From: Peter Johnson Date: Mon, 17 Sep 2001 22:10:02 +0000 (-0000) Subject: Add queue(3) docs from FreeBSD. X-Git-Tag: v0.1.0~339 X-Git-Url: https://granicus.if.org/sourcecode?a=commitdiff_plain;h=4e810ecf77e58ac3eee2fcb9bd6d679ef630ef8a;p=yasm Add queue(3) docs from FreeBSD. svn path=/trunk/yasm/; revision=175 --- diff --git a/doc/contrib/queue/Makefile b/doc/contrib/queue/Makefile new file mode 100644 index 00000000..e3cd8c0e --- /dev/null +++ b/doc/contrib/queue/Makefile @@ -0,0 +1,10 @@ +# $IdPath$ +# Transforms queue manpage into various output formats. + +all: queue.html queue.ps + +queue.html: queue.3 + groff -mmandoc -Thtml queue.3 >queue.html + +queue.ps: queue.3 + groff -mmandoc -Tps queue.3 >queue.ps diff --git a/doc/contrib/queue/queue.3 b/doc/contrib/queue/queue.3 new file mode 100644 index 00000000..8bb08b83 --- /dev/null +++ b/doc/contrib/queue/queue.3 @@ -0,0 +1,1037 @@ +.\" Copyright (c) 1993 +.\" The Regents of the University of California. All rights reserved. +.\" +.\" Redistribution and use in source and binary forms, with or without +.\" modification, are permitted provided that the following conditions +.\" are met: +.\" 1. Redistributions of source code must retain the above copyright +.\" notice, this list of conditions and the following disclaimer. +.\" 2. Redistributions in binary form must reproduce the above copyright +.\" notice, this list of conditions and the following disclaimer in the +.\" documentation and/or other materials provided with the distribution. +.\" 3. All advertising materials mentioning features or use of this software +.\" must display the following acknowledgement: +.\" This product includes software developed by the University of +.\" California, Berkeley and its contributors. +.\" 4. Neither the name of the University nor the names of its contributors +.\" may be used to endorse or promote products derived from this software +.\" without specific prior written permission. +.\" +.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND +.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE +.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS +.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +.\" SUCH DAMAGE. +.\" +.\" @(#)queue.3 8.2 (Berkeley) 1/24/94 +.\" $FreeBSD: src/share/man/man3/queue.3,v 1.15.2.5 2001/08/21 06:58:44 sobomax Exp $ +.\" +.Dd January 24, 1994 +.Dt QUEUE 3 +.Os +.Sh NAME +.Nm SLIST_EMPTY , +.Nm SLIST_ENTRY , +.Nm SLIST_FIRST , +.Nm SLIST_FOREACH , +.Nm SLIST_HEAD , +.Nm SLIST_INIT , +.Nm SLIST_INSERT_AFTER , +.Nm SLIST_INSERT_HEAD , +.Nm SLIST_NEXT , +.Nm SLIST_REMOVE_HEAD , +.Nm SLIST_REMOVE , +.Nm STAILQ_EMPTY , +.Nm STAILQ_ENTRY , +.Nm STAILQ_FIRST , +.Nm STAILQ_FOREACH , +.Nm STAILQ_HEAD , +.Nm STAILQ_INIT , +.Nm STAILQ_INSERT_AFTER , +.Nm STAILQ_INSERT_HEAD , +.Nm STAILQ_INSERT_TAIL , +.Nm STAILQ_LAST , +.Nm STAILQ_NEXT , +.Nm STAILQ_REMOVE_HEAD , +.Nm STAILQ_REMOVE , +.Nm LIST_EMPTY , +.Nm LIST_ENTRY , +.Nm LIST_FIRST , +.Nm LIST_FOREACH , +.Nm LIST_HEAD , +.Nm LIST_INIT , +.Nm LIST_INSERT_AFTER , +.Nm LIST_INSERT_BEFORE , +.Nm LIST_INSERT_HEAD , +.Nm LIST_NEXT , +.Nm LIST_REMOVE , +.Nm TAILQ_EMPTY , +.Nm TAILQ_ENTRY , +.Nm TAILQ_FIRST , +.Nm TAILQ_FOREACH , +.Nm TAILQ_FOREACH_REVERSE , +.Nm TAILQ_HEAD , +.Nm TAILQ_INIT , +.Nm TAILQ_INSERT_AFTER , +.Nm TAILQ_INSERT_BEFORE , +.Nm TAILQ_INSERT_HEAD , +.Nm TAILQ_INSERT_TAIL , +.Nm TAILQ_LAST , +.Nm TAILQ_NEXT , +.Nm TAILQ_PREV , +.Nm TAILQ_REMOVE , +.Nm CIRCLEQ_EMPTY , +.Nm CIRCLEQ_ENTRY , +.Nm CIRCLEQ_FIRST , +.Nm CIRCLEQ_FOREACH , +.Nm CIRCLEQ_FOREACH_REVERSE , +.Nm CIRCLEQ_HEAD , +.Nm CIRCLEQ_INIT , +.Nm CIRCLEQ_INSERT_AFTER , +.Nm CIRCLEQ_INSERT_BEFORE , +.Nm CIRCLEQ_INSERT_HEAD , +.Nm CIRCLEQ_INSERT_TAIL , +.Nm CIRCLE_LAST , +.Nm CIRCLE_NEXT , +.Nm CIRCLE_PREV , +.Nm CIRCLEQ_REMOVE +.Nd implementations of singly-linked lists, singly-linked tail queues, +lists, tail queues, and circular queues +.Sh SYNOPSIS +.Fd #include +.\" +.Fn SLIST_EMPTY "SLIST_HEAD *head" +.Fn SLIST_ENTRY "TYPE" +.Fn SLIST_FIRST "SLIST_HEAD *head" +.Fn SLIST_FOREACH "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME" +.Fn SLIST_HEAD "HEADNAME" "TYPE" +.Fn SLIST_INIT "SLIST_HEAD *head" +.Fn SLIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "SLIST_ENTRY NAME" +.Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "TYPE *elm" "SLIST_ENTRY NAME" +.Fn SLIST_NEXT "TYPE *elm" "SLIST_ENTRY NAME" +.Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "SLIST_ENTRY NAME" +.Fn SLIST_REMOVE "SLIST_HEAD *head" "TYPE *elm" "TYPE" "SLIST_ENTRY NAME" +.\" +.Fn STAILQ_EMPTY "STAILQ_HEAD *head" +.Fn STAILQ_ENTRY "TYPE" +.Fn STAILQ_FIRST "STAILQ_HEAD *head" +.Fn STAILQ_FOREACH "TYPE *var" "STAILQ_HEAD *head" "STAILQ_ENTRY NAME" +.Fn STAILQ_HEAD "HEADNAME" "TYPE" +.Fn STAILQ_INIT "STAILQ_HEAD *head" +.Fn STAILQ_INSERT_AFTER "STAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_INSERT_HEAD "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_INSERT_TAIL "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_LAST "STAILQ_HEAD *head" "TYPE" "STAILQ_ENTRY NAME" +.Fn STAILQ_NEXT "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_REMOVE_HEAD "STAILQ_HEAD *head" "STAILQ_ENTRY NAME" +.Fn STAILQ_REMOVE "STAILQ_HEAD *head" "TYPE *elm" "TYPE" "STAILQ_ENTRY NAME" +.\" +.Fn LIST_EMPTY "LIST_HEAD *head" +.Fn LIST_ENTRY "TYPE" +.Fn LIST_FIRST "LIST_HEAD *head" +.Fn LIST_FOREACH "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME" +.Fn LIST_HEAD "HEADNAME" "TYPE" +.Fn LIST_INIT "LIST_HEAD *head" +.Fn LIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_INSERT_HEAD "LIST_HEAD *head" "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_NEXT "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_REMOVE "TYPE *elm" "LIST_ENTRY NAME" +.