From: Andy Polyakov Date: Mon, 25 Jan 2010 23:12:00 +0000 (+0000) Subject: parisc-mont.pl: PA-RISC 2.0 code path optimization based on intruction- X-Git-Tag: OpenSSL-fips-2_0-rc1~1314 X-Git-Url: https://granicus.if.org/sourcecode?a=commitdiff_plain;h=964ed94649b0fcddeb0c49db7005cbbd0c78bb87;p=openssl parisc-mont.pl: PA-RISC 2.0 code path optimization based on intruction- level profiling data resulted in almost 50% performance improvement. PA-RISC 1.1 is also reordered in same manner, mostly to be consistent, as no gain was observed, not on PA-7100LC. --- diff --git a/crypto/bn/asm/parisc-mont.pl b/crypto/bn/asm/parisc-mont.pl index c421fd8a37..4a766a87fb 100644 --- a/crypto/bn/asm/parisc-mont.pl +++ b/crypto/bn/asm/parisc-mont.pl @@ -20,39 +20,45 @@ # for PA-RISC 1.1, but the "baseline" is far from optimal. The actual # improvement coefficient was never collected on PA-7100LC, or any # other 1.1 CPU, because I don't have access to such machine with -# vendor compiler. But to give you a taste, PA-RISC 1.1 code-path +# vendor compiler. But to give you a taste, PA-RISC 1.1 code path # reportedly outperformed code generated by cc +DA1.1 +O3 by factor # of ~5x on PA-8600. # # On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is -# reportedly ~2x faster than vendor compiler generated code [see -# commentary in assembler source code]. Here comes a catch. Execution -# core of this implementation is actually 32-bit one, in the sense -# that it expects arrays of 32-bit BN_LONG values as input. But -# pa-risc2[W].s operates on arrays of 64-bit BN_LONGs... How do they -# interoperate then? Simple. This module picks halves of 64-bit -# values in reverse order. But can it compete with "pure" 64-bit code -# such as pa-risc2[W].s then? Well, the thing is that 32x32=64-bit -# multiplication is the best even PA-RISC 2.0 can do, i.e. there is -# no "wider" multiplication like on most other 64-bit platforms. -# This means that even being effectively 32-bit, this implementation -# performs the same computational task in same amount of arithmetic -# operations, most notably multiplications. It requires more memory -# references, most notably to tp[num], but this doesn't seem to -# exhaust memory port capacity. In other words this implementation, -# or more specifically its PA-RISC 2.0 code-path, competes with -# pa-risc2W.s on virtually same terms. +# reportedly ~2x faster than vendor compiler generated code [according +# to comment in pa-risc2[W].s]. Here comes a catch. Execution core of +# this implementation is actually 32-bit one, in the sense that it +# operates on 32-bit values. But pa-risc2[W].s operates on arrays of +# 64-bit BN_LONGs... How do they interoperate then? No problem. This +# module picks halves of 64-bit values in reverse order and pretends +# they were 32-bit BN_LONGs. But can 32-bit core compete with "pure" +# 64-bit code such as pa-risc2[W].s then? Well, the thing is that +# 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do, +# i.e. there is no "wider" multiplication like on most other 64-bit +# platforms. This means that even being effectively 32-bit, this +# implementation performs "64-bit" computational task in same amount +# of arithmetic operations, most notably multiplications. It requires +# more memory references, most notably to tp[num], but this doesn't +# seem to exhaust memory port capacity. And indeed, dedicated PA-RISC +# 2.0 code path, provides virtually same performance as pa-risc2[W].s: +# it's ~10% better for shortest key length and ~10% worse for longest +# one. # -# In