compatibility of --functions with GNU addr2line
This fixes https://bugs.llvm.org/show_bug.cgi?id=40072.
GNU addr2line's --functions switch is off by default, has a short alias
of -f, and does not take an argument. This patch changes llvm-symbolizer
to allow the second and third point (changing the default behaviour may
have negative impacts on users). If the option is missing a value, it
now treats it as "linkage".
This change does cause one previously valid command-line to behave
differently. Before --functions <value> was accepted, but now only
--functions=<value> is allowed (as well as --functions). The old
behaviour will result in the value being treated as a positional
argument.
The previous testing for --functions=short has been pulled out into a
new test that also tests the other accepted values and option formats.
Andrea Di Biagio [Wed, 23 Jan 2019 16:35:07 +0000 (16:35 +0000)]
[MC][X86] Correctly model additional operand latency caused by transfer delays from the integer to the floating point unit.
This patch adds a new ReadAdvance definition named ReadInt2Fpu.
ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by
data transfers from the integer unit to the floating point unit.
ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all
x86 models excluding BtVer2. That means, this patch is only a functional change
for the Jaguar cpu model only.
Tablegen definitions for instructions (V)PINSR* have been updated to account for
the new ReadInt2Fpu. That read is mapped to the the GPR input operand.
On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch,
that extra delay was added to the opcode latency. In practice, the insert opcode
only executes for 1cy. Most of the actual latency is actually contributed by the
so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR*
latency is defined by expression f+1, where f is defined as a forwarding delay
from the integer unit to the fpu.
When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC
(only when flag -print-schedule is speified), we now need to account for any
extra forwarding delays. We do this by checking if scheduling classes declare
any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td:
"A negative advance effectively increases latency, which may be used for
cross-domain stalls". When computing the instruction latency for the purpose of
our scheduling tests, we now add any extra delay to the formula. This avoids
regressing existing codegen and mca schedule tests. It comes with the cost of an
extra (but very simple) hook in MCSchedModel.
James Henderson [Wed, 23 Jan 2019 16:15:39 +0000 (16:15 +0000)]
[llvm-readelf] Don't suppress static symbol table with --dyn-symbols + --symbols
In r287786, a bug was introduced into llvm-readelf where it didn't print
the static symbol table if both --symbols and --dyn-symbols were
specified, even if there was no dynamic symbol table. This is obviously
incorrect.
This patch fixes this issue, by delegating the decision of which symbol
tables should be printed to the final dumper, rather than trying to
decide in the command-line option handling layer. The decision was made
to follow the approach taken in this patch because the LLVM style dumper
uses a different order to the original GNU style behaviour (and GNU
readelf) for ELF output. Other approaches resulted in behaviour changes
for other dumpers which felt wrong. In particular, I wanted to avoid
changing the order of the output for --symbols --dyn-symbols for LLVM
style, keep what is emitted by --symbols unchanged for all dumpers, and
avoid having different orders of .dynsym and .symtab dumping for GNU
"--symbols" and "--symbols --dyn-symbols".
Simon Pilgrim [Wed, 23 Jan 2019 16:00:22 +0000 (16:00 +0000)]
[IR] Match intrinsic parameter by scalar/vectorwidth
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Tim Renouf [Wed, 23 Jan 2019 13:38:06 +0000 (13:38 +0000)]
[AMDGPU] With XNACK, cannot clause a load with result coalesced with operand
Summary:
With XNACK, an smem load whose result is coalesced with an operand (thus
it overwrites its own operand) cannot appear in a clause, because some
other instruction might XNACK and restart the whole clause.
The clause breaker already realized that an smem that overwrites an
operand cannot appear in a clause, and broke the clause. The problem
that this commit fixes is that the SIFormMemoryClauses optimization
formed a bundle with early clobber, which caused the earlier code that
set up the coalesced operand to be removed as dead.
Martin Storsjo [Wed, 23 Jan 2019 11:54:51 +0000 (11:54 +0000)]
[llvm-objcopy] [COFF] Fix handling of aux symbols for big objects
The aux symbols were stored in an opaque std::vector<uint8_t>,
with contents interpreted according to the rest of the symbol.