\" +.Fn TAILQ_EMPTY "TAILQ_HEAD *head" +.Fn TAILQ_ENTRY "TYPE" +.Fn TAILQ_FIRST "TAILQ_HEAD *head" +.Fn TAILQ_FOREACH "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" +.Fn TAILQ_FOREACH_REVERSE "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME" +.Fn TAILQ_HEAD "HEADNAME" "TYPE" +.Fn TAILQ_INIT "TAILQ_HEAD *head" +.Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME" +.Fn TAILQ_NEXT "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_PREV "TYPE *elm" "HEADNAME" "TAILQ_ENTRY NAME" +.Fn TAILQ_REMOVE "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" +.\" +.Fn CIRCLEQ_EMPTY "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_ENTRY "TYPE" +.Fn CIRCLEQ_FIRST "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_FOREACH "TYPE *var" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_FOREACH_REVERSE "TYPE *var" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_HEAD "HEADNAME" "TYPE" +.Fn CIRCLEQ_INIT "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_INSERT_AFTER "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_INSERT_BEFORE "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_INSERT_HEAD "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_INSERT_TAIL "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_LAST "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_NEXT "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLE_PREV "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_REMOVE "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Sh DESCRIPTION +These macros define and operate on five types of data structures: +singly-linked lists, singly-linked tail queues, lists, tail queues, +and circular queues. +All five structures support the following functionality: +.Bl -enum -compact -offset indent +.It +Insertion of a new entry at the head of the list. +.It +Insertion of a new entry after any element in the list. +.It +O(1) removal of an entry from the head of the list. +.It +O(n) removal of any entry in the list. +.It +Forward traversal through the list. +.El +.Pp +Singly-linked lists are the simplest of the five data structures +and support only the above functionality. +Singly-linked lists are ideal for applications with large datasets +and few or no removals, +or for implementing a LIFO queue. +.Pp +Singly-linked tail queues add the following functionality: +.Bl -enum -compact -offset indent +.It +Entries can be added at the end of a list. +.El +However: +.Bl -enum -compact -offset indent +.It +All list insertions must specify the head of the list. +.It +Each head entry requires two pointers rather than one. +.It +Code size is about 15% greater and operations run about 20% slower +than singly-linked lists. +.El +.Pp +Singly-linked tailqs are ideal for applications with large datasets and +few or no removals, +or for implementing a FIFO queue. +.Pp +All doubly linked types of data structures (lists, tail queues, and circle +queues) additionally allow: +.Bl -enum -compact -offset indent +.It +Insertion of a new entry before any element in the list. +.It +O(1) removal of any entry in the list. +.El +However: +.Bl -enum -compact -offset indent +.It +Each elements requires two pointers rather than one. +.It +Code size and execution time of operations (except for removal) is about +twice that of the singly-linked data-structures. +.El +.Pp +Linked lists are the simplest of the doubly linked data structures and support +only the above functionality over singly-linked lists. +.Pp +Tail queues add the following functionality: +.Bl -enum -compact -offset indent +.It +Entries can be added at the end of a list. +.It +They may be traversed backwards, from tail to head. +.El +However: +.Bl -enum -compact -offset indent +.It +All list insertions and removals must specify the head of the list. +.It +Each head entry requires two pointers rather than one. +.It +Code size is about 15% greater and operations run about 20% slower +than singly-linked lists. +.El +.Pp +Circular queues add the following functionality: +.Bl -enum -compact -offset indent +.It +Entries can be added at the end of a list. +.It +They may be traversed backwards, from tail to head. +.El +However: +.Bl -enum -compact -offset indent +.It +All list insertions and removals must specify the head of the list. +.It +Each head entry requires two pointers rather than one. +.It +The termination condition for traversal is more complex. +.It +Code size is about 40% greater and operations run about 45% slower +than lists. +.El +.Pp +In the macro definitions, +.Fa TYPE +is the name of a user defined structure, +that must contain a field of type +.Li SLIST_ENTRY , +.Li STAILQ_ENTRY , +.Li LIST_ENTRY , +.Li TAILQ_ENTRY , +or +.Li CIRCLEQ_ENTRY , +named +.Fa NAME . +The argument +.Fa HEADNAME +is the name of a user defined structure that must be declared +using the macros +.Li SLIST_HEAD , +.Li STAILQ_HEAD , +.Li LIST_HEAD , +.Li TAILQ_HEAD , +or +.Li CIRCLEQ_HEAD . +See the examples below for further explanation of how these +macros are used. +.Sh SINGLY-LINKED LISTS +A singly-linked list is headed by a structure defined by the +.Nm SLIST_HEAD +macro. +This structure contains a single pointer to the first element +on the list. +The elements are singly linked for minimum space and pointer manipulation +overhead at the expense of O(n) removal for arbitrary elements. +New elements can be added to the list after an existing element or +at the head of the list. +An +.Fa SLIST_HEAD +structure is declared as follows: +.Bd -literal -offset indent +SLIST_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Fa HEADNAME +is the name of the structure to be defined, and +.Fa TYPE +is the type of the elements to be linked into the list. +A pointer to the head of the list can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm SLIST_EMPTY +evaluates