From: Tom Lane Date: Sun, 1 Sep 2013 23:43:02 +0000 (-0400) Subject: Update "Using EXPLAIN" documentation examples using current code. X-Git-Tag: REL9_3_0~4 X-Git-Url: https://granicus.if.org/sourcecode?a=commitdiff_plain;h=b9a06c9329822259bab45f34ecc6a5839f0ffc53;p=postgresql Update "Using EXPLAIN" documentation examples using current code. It seems like a good idea to update these examples since some fairly basic planner behaviors have changed in 9.3; notably that the startup cost for an indexscan plan node is no longer invariably estimated at 0.00. --- diff --git a/doc/src/sgml/perform.sgml b/doc/src/sgml/perform.sgml index 7868fe4d17..2af1738576 100644 --- a/doc/src/sgml/perform.sgml +++ b/doc/src/sgml/perform.sgml @@ -39,7 +39,7 @@ Examples in this section are drawn from the regression test database - after doing a VACUUM ANALYZE, using 9.2 development sources. + after doing a VACUUM ANALYZE, using 9.3 development sources. You should be able to get similar results if you try the examples yourself, but your estimated costs and row counts might vary slightly because ANALYZE's statistics are random samples rather @@ -230,9 +230,9 @@ EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100; QUERY PLAN ------------------------------------------------------------------------------ - Bitmap Heap Scan on tenk1 (cost=5.03..229.17 rows=101 width=244) + Bitmap Heap Scan on tenk1 (cost=5.07..229.20 rows=101 width=244) Recheck Cond: (unique1 < 100) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) Index Cond: (unique1 < 100) @@ -257,10 +257,10 @@ EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx'; QUERY PLAN ------------------------------------------------------------------------------ - Bitmap Heap Scan on tenk1 (cost=5.01..229.40 rows=1 width=244) + Bitmap Heap Scan on tenk1 (cost=5.04..229.43 rows=1 width=244) Recheck Cond: (unique1 < 100) Filter: (stringu1 = 'xxx'::name) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) Index Cond: (unique1 < 100) @@ -281,7 +281,7 @@ EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42; QUERY PLAN ----------------------------------------------------------------------------- - Index Scan using tenk1_unique1 on tenk1 (cost=0.00..8.27 rows=1 width=244) + Index Scan using tenk1_unique1 on tenk1 (cost=0.29..8.30 rows=1 width=244) Index Cond: (unique1 = 42) @@ -290,25 +290,26 @@ EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42; extra cost of sorting the row locations is not worth it. You'll most often see this plan type for queries that fetch just a single row. It's also often used for queries that have an ORDER BY condition - that matches the index order, because then no extra sort step is needed to - satisfy the ORDER BY. + that matches the index order, because then no extra sorting step is needed + to satisfy the ORDER BY. - If there are indexes on several columns referenced in WHERE, - the planner might choose to use an AND or OR combination of the indexes: + If there are separate indexes on several of the columns referenced + in WHERE, the planner might choose to use an AND or OR + combination of the indexes: EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000; QUERY PLAN ------------------------------------------------------------------------------------- - Bitmap Heap Scan on tenk1 (cost=25.01..60.14 rows=10 width=244) + Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244) Recheck Cond: ((unique1 < 100) AND (unique2 > 9000)) - -> BitmapAnd (cost=25.01..25.01 rows=10 width=0) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) + -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) Index Cond: (unique1 < 100) - -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.74 rows=999 width=0) + -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0) Index Cond: (unique2 > 9000) @@ -326,8 +327,8 @@ EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2 QUERY PLAN ------------------------------------------------------------------------------------- - Limit (cost=0.00..14.25 rows=2 width=244) - -> Index Scan using tenk1_unique2 on tenk1 (cost=0.00..71.23 rows=10 width=244) + Limit (cost=0.29..14.48 rows=2 width=244) + -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..71.27 rows=10 width=244) Index Cond: (unique2 > 9000) Filter: (unique1 < 100) @@ -356,12 +357,12 @@ WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2; QUERY PLAN -------------------------------------------------------------------------------------- - Nested Loop (cost=4.33..118.25 rows=10 width=488) - -> Bitmap Heap Scan on tenk1 t1 (cost=4.33..39.44 rows=10 width=244) + Nested Loop (cost=4.65..118.62 rows=10 width=488) + -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) Recheck Cond: (unique1 < 10) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.33 rows=10 width=0) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0) Index Cond: (unique1 < 10) - -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..7.87 rows=1 width=244) + -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244) Index Cond: (unique2 = t1.unique2) @@ -396,31 +397,42 @@ WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2; of the two scans' row counts, but that's not true in all cases because there can be additional WHERE clauses that mention both tables and so can only be applied at the join point, not to either input scan. - For example, if we add one more condition: + Here's an example: EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 -WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2 AND t1.hundred < t2.hundred; +WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred; - QUERY PLAN --------------------------------------------------------------------------------------- - Nested Loop (cost=4.33..118.28 rows=3 width=488) + QUERY PLAN +--------------------------------------------------------------------------------------------- + Nested Loop (cost=4.65..49.46 rows=33 width=488) Join Filter: (t1.hundred < t2.hundred) - -> Bitmap Heap Scan on tenk1 t1 (cost=4.33..39.44 rows=10 width=244) + -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) Recheck Cond: (unique1 < 10) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.33 rows=10 width=0) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0) Index Cond: (unique1 < 10) - -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..7.87 rows=1 width=244) - Index Cond: (unique2 = t1.unique2) + -> Materialize (cost=0.29..8.51 rows=10 width=244) + -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10 width=244) + Index Cond: (unique2 < 10) - The extra condition t1.hundred < t2.hundred can't be + The condition t1.hundred < t2.hundred can't be tested in the tenk2_unique2 index, so it's applied at the join node. This reduces the estimated output row count of the join node, but does not change either input scan. + + Notice that here the planner has chosen to materialize the inner + relation of the join, by putting a Materialize plan node atop it. This + means that the t2 indexscan will be done just once, even + though the nested-loop join node needs to read that data ten times, once + for each row from the outer relation. The Materialize node saves the data + in memory as it's read, and then returns the data from memory on each + subsequent pass. + + When dealing with outer joins, you might see join plan nodes with both Join Filter and plain Filter conditions attached. @@ -442,13 +454,13 @@ WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2; QUERY PLAN ------------------------------------------------------------------------------------------ - Hash Join (cost=230.43..713.94 rows=101 width=488) + Hash Join (cost=230.47..713.98 rows=101 width=488) Hash Cond: (t2.unique2 = t1.unique2) -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) - -> Hash (cost=229.17..229.17 rows=101 width=244) - -> Bitmap Heap Scan on tenk1 t1 (cost=5.03..229.17 rows=101 width=244) + -> Hash (cost=229.20..229.20 rows=101 width=244) + -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244) Recheck Cond: (unique1 < 100) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) Index Cond: (unique1 < 100) @@ -473,9 +485,9 @@ WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2; QUERY PLAN ------------------------------------------------------------------------------------------ - Merge Join (cost=197.83..267.93 rows=10 width=488) + Merge Join (cost=198.11..268.19 rows=10 width=488) Merge Cond: (t1.unique2 = t2.unique2) - -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.00..656.25 rows=101 width=244) + -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101 width=244) Filter: (unique1 < 100) -> Sort (cost=197.83..200.33 rows=1000 width=244) Sort Key: t2.unique2 @@ -511,11 +523,11 @@ WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2; QUERY PLAN ------------------------------------------------------------------------------------------ - Merge Join (cost=0.00..292.36 rows=10 width=488) + Merge Join (cost=0.56..292.65 rows=10 width=488) Merge Cond: (t1.unique2 = t2.unique2) - -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.00..656.25 rows=101 width=244) + -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101 width=244) Filter: (unique1 < 100) - -> Index Scan using onek_unique2 on onek t2 (cost=0.00..224.76 rows=1000 width=244) + -> Index Scan using onek_unique2 on onek t2 (cost=0.28..224.79 rows=1000 width=244) which shows that the planner thinks that sorting onek by @@ -545,14 +557,14 @@ WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------- - Nested Loop (cost=4.33..118.25 rows=10 width=488) (actual time=0.370..1.126 rows=10 loops=1) - -> Bitmap Heap Scan on tenk1 t1 (cost=4.33..39.44 rows=10 width=244) (actual time=0.254..0.380 rows=10 loops=1) + Nested Loop (cost=4.65..118.62 rows=10 width=488) (actual time=0.128..0.377 rows=10 loops=1) + -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) (actual time=0.057..0.121 rows=10 loops=1) Recheck Cond: (unique1 < 10) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.33 rows=10 width=0) (actual time=0.164..0.164 rows=10 loops=1) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0) (actual time=0.024..0.024 rows=10 loops=1) Index Cond: (unique1 < 10) - -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..7.87 rows=1 width=244) (actual time=0.041..0.048 rows=1 loops=10) + -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244) (actual time=0.021..0.022 rows=1 loops=10) Index Cond: (unique2 = t1.unique2) - Total runtime: 2.414 ms + Total runtime: 0.501 ms Note that the actual time values are in milliseconds of @@ -572,7 +584,7 @@ WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2; values shown are averages per-execution. This is done to make the numbers comparable with the way that the cost estimates are shown. Multiply by the loops value to get the total time actually spent in - the node. In the above example, we spent a total of 0.480 milliseconds + the node. In the above example, we spent a total of 0.220 milliseconds executing the index scans on tenk2. @@ -588,19 +600,19 @@ WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------- - Sort (cost=717.30..717.56 rows=101 width=488) (actual time=104.950..105.327 rows=100 loops=1) + Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100 loops=1) Sort Key: t1.fivethous - Sort Method: quicksort Memory: 68kB - -> Hash Join (cost=230.43..713.94 rows=101 width=488) (actual time=3.680..102.396 rows=100 loops=1) + Sort Method: quicksort Memory: 77kB + -> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427 rows=100 loops=1) Hash Cond: (t2.unique2 = t1.unique2) - -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.046..46.219 