All aux symbol types but one fit in 18 bytes (sizeof(coff_symbol16)),
and if written to a bigobj, two extra padding bytes are written (as
sizeof(coff_symbol32) is 20). In the storage agnostic intermediate
representation, store the aux symbols as a series of coff_symbol16
sized opaque blobs. (In practice, all such aux symbols only consist
of one aux symbol, so this is more flexible than what reality needs.)
The special case is the file aux symbols, which are written in
potentially more than one aux symbol slot, without any padding,
as one single long string. This can't be stored in the same opaque
vector of fixed sized aux symbol entries. The file aux symbols will
occupy a different number of aux symbol slots depending on the type
of output object file. As nothing in the intermediate process needs
to have accurate raw symbol indices, updating that is moved into the
writer class.
George Rimar [Wed, 23 Jan 2019 10:33:26 +0000 (10:33 +0000)]
[llvm-objdump] - Split disassembleObject() into two methods. NFCI.
Currently, disassembleObject() is a ~550 lines length function.
This patch splits it into two, where first do all helper objects initializations
and calls the second which does all the rest job.
This is a straightforward split.
David Green [Wed, 23 Jan 2019 10:18:30 +0000 (10:18 +0000)]
[ARM] Alter the register allocation order for minsize on Thumb2
Currently in Arm code, we allocate LR first, under the assumption that
it needs to be saved anyway. Unfortunately this has the disadvantage
that it will require any instructions using it to be the longer thumb2
instructions, not the shorter thumb1 ones.
This switches the order when we are optimising for minsize, returning to
the default order so that more lower registers can be used. It can end
up requiring more pushed registers, but on average produces smaller code.
Dmitry Venikov [Wed, 23 Jan 2019 09:49:37 +0000 (09:49 +0000)]
[llvm-symbolizer] Allow single letter command flags grouping.
Summary: Currently llvm-symbolizer doesn't allow flags combining. This patch allows such grouping behavior just like addr2line. Motivation: https://bugs.llvm.org/show_bug.cgi?id=40304
Sam Parker [Wed, 23 Jan 2019 09:18:44 +0000 (09:18 +0000)]
[ARM][CGP] Check trunc type before replacing
In the last stage of type promotion, we replace any zext that uses a
new trunc with the operand of the trunc. This is okay when we only
allowed one type to be optimised, but now its the case that the trunc
maybe needed to produce a more narrow type than the one we were
optimising for. So we need to check this before doing the replacement.
Sam Parker [Wed, 23 Jan 2019 09:11:49 +0000 (09:11 +0000)]
[DAGCombine] Enable more pre-indexed stores
The current check in CombineToPreIndexedLoadStore is too
conversative, preventing a pre-indexed store when the base pointer
is a predecessor of the value being stored. Instead, we should check
the pointer operand of the store.
This was reverted since it broke a couple buildbots. The reason
for the breakage is not yet known, but this time, the test has
got more diagnostics added, to hopefully allow figuring out
what goes wrong.
Kristof Beyls [Wed, 23 Jan 2019 08:18:39 +0000 (08:18 +0000)]
[SLH] AArch64: correctly pick temporary register to mask SP
As part of speculation hardening, the stack pointer gets masked with the
taint register (X16) before a function call or before a function return.
Since there are no instructions that can directly mask writing to the
stack pointer, the stack pointer must first be transferred to another
register, where it can be masked, before that value is transferred back
to the stack pointer.
Before, that temporary register was always picked to be x17, since the
ABI allows clobbering x17 on any function call, resulting in the
following instruction pattern being inserted before function calls and
returns/tail calls:
mov x17, sp
and x17, x17, x16
mov sp, x17
However, x17 can be live in those locations, for example when the call
is an indirect call, using x17 as the target address (blr x17).
To fix this, this patch looks for an available register just before the
call or terminator instruction and uses that.
In the rare case when no register turns out to be available (this
situation is only encountered twice across the whole test-suite), just
insert a full speculation barrier at the start of the basic block where
this occurs.
Jonas Paulsson [Wed, 23 Jan 2019 07:42:26 +0000 (07:42 +0000)]
[SystemZ] Handle DBG_VALUE instructions in two places in backend.
Two backend optimizations failed to handle cases when compiled with -g, due
to failing to consider DBG_VALUE instructions. This was in
SystemZTargetLowering::emitSelect() and
SystemZElimCompare::getRegReferences().