to true if there are no elements in the list. +.Pp +The macro +.Nm SLIST_ENTRY +declares a structure that connects the elements in +the list. +.Pp +The macro +.Nm SLIST_FIRST +returns the first element in the list or NULL if the list is empty. +.Pp +The macro +.Nm SLIST_FOREACH +traverses the list referenced by +.Fa head +in the forward direction, assigning each element in +turn to +.Fa var . +.Pp +The macro +.Nm SLIST_INIT +initializes the list referenced by +.Fa head . +.Pp +The macro +.Nm SLIST_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the list. +.Pp +The macro +.Nm SLIST_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm SLIST_NEXT +returns the next element in the list. +.Pp +The macro +.Nm SLIST_REMOVE_HEAD +removes the element +.Fa elm +from the head of the list. +For optimum efficiency, +elements being removed from the head of the list should explicitly use +this macro instead of the generic +.Fa SLIST_REMOVE +macro. +.Pp +The macro +.Nm SLIST_REMOVE +removes the element +.Fa elm +from the list. +.Sh SINGLY-LINKED LIST EXAMPLE +.Bd -literal +SLIST_HEAD(slisthead, entry) head; +struct slisthead *headp; /* Singly-linked List head. */ +struct entry { + ... + SLIST_ENTRY(entry) entries; /* Singly-linked List. */ + ... +} *n1, *n2, *n3, *np; + +SLIST_INIT(&head); /* Initialize the list. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +SLIST_INSERT_HEAD(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +SLIST_INSERT_AFTER(n1, n2, entries); + +SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */ +free(n2); + +n3 = SLIST_FIRST(&head); +SLIST_REMOVE_HEAD(&head, entries); /* Deletion. */ +free(n3); + + /* Forward traversal. */ +SLIST_FOREACH(np, &head, entries) + np-> ... + +while (!SLIST_EMPTY(&head)) { /* List Deletion. */ + n1 = SLIST_FIRST(&head); + SLIST_REMOVE_HEAD(&head, entries); + free(n1); +} +.Ed +.Sh SINGLY-LINKED TAIL QUEUES +A singly-linked tail queue is headed by a structure defined by the +.Nm STAILQ_HEAD +macro. +This structure contains a pair of pointers, +one to the first element in the tail queue and the other to +the last element in the tail queue. +The elements are singly linked for minimum space and pointer +manipulation overhead at the expense of O(n) removal for arbitrary +elements. +New elements can be added to the tail queue after an existing element, +at the head of the tail queue, or at the end of the tail queue. +A +.Fa STAILQ_HEAD +structure is declared as follows: +.Bd -literal -offset indent +STAILQ_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Li HEADNAME +is the name of the structure to be defined, and +.Li TYPE +is the type of the elements to be linked into the tail queue. +A pointer to the head of the tail queue can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm STAILQ_EMPTY +evaluates to true if there are no items on the tail queue. +.Pp +The macro +.Nm STAILQ_ENTRY +declares a structure that connects the elements in +the tail queue. +.Pp +The macro +.Nm STAILQ_FIRST +returns the first item on the tail queue or NULL if the tail queue +is empty. +.Pp +The macro +.Nm STAILQ_FOREACH +traverses the tail queue referenced by +.Fa head +in the forward direction, assigning each element +in turn to +.Fa var . +.Pp +The macro +.Nm STAILQ_INIT +initializes the tail queue referenced by +.Fa head . +.Pp +The macro +.Nm STAILQ_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the tail queue. +.Pp +The macro +.Nm STAILQ_INSERT_TAIL +inserts the new element +.Fa elm +at the end of the tail queue. +.Pp +The macro +.Nm STAILQ_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm STAILQ_LAST +returns the last item on the tail queue. +If the tail queue is empty the return value is undefined. +.Pp +The macro +.Nm STAILQ_NEXT +returns the next item on the tail queue, or NULL this item is the last. +.Pp +The macro +.Nm STAILQ_REMOVE_HEAD +removes the element +.Fa elm +from the head of the tail queue. +For optimum efficiency, +elements being removed from the head of the tail queue should +use this macro explicitly rather than the generic +.Fa STAILQ_REMOVE +macro. +.Pp +The macro +.Nm STAILQ_REMOVE +removes the element +.Fa elm +from the tail queue. +.Sh SINGLY-LINKED TAIL QUEUE EXAMPLE +.Bd -literal +STAILQ_HEAD(stailhead, entry) head; +struct stailhead *headp; /* Singly-linked tail queue head. */ +struct entry { + ... + STAILQ_ENTRY(entry) entries; /* Tail queue. */ + ... +} *n1, *n2, *n3, *np; + +STAILQ_INIT(&head); /* Initialize the queue. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +STAILQ_INSERT_HEAD(&head, n1, entries); + +n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ +STAILQ_INSERT_TAIL(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +STAILQ_INSERT_AFTER(&head, n1, n2, entries); + + /* Deletion. */ +STAILQ_REMOVE(&head, n2, entry, entries); +free(n2); + + /* Deletion from the head */ +n3 = STAILQ_FIRST(&head); +STAILQ_REMOVE_HEAD(&head, entries); +free(n3); + + /* Forward traversal. */ +STAILQ_FOREACH(np, &head, entries) + np-> ... + /* TailQ Deletion. */ +while (!STAILQ_EMPTY(&head)) { + n1 = STAILQ_HEAD(&head); + STAILQ_REMOVE_HEAD(&head, entries); + free(n1); +} + /* Faster TailQ Deletion. */ +n1 = STAILQ_FIRST(&head); +while (n1 != NULL) { + n2 = STAILQ_NEXT(n1, entries); + free(n1); + n1 = n2; +} +STAILQ_INIT(&head); +.Ed +.Sh LISTS +A list is headed by a structure defined by the +.Nm LIST_HEAD +macro. +This structure contains a single pointer to the first element +on the list. +The elements are doubly linked so that an arbitrary element can be +removed without traversing the list. +New elements can be added to the list after an existing element, +before an existing element, or at the head of the list. +A +.Fa LIST_HEAD +structure is declared as follows: +.Bd -literal -offset indent +LIST_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Fa HEADNAME +is the name of the structure to be defined, and +.Fa TYPE +is the type of the elements to be linked into the list. +A pointer to the head of the list can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm LIST_EMPTY +evaluates to true if their are no elements in the list. +.Pp +The macro +.Nm LIST_ENTRY +declares a structure that connects the elements in +the list. +.Pp +The macro +.Nm LIST_FIRST +returns the first element in the list or NULL if the list +is empty. +.Pp +The macro +.Nm LIST_FOREACH +traverses the list referenced by +.Fa head +in the forward direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm LIST_INIT +initializes the list referenced by +.Fa head . +.Pp +The macro +.Nm LIST_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the list. +.Pp +The macro +.Nm LIST_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm LIST_INSERT_BEFORE +inserts the new element +.Fa elm +before the element +.Fa listelm . +.Pp +The macro +.Nm LIST_NEXT +returns the next element in the list, or NULL if this is the last. +.Pp +The macro +.Nm LIST_REMOVE +removes the element +.Fa elm +from the list. +.Sh LIST EXAMPLE +.Bd -literal +LIST_HEAD(listhead, entry) head; +struct listhead *headp; /* List head. */ +struct entry { + ... + LIST_ENTRY(entry) entries; /* List. */ + ... +} *n1, *n2, *n3, *np; + +LIST_INIT(&head); /* Initialize the list. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +LIST_INSERT_HEAD(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +LIST_INSERT_AFTER(n1, n2, entries); + +n3 = malloc(sizeof(struct entry)); /* Insert before. */ +LIST_INSERT_BEFORE(n2, n3, entries); + +LIST_REMOVE(n2, entries); /* Deletion. */ +free(n2); + + /* Forward traversal. */ +LIST_FOREACH(np, &head, entries) + np-> ... + +while (!LIST_EMPTY(&head)) { /* List Deletion. */ + n1 = LIST_FIRST(&head); + LIST_REMOVE(n1, entries); + free(n1); +} + +n1 = LIST_FIRST(&head); /* Faster List Delete. */ +while (n1 != NULL) { + n2 = LIST_NEXT(n1, entries); + free(n1); + n1 = n2; +} +LIST_INIT(&head); +.Ed +.Sh TAIL QUEUES +A tail queue is headed by a structure defined by the +.Nm TAILQ_HEAD +macro. +This structure contains a pair of pointers, +one to the first element in the tail queue and the other to +the last element in the tail queue. +The elements are doubly linked so that an arbitrary element can be +removed without traversing the tail queue. +New elements can be added to the tail queue after an existing element, +before an existing element, at the head of the tail queue, +or at the end of the tail queue. +A +.Fa TAILQ_HEAD +structure is declared as follows: +.Bd -literal -offset indent +TAILQ_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Li HEADNAME +is the name of the structure to be defined, and +.Li TYPE +is the type of the elements to be linked into the tail queue. +A pointer to the head of the tail queue can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm TAILQ_EMPTY +evaluates to true if there are no items on the tail queue. +.Pp +The macro +.Nm TAILQ_ENTRY +declares a structure that connects the elements in +the tail queue. +.Pp +The macro +.Nm TAILQ_FIRST +returns the first item on the tail queue or NULL if the tail queue +is empty. +.Pp +The macro +.Nm TAILQ_FOREACH +traverses the tail queue referenced by +.Fa head +in the forward direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm TAILQ_FOREACH_REVERSE +traverses the tail queue referenced by +.Fa head +in the reverse direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm TAILQ_INIT +initializes the tail queue referenced by +.Fa head . +.Pp +The macro +.Nm TAILQ_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the tail queue. +.Pp +The macro +.Nm TAILQ_INSERT_TAIL +inserts the new element +.Fa elm +at the end of the tail queue. +.Pp +The macro +.Nm TAILQ_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm TAILQ_INSERT_BEFORE +inserts the new element +.Fa elm +before the element +.Fa listelm . +.Pp +The macro +.Nm TAILQ_LAST +returns the last item on the tail queue. +If the tail queue is empty the return value is undefined. +.Pp +The macro +.Nm TAILQ_NEXT +returns the next item on the tail queue, or NULL if this item is the last. +.Pp +The macro +.Nm TAILQ_PREV +returns the previous item on the tail queue, or NULL if this item +is the first. +.Pp +The macro +.Nm TAILQ_REMOVE +removes the element +.Fa elm +from the tail queue. +.Sh TAIL QUEUE EXAMPLE +.Bd -literal +TAILQ_HEAD(tailhead, entry) head; +struct tailhead *headp; /* Tail queue head. */ +struct entry { + ... + TAILQ_ENTRY(entry) entries; /* Tail queue. */ + ... +} *n1, *n2, *n3, *np; + +TAILQ_INIT(&head); /* Initialize the queue. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +TAILQ_INSERT_HEAD(&head, n1, entries); + +n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ +TAILQ_INSERT_TAIL(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +TAILQ_INSERT_AFTER(&head, n1, n2, entries); + +n3 = malloc(sizeof(struct entry)); /* Insert before. */ +TAILQ_INSERT_BEFORE(n2, n3, entries); + +TAILQ_REMOVE(&head, n2, entries); /* Deletion. */ +free(n2); + /* Forward traversal. */ +TAILQ_FOREACH(np, &head, entries) + np-> ... + /* Reverse traversal. */ +TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries) + np-> ... + /* TailQ Deletion. */ +while (!TAILQ_EMPTY(head)) { + n1 = TAILQ_FIRST(&head); + TAILQ_REMOVE(&head, n1, entries); + free(n1); +} + /* Faster TailQ Deletion. */ + +n1 = TAILQ_FIRST(&head); +while (n1 != NULL) { + n2 = TAILQ_NEXT(n1, entries); + free(n1); + n1 = n2; +} +TAILQ_INIT(&head); +.Ed +.Sh CIRCULAR QUEUES +A circular queue is headed by a structure defined by the +.Nm CIRCLEQ_HEAD +macro. +This structure contains a pair of pointers, +one to the