rows=10000 loops=1) - -> Hash (cost=229.17..229.17 rows=101 width=244) (actual time=3.184..3.184 rows=100 loops=1) - Buckets: 1024 Batches: 1 Memory Usage: 27kB - -> Bitmap Heap Scan on tenk1 t1 (cost=5.03..229.17 rows=101 width=244) (actual time=0.612..1.959 rows=100 loops=1) + -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.007..2.583 rows=10000 loops=1) + -> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659 rows=100 loops=1) + Buckets: 1024 Batches: 1 Memory Usage: 28kB + -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244) (actual time=0.080..0.526 rows=100 loops=1) Recheck Cond: (unique1 < 100) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) (actual time=0.390..0.390 rows=100 loops=1) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.049..0.049 rows=100 loops=1) Index Cond: (unique1 < 100) - Total runtime: 107.392 ms + Total runtime: 8.008 ms The Sort node shows the sort method used (in particular, whether the sort @@ -618,12 +630,12 @@ WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous; EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7; - QUERY PLAN ----------------------------------------------------------------------------------------------------------- - Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.111..59.249 rows=7000 loops=1) + QUERY PLAN +--------------------------------------------------------------------------------------------------------- + Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.016..5.107 rows=7000 loops=1) Filter: (ten < 7) Rows Removed by Filter: 3000 - Total runtime: 85.340 ms + Total runtime: 5.905 ms These counts can be particularly valuable for filter conditions applied at @@ -642,10 +654,10 @@ EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)'; QUERY PLAN ------------------------------------------------------------------------------------------------------ - Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.251..0.251 rows=0 loops=1) + Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.044..0.044 rows=0 loops=1) Filter: (f1 @> '((0.5,2))'::polygon) Rows Removed by Filter: 4 - Total runtime: 0.517 ms + Total runtime: 0.083 ms The planner thinks (quite correctly) that this sample table is too small @@ -660,10 +672,10 @@ EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)'; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------- - Index Scan using gpolygonind on polygon_tbl (cost=0.00..8.27 rows=1 width=32) (actual time=0.293..0.293 rows=0 loops=1) + Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1 width=32) (actual time=0.062..0.062 rows=0 loops=1) Index Cond: (f1 @> '((0.5,2))'::polygon) Rows Removed by Index Recheck: 1 - Total runtime: 1.054 ms + Total runtime: 0.144 ms Here we can see that the index returned one candidate row, which was @@ -680,20 +692,20 @@ EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)'; EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000; - QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------ - Bitmap Heap Scan on tenk1 (cost=25.07..60.23 rows=10 width=244) (actual time=3.069..3.213 rows=10 loops=1) + QUERY PLAN +--------------------------------------------------------------------------------------------------------------------------------- + Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244) (actual time=0.323..0.342 rows=10 loops=1) Recheck Cond: ((unique1 < 100) AND (unique2 > 9000)) - Buffers: shared hit=16 - -> BitmapAnd (cost=25.07..25.07 rows=10 width=0) (actual time=2.967..2.967 rows=0 loops=1) + Buffers: shared hit=15 + -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) (actual time=0.309..0.309 rows=0 loops=1) Buffers: shared hit=7 - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.02 rows=102 width=0) (actual time=0.732..0.732 rows=200 loops=1) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1) Index Cond: (unique1 < 100) Buffers: shared hit=2 - -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.80 rows=1007 width=0) (actual time=2.015..2.015 rows=1009 loops=1) + -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0) (actual time=0.227..0.227 rows=999 loops=1) Index Cond: (unique2 > 9000) Buffers: shared hit=5 - Total runtime: 3.917 ms + Total runtime: 0.423 ms The numbers provided by BUFFERS help to identify which parts @@ -715,12 +727,12 @@ EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------- - Update on tenk1 (cost=5.03..229.42 rows=101 width=250) (actual time=81.055..81.055 rows=0 loops=1) - -> Bitmap Heap Scan on tenk1 (cost=5.03..229.42 rows=101 width=250) (actual time=0.766..3.396 rows=100 loops=1) + Update on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual time=14.628..14.628 rows=0 loops=1) + -> Bitmap Heap Scan on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual time=0.101..0.439 rows=100 loops=1) Recheck Cond: (unique1 < 100) - -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) (actual time=0.461..0.461 rows=100 loops=1) + -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1) Index Cond: (unique1 < 100) - Total runtime: 81.922 ms + Total runtime: 14.727 ms ROLLBACK; @@ -800,12 +812,12 @@ EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------- - Limit (cost=0.00..14.25 rows=2 width=244) (actual time=1.652..2.293 rows=2 loops=1) - -> Index Scan using tenk1_unique2 on tenk1 (cost=0.00..71.23 rows=10 width=244) (actual time=1.631..2.259 rows=2 loops=1) + Limit (cost=0.29..14.71 rows=2 width=244) (actual time=0.177..0.249 rows=2 loops=1) + -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..72.42 rows=10 width=244) (actual time=0.174..0.244 rows=2 loops=1) Index Cond: (unique2 > 9000) Filter: (unique1 < 100) Rows Removed by Filter: 287 - Total runtime: 2.857 ms + Total runtime: 0.336 ms the estimated cost and row count for the Index Scan node are shown as