case it wasn't clear. The module has two distinct code-paths: +# In case it wasn't clear. The module has two distinct code paths: # PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit # additions and 64-bit integer loads, not to mention specific -# instruction scheduling. In 32-bit build module imposes couple of -# limitations: vector lengths has to be even and vector addresses has -# to be 64-bit aligned. Normally neither is a problem: most common -# key lengths are even and vectors are commonly malloc-ed, which -# ensures 64-bit alignment. +# instruction scheduling. In 64-bit build naturally only 2.0 code path +# is assembled. In 32-bit application context both code paths are +# assembled, PA-RISC 2.0 CPU is detected at run-time and proper path +# is taken automatically. Also, in 32-bit build the module imposes +# couple of limitations: vector lengths has to be even and vector +# addresses has to be 64-bit aligned. Normally neither is a problem: +# most common key lengths are even and vectors are commonly malloc-ed, +# which ensures alignment. # -# Special thanks to polarhome.com for providing HP-UX account. +# Special thanks to polarhome.com for providing HP-UX account on +# PA-RISC 1.1 machine, and to correspondent who chose to remain +# anonymous for testing the code on PA-RISC 2.0 machine. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; @@ -134,7 +140,7 @@ $code=<<___; .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR - .ALIGN 16 + .ALIGN 64 bn_mul_mont .PROC .CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6 @@ -168,6 +174,7 @@ $code.=<<___ if ($BN_SZ==4); b L\$abort nop nop ; alignment + nop fldws 0($n0),${fn0} fldws,ma 4($bp),${fbi} ; bp[0] @@ -219,58 +226,58 @@ $code.=<<___ if ($BN_SZ==4); nop ___ $code.=<<___; # PA-RISC 2.0 code-path + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 - ldd -8($xfer),$nm0 + fstds ${fab0},-16($xfer) extrd,u $ab0,31,32,$hi0 extrd,u $ab0,63,32,$ab0 + ldd -8($xfer),$nm0 + fstds ${fnm0},-8($xfer) ldo 8($idx),$idx ; j++++ addl $ab0,$nm0,$nm0 ; low part is discarded extrd,u $nm0,31,32,$hi1 - ldd 0($xfer),$ab1 L\$1st - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldd 8($xfer),$nm1 - fstds ${fab0},-16($xfer) xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m - fstds ${fnm0},-8($xfer) - addl $hi0,$ab1,$ab1 + ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) + addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 + ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,63,32,$ab1 addl $hi1,$nm1,$nm1 - ldd -16($xfer),$ab0 + flddx $idx($ap),${fai} ; ap[j,j+1] + flddx $idx($np),${fni} ; np[j,j+1] addl $ab1,$nm1,$nm1 - ldd -8($xfer),$nm0 extrd,u $nm1,31,32,$hi1 - flddx $idx($ap),${fai} ; ap[j,j+1] + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m + ldd -16($xfer),$ab0 + fstds ${fab0},-16($xfer) addl $hi0,$ab0,$ab0 - flddx $idx($np),${fni} ; np[j,j+1] extrd,u $ab0,31,32,$hi0 - stw $nm1,-4($tp) ; tp[j-1] + ldd -8($xfer),$nm0 + fstds ${fnm0},-8($xfer) extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 + stw $nm1,-4($tp) ; tp[j-1] addl $ab0,$nm0,$nm0 - ldd 0($xfer),$ab1 stw,ma $nm0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$1st ; j++++ extrd,u $nm0,31,32,$hi1 - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldd 8($xfer),$nm1 - fstds ${fab0},-16($xfer) xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m - fstds ${fnm0},-8($xfer) - addl $hi0,$ab1,$ab1 + ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) + addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 + ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,63,32,$ab1 addl $hi1,$nm1,$nm1 @@ -340,6 +347,8 @@ L\$outer ldd -8($xfer),$nm0 ldw 0($xfer),$hi0 ; high part + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m extrd,u $ab0,31,32,$ti0 ; carry bit extrd,u $ab0,63,32,$ab0 fstds ${fab1},0($xfer) @@ -348,61 +357,59 @@ L\$outer addl $ab0,$nm0,$nm0 ; low part is discarded ldw 0($tp),$ti1 ; tp[1] extrd,u $nm0,31,32,$hi1 - ldd 0($xfer),$ab1 + fstds ${fab0},-16($xfer) + fstds ${fnm0},-8($xfer) L\$inner - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldd 8($xfer),$nm1 - fstds ${fab0},-16($xfer) xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m - fstds ${fnm0},-8($xfer) - ldw 4($tp),$ti0 ; tp[j] - addl $hi0,$ab1,$ab1 + ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) + addl $hi0,$ti1,$ti1 addl $ti1,$ab1,$ab1 - extrd,u $ab1,31,32,$hi0 + ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) + extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 + flddx $idx($ap),${fai} ; ap[j,j+1] + flddx $idx($np),${fni} ; np[j,j+1] addl $hi1,$nm1,$nm1 - ldd -16($xfer),$ab0 addl $ab1,$nm1,$nm1 - ldd -8($xfer),$nm0 - extrd,u $nm1,31,32,$hi1 + ldw 4($tp),$ti0 ; tp[j] + stw $nm1,-4($tp) ; tp[j-1] - flddx $idx($ap),${fai} ; ap[j,j+1] - addl $hi0,$ab0,$ab0 - flddx $idx($np),${fni} ; np[j,j+1] + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m + ldd -16($xfer),$ab0 + fstds ${fab0},-16($xfer) + addl $hi0,$ti0,$ti0 addl $ti0,$ab0,$ab0 - stw $nm1,-4($tp) ; tp[j-1] + ldd -8($xfer),$nm0 + fstds ${fnm0},-8($xfer) extrd,u $ab0,31,32,$hi0 + extrd,u $nm1,31,32,$hi1 ldw 8($tp),$ti1 ; tp[j] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 addl $ab0,$nm0,$nm0 - ldd 0($xfer),$ab1 stw,ma $nm0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$inner ; j++++ extrd,u $nm0,31,32,$hi1 - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldd 8($xfer),$nm1 - fstds ${fab0},-16($xfer) xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m - fstds ${fnm0},-8($xfer) - ldw 4($tp),$ti0 ; tp[j] - addl $hi0,$ab1,$ab1 + ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) + addl $hi0,$ti1,$ti1 addl $ti1,$ab1,$ab1 - extrd,u $ab1,31,32,$hi0 + ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) + extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 + ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 - ldd -16($xfer),$ab0 addl $ab1,$nm1,$nm1 + ldd -16($xfer),$ab0 ldd -8($xfer),$nm0 extrd,u $nm1,31,32,$hi1 @@ -549,46 +556,50 @@ $code.=<<___; .ALIGN 8 L\$parisc11 - ldw -16($xfer),$hi0 + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -12($xfer),$ablo - ldw -8($xfer),$nmhi0 + ldw -16($xfer),$hi0 ldw -4($xfer),$nmlo0 + ldw -8($xfer),$nmhi0 + fstds ${fab0},-16($xfer) + fstds ${fnm0},-8($xfer) ldo 8($idx),$idx ; j++++ add $ablo,$nmlo0,$nmlo0 ; discarded addc %r0,$nmhi0,$hi1 - ldw 0($xfer),$abhi ldw 4($xfer),$ablo + ldw 0($xfer),$abhi nop L\$1st_pa11 - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] - ldw 8($xfer),$nmhi1 - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldw 12($xfer),$nmlo1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] - fstds ${fab0},-16($xfer) + flddx $idx($ap),${fai} ; ap[j,j+1] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m - fstds ${fnm0},-8($xfer) + flddx $idx($np),${fni} ; np[j,j+1] add $hi0,$ablo,$ablo - fstds ${fab1},0($xfer) + ldw 12($xfer),$nmlo1 addc %r0,$abhi,$hi0 - fstds ${fnm1},8($xfer) + ldw 8($xfer),$nmhi1 add $ablo,$nmlo1,$nmlo1 - ldw -16($xfer),$abhi + fstds ${fab1},0($xfer) addc %r0,$nmhi1,$nmhi1 - ldw -12($xfer),$ablo + fstds ${fnm1},8($xfer) add $hi1,$nmlo1,$nmlo1 - ldw -8($xfer),$nmhi0 + ldw -12($xfer),$ablo addc %r0,$nmhi1,$hi1 - ldw -4($xfer),$nmlo0 + ldw -16($xfer),$abhi + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] + ldw -4($xfer),$nmlo0 + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m + ldw -8($xfer),$nmhi0 add $hi0,$ablo,$ablo - flddx $idx($ap),${fai} ; ap[j,j+1] + stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$hi0 - flddx $idx($np),${fni} ; np[j,j+1] + fstds ${fab0},-16($xfer) add $ablo,$nmlo0,$nmlo0 - stw $nmlo1,-4($tp) ; tp[j-1] + fstds ${fnm0},-8($xfer) addc %r0,$nmhi0,$nmhi0 ldw 0($xfer),$abhi add $hi1,$nmlo0,$nmlo0 @@ -597,14 +608,10 @@ L\$1st_pa11 addib,<> 8,$idx,L\$1st_pa11 ; j++++ addc %r0,$nmhi0,$hi1 - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] ldw 8($xfer),$nmhi1 - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw 12($xfer),$nmlo1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m - fstds ${fab0},-16($xfer) - fstds ${fnm0},-8($xfer) add $hi0,$ablo,$ablo fstds ${fab1},0($xfer) addc %r0,$abhi,$hi0 @@ -677,65 +684,65 @@ L\$outer_pa11 ldw -4($xfer),$nmlo0 ldw 0($xfer),$hi0 ; high part + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m fstds ${fab1},0($xfer) addl $abhi,$hi0,$hi0 ; account carry bit fstds ${fnm1},8($xfer) add $ablo,$nmlo0,$nmlo0 ; discarded ldw 0($tp),$ti1 ; tp[1] addc %r0,$nmhi0,$hi1 - ldw 0($xfer),$abhi + fstds ${fab0},-16($xfer) + fstds ${fnm0},-8($xfer) ldw 4($xfer),$ablo + ldw 0($xfer),$abhi L\$inner_pa11 - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] - ldw 8($xfer),$nmhi1 - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldw 12($xfer),$nmlo1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] - fstds ${fab0},-16($xfer) + flddx $idx($ap),${fai} ; ap[j,j+1] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m - fstds ${fnm0},-8($xfer) + flddx $idx($np),${fni} ; np[j,j+1] add $hi0,$ablo,$ablo ldw 4($tp),$ti0 ; tp[j] addc %r0,$abhi,$abhi - fstds ${fab1},0($xfer) + ldw 12($xfer),$nmlo1 add $ti1,$ablo,$ablo - fstds ${fnm1},8($xfer) + ldw 8($xfer),$nmhi1 addc %r0,$abhi,$hi0 - ldw -16($xfer),$abhi + fstds ${fab1},0($xfer) add $ablo,$nmlo1,$nmlo1 - ldw -12($xfer),$ablo + fstds ${fnm1},8($xfer) addc %r0,$nmhi1,$nmhi1 - ldw -8($xfer),$nmhi0 + ldw -12($xfer),$ablo add $hi1,$nmlo1,$nmlo1 - ldw -4($xfer),$nmlo0 + ldw -16($xfer),$abhi addc %r0,$nmhi1,$hi1 - flddx $idx($ap),${fai} ; ap[j,j+1] - addl,nuv $hi0,$ablo,$ablo - addi 1,$abhi,$abhi - flddx $idx($np),${fni} ; np[j,j+1] - add $ti0,$ablo,$ablo + xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] + ldw 8($tp),$ti1 ; tp[j] + xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m + ldw -4($xfer),$nmlo0 + add $hi0,$ablo,$ablo + ldw -8($xfer),$nmhi0 + addc %r0,$abhi,$abhi stw $nmlo1,-4($tp) ; tp[j-1] + add $ti0,$ablo,$ablo + fstds ${fab0},-16($xfer) addc %r0,$abhi,$hi0 - ldw 8($tp),$ti1 ; tp[j] - addl,nuv $ablo,$nmlo0,$nmlo0 - addi 1,$nmhi0,$nmhi0 + fstds ${fnm0},-8($xfer) + add $ablo,$nmlo0,$nmlo0 + ldw 4($xfer),$ablo + addc %r0,$nmhi0,$nmhi0 ldw 0($xfer),$abhi add $hi1,$nmlo0,$nmlo0 - ldw 4($xfer),$ablo stws,ma $nmlo0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$inner_pa11 ; j++++ addc %r0,$nmhi0,$hi1 - xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] - ldw 8($xfer),$nmhi1 - xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m - ldw 12($xfer),$nmlo1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] - fstds ${fab0},-16($xfer) + ldw 12($xfer),$nmlo1 xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m - fstds ${fnm0},-8($xfer) + ldw 8($xfer),$nmhi1 add $hi0,$ablo,$ablo ldw 4($tp),$ti0 ; tp[j] addc %r0,$abhi,$abhi