first element in the circular queue and the other to the +last element in the circular queue. +The elements are doubly linked so that an arbitrary element can be +removed without traversing the queue. +New elements can be added to the queue after an existing element, +before an existing element, at the head of the queue, or at the end +of the queue. +A +.Fa CIRCLEQ_HEAD +structure is declared as follows: +.Bd -literal -offset indent +CIRCLEQ_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Li HEADNAME +is the name of the structure to be defined, and +.Li TYPE +is the type of the elements to be linked into the circular queue. +A pointer to the head of the circular queue can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm CIRCLEQ_EMPTY +evaluates to true if there are no items on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_ENTRY +declares a structure that connects the elements in +the circular queue. +.Pp +The macro +.Nm CIRCLEQ_FIRST +returns the first item on the circle queue. +.Pp +The macro +.Nm CICRLEQ_FOREACH +traverses the circle queue referenced by +.Fa head +in the forward direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm CICRLEQ_FOREACH_REVERSE +traverses the circle queue referenced by +.Fa head +in the reverse direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm CIRCLEQ_INIT +initializes the circular queue referenced by +.Fa head . +.Pp +The macro +.Nm CIRCLEQ_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the circular queue. +.Pp +The macro +.Nm CIRCLEQ_INSERT_TAIL +inserts the new element +.Fa elm +at the end of the circular queue. +.Pp +The macro +.Nm CIRCLEQ_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm CIRCLEQ_INSERT_BEFORE +inserts the new element +.Fa elm +before the element +.Fa listelm . +.Pp +The macro +.Nm CIRCLEQ_LAST +returns the last item on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_NEXT +returns the next item on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_PREV +returns the previous item on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_REMOVE +removes the element +.Fa elm +from the circular queue. +.Sh CIRCULAR QUEUE EXAMPLE +.Bd -literal +CIRCLEQ_HEAD(circleq, entry) head; +struct circleq *headp; /* Circular queue head. */ +struct entry { + ... + CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */ + ... +} *n1, *n2, *np; + +CIRCLEQ_INIT(&head); /* Initialize the circular queue. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +CIRCLEQ_INSERT_HEAD(&head, n1, entries); + +n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ +CIRCLEQ_INSERT_TAIL(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert before. */ +CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); + +CIRCLEQ_REMOVE(&head, n1, entries); /* Deletion. */ +free(n1); + /* Forward traversal. */ +CIRCLEQ_FOREACH(np, &head, entries) + np-> ... + /* Reverse traversal. */ +CIRCLEQ_FOREACH_REVERSE(np, &head, entries) + np-> ... + /* CircleQ Deletion. */ +while (CIRCLEQ_FIRST(&head) != (void *)&head) { + n1 = CIRCLEQ_HEAD(&head); + CIRCLEQ_REMOVE(&head, n1, entries); + free(n1); +} + /* Faster CircleQ Deletion. */ +n1 = CIRCLEQ_FIRST(&head); +while (n1 != (void *)&head) { + n2 = CIRCLEQ_NEXT(n1, entries); + free(n1); + n1 = n2; +} +CIRCLEQ_INIT(&head); +.Ed +.Sh HISTORY +The +.Nm queue +functions first appeared in +.Bx 4.4 . diff --git a/doc/programmer/queue/Makefile b/doc/programmer/queue/Makefile new file mode 100644 index 00000000..e3cd8c0e --- /dev/null +++ b/doc/programmer/queue/Makefile @@ -0,0 +1,10 @@ +# $IdPath$ +# Transforms queue manpage into various output formats. + +all: queue.html queue.ps + +queue.html: queue.3 + groff -mmandoc -Thtml queue.3 >queue.html + +queue.ps: queue.3 + groff -mmandoc -Tps queue.3 >queue.ps diff --git a/doc/programmer/queue/queue.3 b/doc/programmer/queue/queue.3 new file mode 100644 index 00000000..8bb08b83 --- /dev/null +++ b/doc/programmer/queue/queue.3 @@ -0,0 +1,1037 @@ +.\" Copyright (c) 1993 +.\" The Regents of the University of California. All rights reserved. +.\" +.\" Redistribution and use in source and binary forms, with or without +.\" modification, are permitted provided that the following conditions +.\" are met: +.\" 1. Redistributions of source code must retain the above copyright +.\" notice, this list of conditions and the following disclaimer. +.\" 2. Redistributions in binary form must reproduce the above copyright +.\" notice, this list of conditions and the following disclaimer in the +.\" documentation and/or other materials provided with the distribution. +.\" 3. All advertising materials mentioning features or use of this software +.\" must display the following acknowledgement: +.\" This product includes software developed by the University of +.\" California, Berkeley and its contributors. +.\" 4. Neither the name of the University nor the names of its contributors +.\" may be used to endorse or promote products derived from this software +.\" without specific prior written permission. +.\" +.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND +.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE +.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS +.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +.\" SUCH DAMAGE. +.\" +.\" @(#)queue.3 8.2 (Berkeley) 1/24/94 +.\" $FreeBSD: src/share/man/man3/queue.3,v 1.15.2.5 2001/08/21 06:58:44 sobomax Exp $ +.