This patch makes sure that DBG_VALUEs are recognized so that they do not
affect these optimizations.
Tests for branch-on-count, load-and-trap and consecutive selects.
Max Kazantsev [Wed, 23 Jan 2019 07:20:56 +0000 (07:20 +0000)]
[IRCE] Support narrow latch condition for wide range checks
This patch relaxes restrictions on types of latch condition and range check.
In current implementation, they should match. This patch allows to handle
wide range checks against narrow condition. The motivating example is the
following:
int N = ...
for (long i = 0; (int) i < N; i++) {
if (i >= length) deopt;
}
In this patch, the option that enables this support is turned off by
default. We'll wait until it is switched to true.
Set value of initiation interval for SWP
optimization to specified number value for
the next loop. Number is the positive value
greater than 0.
These pragmas could be used for debugging or reducing
compile time purposes. It is possible to disable SWP for
concrete loops to save compilation time or to find bugs
by not doing SWP to certain loops. It is possible to set
value of initiation interval to concrete number to save
compilation time by not doing extra pipeliner passes or
to check created schedule for specific initiation interval.
That is llvm part of the fix
Clang part of fix: https://reviews.llvm.org/D55710
hwasan: Move memory access checks into small outlined functions on aarch64.
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses
The problem with this is that these code blocks typically bloat code
size significantly.
An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
This means that the backend must spill all temporary registers as
required by the platform's C calling convention, even though the
check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.
The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.
To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.
Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.
Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.
The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.
I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:
Rui Ueyama [Wed, 23 Jan 2019 02:03:26 +0000 (02:03 +0000)]
MemoryBlock: Do not automatically extend a given size to a multiple of page size.
Previously, MemoryBlock automatically extends a requested buffer size to a
multiple of page size because (I believe) doing it was thought to be harmless
and with that you could get more memory (on average 2KiB on 4KiB-page systems)
"for free".
That programming interface turned out to be error-prone. If you request N
bytes, you usually expect that a resulting object returns N for `size()`.
That's not the case for MemoryBlock.
Looks like there is only one place where we take the advantage of
allocating more memory than the requested size. So, with this patch, I
simply removed the automatic size expansion feature from MemoryBlock
and do it on the caller side when needed. MemoryBlock now always
returns a buffer whose size is equal to the requested size.
Josh Stone [Wed, 23 Jan 2019 00:53:22 +0000 (00:53 +0000)]
[CodeView] Allow empty types in member functions
Summary:
`CodeViewDebug::lowerTypeMemberFunction` used to default to a `Void`
return type if the function's type array was empty. After D54667, it
started blindly indexing the 0th item for the return type, which fails
in `getOperand` for empty arrays if assertions are enabled.
This patch restores the `Void` return type for empty type arrays, and
adds a test generated by Rust in line-only debuginfo mode.
Jordan Rupprecht [Tue, 22 Jan 2019 23:49:16 +0000 (23:49 +0000)]
[llvm-objcopy] Return Error from Buffer::allocate(), [ELF]Writer::finalize(), and [ELF]Writer::commit()
Summary:
This patch changes a few methods to return Error instead of manually calling error/reportError to abort. This will make it easier to extract into a library.
Note that error() takes just a string (this patch also adds an overload that takes an Error), while reportError() takes string + [error/code]. To help unify things, use FileError to associate a given filename with an error. Note that this takes some special care (for now), e.g. calling reportError(FileName, <something that could be FileError>) will duplicate the filename. The goal is to eventually remove reportError() and have every error associated with a file to be a FileError, and just one error handling block at the tool level.
This change was suggested in D56806. I took it a little further than suggested, but completely fixing llvm-objcopy will take a couple more patches. If this approach looks good, I'll commit this and apply similar patche(s) for the rest.
This change is NFC in terms of non-error related code, although the error message changes in one context.
Davide Italiano [Tue, 22 Jan 2019 22:40:35 +0000 (22:40 +0000)]
[ADT] Move away from __attribute__((always_inline)).
Some member functions of StringRef/SmallVector/StringSwitch
are marked with the `always_inline` attribute. The result
is that the body of these functions is not emitted, hence the
debugger can't evaluate them (a typical example is
StringRef::size()), even if the code is built with `-O0`.