\" +.Dd January 24, 1994 +.Dt QUEUE 3 +.Os +.Sh NAME +.Nm SLIST_EMPTY , +.Nm SLIST_ENTRY , +.Nm SLIST_FIRST , +.Nm SLIST_FOREACH , +.Nm SLIST_HEAD , +.Nm SLIST_INIT , +.Nm SLIST_INSERT_AFTER , +.Nm SLIST_INSERT_HEAD , +.Nm SLIST_NEXT , +.Nm SLIST_REMOVE_HEAD , +.Nm SLIST_REMOVE , +.Nm STAILQ_EMPTY , +.Nm STAILQ_ENTRY , +.Nm STAILQ_FIRST , +.Nm STAILQ_FOREACH , +.Nm STAILQ_HEAD , +.Nm STAILQ_INIT , +.Nm STAILQ_INSERT_AFTER , +.Nm STAILQ_INSERT_HEAD , +.Nm STAILQ_INSERT_TAIL , +.Nm STAILQ_LAST , +.Nm STAILQ_NEXT , +.Nm STAILQ_REMOVE_HEAD , +.Nm STAILQ_REMOVE , +.Nm LIST_EMPTY , +.Nm LIST_ENTRY , +.Nm LIST_FIRST , +.Nm LIST_FOREACH , +.Nm LIST_HEAD , +.Nm LIST_INIT , +.Nm LIST_INSERT_AFTER , +.Nm LIST_INSERT_BEFORE , +.Nm LIST_INSERT_HEAD , +.Nm LIST_NEXT , +.Nm LIST_REMOVE , +.Nm TAILQ_EMPTY , +.Nm TAILQ_ENTRY , +.Nm TAILQ_FIRST , +.Nm TAILQ_FOREACH , +.Nm TAILQ_FOREACH_REVERSE , +.Nm TAILQ_HEAD , +.Nm TAILQ_INIT , +.Nm TAILQ_INSERT_AFTER , +.Nm TAILQ_INSERT_BEFORE , +.Nm TAILQ_INSERT_HEAD , +.Nm TAILQ_INSERT_TAIL , +.Nm TAILQ_LAST , +.Nm TAILQ_NEXT , +.Nm TAILQ_PREV , +.Nm TAILQ_REMOVE , +.Nm CIRCLEQ_EMPTY , +.Nm CIRCLEQ_ENTRY , +.Nm CIRCLEQ_FIRST , +.Nm CIRCLEQ_FOREACH , +.Nm CIRCLEQ_FOREACH_REVERSE , +.Nm CIRCLEQ_HEAD , +.Nm CIRCLEQ_INIT , +.Nm CIRCLEQ_INSERT_AFTER , +.Nm CIRCLEQ_INSERT_BEFORE , +.Nm CIRCLEQ_INSERT_HEAD , +.Nm CIRCLEQ_INSERT_TAIL , +.Nm CIRCLE_LAST , +.Nm CIRCLE_NEXT , +.Nm CIRCLE_PREV , +.Nm CIRCLEQ_REMOVE +.Nd implementations of singly-linked lists, singly-linked tail queues, +lists, tail queues, and circular queues +.Sh SYNOPSIS +.Fd #include +.\" +.Fn SLIST_EMPTY "SLIST_HEAD *head" +.Fn SLIST_ENTRY "TYPE" +.Fn SLIST_FIRST "SLIST_HEAD *head" +.Fn SLIST_FOREACH "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME" +.Fn SLIST_HEAD "HEADNAME" "TYPE" +.Fn SLIST_INIT "SLIST_HEAD *head" +.Fn SLIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "SLIST_ENTRY NAME" +.Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "TYPE *elm" "SLIST_ENTRY NAME" +.Fn SLIST_NEXT "TYPE *elm" "SLIST_ENTRY NAME" +.Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "SLIST_ENTRY NAME" +.Fn SLIST_REMOVE "SLIST_HEAD *head" "TYPE *elm" "TYPE" "SLIST_ENTRY NAME" +.\" +.Fn STAILQ_EMPTY "STAILQ_HEAD *head" +.Fn STAILQ_ENTRY "TYPE" +.Fn STAILQ_FIRST "STAILQ_HEAD *head" +.Fn STAILQ_FOREACH "TYPE *var" "STAILQ_HEAD *head" "STAILQ_ENTRY NAME" +.Fn STAILQ_HEAD "HEADNAME" "TYPE" +.Fn STAILQ_INIT "STAILQ_HEAD *head" +.Fn STAILQ_INSERT_AFTER "STAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_INSERT_HEAD "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_INSERT_TAIL "STAILQ_HEAD *head" "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_LAST "STAILQ_HEAD *head" "TYPE" "STAILQ_ENTRY NAME" +.Fn STAILQ_NEXT "TYPE *elm" "STAILQ_ENTRY NAME" +.Fn STAILQ_REMOVE_HEAD "STAILQ_HEAD *head" "STAILQ_ENTRY NAME" +.Fn STAILQ_REMOVE "STAILQ_HEAD *head" "TYPE *elm" "TYPE" "STAILQ_ENTRY NAME" +.\" +.Fn LIST_EMPTY "LIST_HEAD *head" +.Fn LIST_ENTRY "TYPE" +.Fn LIST_FIRST "LIST_HEAD *head" +.Fn LIST_FOREACH "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME" +.Fn LIST_HEAD "HEADNAME" "TYPE" +.Fn LIST_INIT "LIST_HEAD *head" +.Fn LIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_INSERT_HEAD "LIST_HEAD *head" "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_NEXT "TYPE *elm" "LIST_ENTRY NAME" +.Fn LIST_REMOVE "TYPE *elm" "LIST_ENTRY NAME" +.\" +.Fn TAILQ_EMPTY "TAILQ_HEAD *head" +.Fn TAILQ_ENTRY "TYPE" +.Fn TAILQ_FIRST "TAILQ_HEAD *head" +.Fn TAILQ_FOREACH "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" +.Fn TAILQ_FOREACH_REVERSE "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME" +.Fn TAILQ_HEAD "HEADNAME" "TYPE" +.Fn TAILQ_INIT "TAILQ_HEAD *head" +.Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME" +.Fn TAILQ_NEXT "TYPE *elm" "TAILQ_ENTRY NAME" +.Fn TAILQ_PREV "TYPE *elm" "HEADNAME" "TAILQ_ENTRY NAME" +.Fn TAILQ_REMOVE "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" +.\" +.Fn CIRCLEQ_EMPTY "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_ENTRY "TYPE" +.Fn CIRCLEQ_FIRST "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_FOREACH "TYPE *var" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_FOREACH_REVERSE "TYPE *var" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_HEAD "HEADNAME" "TYPE" +.Fn CIRCLEQ_INIT "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_INSERT_AFTER "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_INSERT_BEFORE "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_INSERT_HEAD "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_INSERT_TAIL "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_LAST "CIRCLEQ_HEAD *head" +.Fn CIRCLEQ_NEXT "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLE_PREV "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Fn CIRCLEQ_REMOVE "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" +.Sh DESCRIPTION +These macros define and operate on five types of data structures: +singly-linked lists, singly-linked tail queues, lists, tail queues, +and circular queues. +All five structures support the following functionality: +.Bl -enum -compact -offset indent +.It +Insertion of a new entry at the head of the list. +.It +Insertion of a new entry after any element in the list. +.It +O(1) removal of an entry from the head of the list. +.It +O(n) removal of any entry in the list. +.It +Forward traversal through the list. +.El +.Pp +Singly-linked lists are the simplest of the five data structures +and support only the above functionality. +Singly-linked lists are ideal for applications with large datasets +and few or no removals, +or for implementing a LIFO queue. +.Pp +Singly-linked tail queues add the following functionality: +.Bl -enum -compact -offset indent +.It +Entries can be added at the end of a list. +.El +However: +.Bl -enum -compact -offset indent +.It +All list insertions must specify the head of the list. +.It +Each head entry requires two pointers rather than one. +.It +Code size is about 15% greater and operations run about 20% slower +than singly-linked lists. +.El +.Pp +Singly-linked tailqs are ideal for applications with large datasets and +few or no removals, +or