The main driver behind this was that of getting faster turnaround
when running `check-llvm`. A previous commit clarifies how to
get good performance when running the testsuite, so we can
get rid of the attribute here.
An alternative approach considered was that of using attribute `used`,
but in the end we preferred to not slap yet another attribute on
these functions.
Rui Ueyama [Tue, 22 Jan 2019 21:49:56 +0000 (21:49 +0000)]
FileOutputBuffer: handle mmap(2) failure
If the underlying filesystem does not support mmap system call,
FileOutputBuffer may fail when it attempts to mmap an output temporary
file. This patch handles such situation.
Unfortunately, it looks like it is very hard to test this functionality
without a filesystem that doesn't support mmap using llvm-lit. I tested
this locally by passing an invalid parameter to mmap so that it fails and
falls back to the in-memory buffer. Maybe that's all what we can do.
I believe it is reasonable to submit this without a test.
Joel E. Denny [Tue, 22 Jan 2019 21:41:42 +0000 (21:41 +0000)]
[FileCheck] Suppress old -v/-vv diags if dumping input
The old diagnostic form of the trace produced by -v and -vv looks
like:
```
check1:1:8: remark: CHECK: expected string found in input
CHECK: abc
^
<stdin>:1:3: note: found here
; abc def
^~~
```
When dumping annotated input is requested (via -dump-input), I find
that this old trace is not useful and is sometimes harmful:
1. The old trace is mostly redundant because the same basic
information also appears in the input dump's annotations.
2. The old trace buries any error diagnostic between it and the input
dump, but I find it useful to see any error diagnostic up front.
3. FILECHECK_OPTS=-dump-input=fail requests annotated input dumps only
for failed FileCheck calls. However, I have to also add -v or -vv
to get a full set of annotations, and that can produce massive
output from all FileCheck calls in all tests. That's a real
problem when I run this in the IDE I use, which grinds to a halt as
it tries to capture all that output.
When -dump-input=fail|always, this patch suppresses the old trace from
-v or -vv. Error diagnostics still print as usual. If you want the
old trace, perhaps to see variable expansions, you can set
-dump-input=none (the default).
Craig Topper [Tue, 22 Jan 2019 20:48:24 +0000 (20:48 +0000)]
[X86][AVX512F_SCALAR]: Adding full coverage of MC encoding for the AVX512F_SCALAR isa sets. NFC
Adding MC regressions tests to cover the AVX512F_SCALAR isa sets.
This patch is part of a larger task to cover MC encoding of all X86 isa sets started in revision: https://reviews.llvm.org/D39952
Rui Ueyama [Tue, 22 Jan 2019 18:44:04 +0000 (18:44 +0000)]
FileOutputBuffer: Handle "-" as stdout.
I was honestly a bit surprised that we didn't do this before. This
patch is to handle "-" as the stdout so that if you pass `-o -` to
lld, for example, it writes an output to stdout instead of file `-`.
I thought that we might want to handle this at a higher level than
FileOutputBuffer, because if we land this patch, we can no longer
create a file whose name is `-` (there's a workaround though; you can
pass `./-` instead of `-`). However, because raw_fd_ostream already
handles `-` as a special file name, I think it's okay and actually
consistent to handle `-` as a special name in FileOutputBuffer.
Simon Pilgrim [Tue, 22 Jan 2019 17:52:15 +0000 (17:52 +0000)]
[llvm-mca][X86] Tidyup avx512 placeholder tests
Ensure we keep avx512f/bw/dq + vl versions separate, add example broadcast tests - this should allow us to better the test coverage of test\CodeGen\X86\avx512-schedule.ll
[docs] Scudo: document error messages & their potential cause
Summary:
A couple of changes in the Scudo documentation:
- tag the shell code blocks as `console`;
- document error messages that are displayed in some termination conditions,
the reason they triggered, and potential causes.
We're getting pretty close to matching/exceeding test coverage of the test\CodeGen\X86\*-schedule.ll files, which should allow us to get rid of -print-schedule and fix PR37160
Sanjay Patel [Tue, 22 Jan 2019 16:26:09 +0000 (16:26 +0000)]
[x86] add another partial undef vector binop test; NFC
The existing test unintentionally shows that we have prematurely
optimized the shuffle into a vector concat and lost the undef info,
so it is not affected by a basic improvement to
SimplifyDemandedVectorElts.