for implementing a FIFO queue. +.Pp +All doubly linked types of data structures (lists, tail queues, and circle +queues) additionally allow: +.Bl -enum -compact -offset indent +.It +Insertion of a new entry before any element in the list. +.It +O(1) removal of any entry in the list. +.El +However: +.Bl -enum -compact -offset indent +.It +Each elements requires two pointers rather than one. +.It +Code size and execution time of operations (except for removal) is about +twice that of the singly-linked data-structures. +.El +.Pp +Linked lists are the simplest of the doubly linked data structures and support +only the above functionality over singly-linked lists. +.Pp +Tail queues add the following functionality: +.Bl -enum -compact -offset indent +.It +Entries can be added at the end of a list. +.It +They may be traversed backwards, from tail to head. +.El +However: +.Bl -enum -compact -offset indent +.It +All list insertions and removals must specify the head of the list. +.It +Each head entry requires two pointers rather than one. +.It +Code size is about 15% greater and operations run about 20% slower +than singly-linked lists. +.El +.Pp +Circular queues add the following functionality: +.Bl -enum -compact -offset indent +.It +Entries can be added at the end of a list. +.It +They may be traversed backwards, from tail to head. +.El +However: +.Bl -enum -compact -offset indent +.It +All list insertions and removals must specify the head of the list. +.It +Each head entry requires two pointers rather than one. +.It +The termination condition for traversal is more complex. +.It +Code size is about 40% greater and operations run about 45% slower +than lists. +.El +.Pp +In the macro definitions, +.Fa TYPE +is the name of a user defined structure, +that must contain a field of type +.Li SLIST_ENTRY , +.Li STAILQ_ENTRY , +.Li LIST_ENTRY , +.Li TAILQ_ENTRY , +or +.Li CIRCLEQ_ENTRY , +named +.Fa NAME . +The argument +.Fa HEADNAME +is the name of a user defined structure that must be declared +using the macros +.Li SLIST_HEAD , +.Li STAILQ_HEAD , +.Li LIST_HEAD , +.Li TAILQ_HEAD , +or +.Li CIRCLEQ_HEAD . +See the examples below for further explanation of how these +macros are used. +.Sh SINGLY-LINKED LISTS +A singly-linked list is headed by a structure defined by the +.Nm SLIST_HEAD +macro. +This structure contains a single pointer to the first element +on the list. +The elements are singly linked for minimum space and pointer manipulation +overhead at the expense of O(n) removal for arbitrary elements. +New elements can be added to the list after an existing element or +at the head of the list. +An +.Fa SLIST_HEAD +structure is declared as follows: +.Bd -literal -offset indent +SLIST_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Fa HEADNAME +is the name of the structure to be defined, and +.Fa TYPE +is the type of the elements to be linked into the list. +A pointer to the head of the list can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm SLIST_EMPTY +evaluates to true if there are no elements in the list. +.Pp +The macro +.Nm SLIST_ENTRY +declares a structure that connects the elements in +the list. +.Pp +The macro +.Nm SLIST_FIRST +returns the first element in the list or NULL if the list is empty. +.Pp +The macro +.Nm SLIST_FOREACH +traverses the list referenced by +.Fa head +in the forward direction, assigning each element in +turn to +.Fa var . +.Pp +The macro +.Nm SLIST_INIT +initializes the list referenced by +.Fa head . +.Pp +The macro +.Nm SLIST_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the list. +.Pp +The macro +.Nm SLIST_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm SLIST_NEXT +returns the next element in the list. +.Pp +The macro +.Nm SLIST_REMOVE_HEAD +removes the element +.Fa elm +from the head of the list. +For optimum efficiency, +elements being removed from the head of the list should explicitly use +this macro instead of the generic +.Fa SLIST_REMOVE +macro. +.Pp +The macro +.Nm SLIST_REMOVE +removes the element +.Fa elm +from the list. +.Sh SINGLY-LINKED LIST EXAMPLE +.Bd -literal +SLIST_HEAD(slisthead, entry) head; +struct slisthead *headp; /* Singly-linked List head. */ +struct entry { + ... + SLIST_ENTRY(entry) entries; /* Singly-linked List. */ + ... +} *n1, *n2, *n3, *np; + +SLIST_INIT(&head); /* Initialize the list. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +SLIST_INSERT_HEAD(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +SLIST_INSERT_AFTER(n1, n2, entries); + +SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */ +free(n2); + +n3 = SLIST_FIRST(&head); +SLIST_REMOVE_HEAD(&head, entries); /* Deletion. */ +free(n3); + + /* Forward traversal. */ +SLIST_FOREACH(np, &head, entries) + np-> ... + +while (!SLIST_EMPTY(&head)) { /* List Deletion. */ + n1 = SLIST_FIRST(&head); + SLIST_REMOVE_HEAD(&head, entries); + free(n1); +} +.Ed +.Sh SINGLY-LINKED TAIL QUEUES +A singly-linked tail queue is headed by a structure defined by the +.Nm STAILQ_HEAD +macro. +This structure contains a pair of pointers, +one to the first element in the tail queue and the other to +the last element in the tail queue. +The elements are singly linked for minimum space and pointer +manipulation overhead at the expense of O(n) removal for arbitrary +elements. +New elements can be added to the tail queue after an existing element, +at the head of the tail queue, or at the end of the tail queue. +A +.Fa STAILQ_HEAD +structure is declared as follows: +.Bd -literal -offset indent +STAILQ_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Li HEADNAME +is the name of the structure to be defined, and +.Li TYPE +is the type of the elements to be linked into the tail queue. +A pointer to the head of the tail queue can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm STAILQ_EMPTY +evaluates to true if there are no items on the tail queue. +.Pp +The macro +.Nm STAILQ_ENTRY +declares a structure that connects the elements in +the tail queue. +.Pp +The macro +.Nm STAILQ_FIRST +returns the first item on the tail queue or NULL if the tail queue +is empty. +.Pp +The macro +.Nm STAILQ_FOREACH +traverses the tail queue referenced by +.Fa head +in the forward direction, assigning each element +in turn to +.Fa var . +.Pp +The macro +.Nm STAILQ_INIT +initializes the tail queue referenced by +.Fa head . +.Pp +The macro +.Nm STAILQ_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the tail queue. +.Pp +The macro +.Nm STAILQ_INSERT_TAIL +inserts the new element +.Fa elm +at the end of the tail queue. +.Pp +The macro +.Nm STAILQ_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm STAILQ_LAST +returns the last item on the tail queue. +If the tail queue is empty the return value is undefined. +.Pp +The macro +.Nm STAILQ_NEXT +returns the next item on the tail queue, or NULL this item is the last. +.Pp +The macro +.Nm STAILQ_REMOVE_HEAD +removes the element +.Fa elm +from the head of the tail queue. +For optimum efficiency, +elements being removed from the head of the tail queue should +use this macro explicitly rather than the generic +.Fa STAILQ_REMOVE +macro. +.Pp +The macro +.Nm STAILQ_REMOVE +removes the element +.Fa elm +from the tail queue. +.Sh SINGLY-LINKED TAIL QUEUE EXAMPLE +.Bd -literal +STAILQ_HEAD(stailhead, entry) head; +struct stailhead *headp; /* Singly-linked tail queue head. */ +struct entry { + ... + STAILQ_ENTRY(entry) entries; /* Tail queue. */ + ... +} *n1, *n2, *n3, *np; + +STAILQ_INIT(&head); /* Initialize the queue. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +STAILQ_INSERT_HEAD(&head, n1, entries); + +n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ +STAILQ_INSERT_TAIL(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +STAILQ_INSERT_AFTER(&head, n1, n2, entries); + + /* Deletion. */ +STAILQ_REMOVE(&head, n2, entry, entries); +free(n2); + + /* Deletion from the head */ +n3 = STAILQ_FIRST(&head); +STAILQ_REMOVE_HEAD(&head, entries); +free(n3); + + /* Forward traversal. */ +STAILQ_FOREACH(np, &head, entries) + np-> ... + /* TailQ Deletion. */ +while (!STAILQ_EMPTY(&head)) { + n1 = STAILQ_HEAD(&head); + STAILQ_REMOVE_HEAD(&head, entries); + free(n1); +} + /* Faster TailQ Deletion. */ +n1 = STAILQ_FIRST(&head); +while (n1 != NULL) { + n2 = STAILQ_NEXT(n1, entries); + free(n1); + n1 = n2; +} +STAILQ_INIT(&head); +.Ed +.Sh LISTS +A list is headed by a structure defined by the +.Nm LIST_HEAD +macro. +This structure contains a single pointer to the first element +on the list. +The elements are doubly linked so that an arbitrary element can be +removed without traversing the list. +New elements can be added to the list after an existing element, +before an existing element, or at the head of the list. +A +.Fa LIST_HEAD +structure is declared as follows: +.Bd -literal -offset indent +LIST_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Fa HEADNAME +is the name of the structure to be defined, and +.Fa TYPE +is the type of the elements to be linked into the list. +A pointer to the head of the list can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm LIST_EMPTY +evaluates to true if their are no elements in the list. +.Pp +The macro +.Nm LIST_ENTRY +declares a structure that connects the elements in +the list. +.Pp +The macro +.Nm LIST_FIRST +returns the first element in the list or NULL if the list +is empty. +.Pp +The macro +.Nm LIST_FOREACH +traverses the list referenced by +.Fa head +in the forward direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm LIST_INIT +initializes the list referenced by +.Fa head . +.Pp +The macro +.Nm LIST_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the list. +.Pp +The macro +.Nm LIST_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm LIST_INSERT_BEFORE +inserts the new element +.Fa elm +before the element +.Fa listelm . +.Pp +The macro +.Nm LIST_NEXT +returns the next element in the list, or NULL if this is the last. +.Pp +The macro +.Nm LIST_REMOVE +removes the element +.Fa elm +from the list. +.Sh LIST EXAMPLE +.Bd -literal +LIST_HEAD(listhead, entry) head; +struct listhead *headp; /* List head. */ +struct entry { + ... + LIST_ENTRY(entry) entries; /* List. */ + ... +} *n1, *n2, *n3, *np; + +LIST_INIT(&head); /* Initialize the list. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +LIST_INSERT_HEAD(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +LIST_INSERT_AFTER(n1, n2, entries); + +n3 = malloc(sizeof(struct entry)); /* Insert before. */ +LIST_INSERT_BEFORE(n2, n3, entries); + +LIST_REMOVE(n2, entries); /* Deletion. */ +free(n2); + + /* Forward traversal. */ +LIST_FOREACH(np, &head, entries) + np-> ... + +while (!LIST_EMPTY(&head)) { /* List Deletion. */ + n1 = LIST_FIRST(&head); + LIST_REMOVE(n1, entries); + free(n1); +} + +n1 = LIST_FIRST(&head); /* Faster List Delete. */ +while (n1 != NULL) { + n2 = LIST_NEXT(n1, entries); + free(n1); + n1 = n2; +} +LIST_INIT(&head); +.Ed +.Sh TAIL QUEUES +A tail queue is headed by a structure defined by the +.Nm TAILQ_HEAD +macro. +This structure contains a pair of pointers, +one to the first element in the tail queue and the other to +the last element in the tail queue. +The elements are doubly linked so that an arbitrary element can be +removed without traversing the tail queue. +New elements can be added to the tail queue after an existing element, +before an existing element, at the head of the tail queue, +or at the end of the tail queue. +A +.Fa TAILQ_HEAD +structure is declared as follows: +.Bd -literal -offset indent +TAILQ_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Li HEADNAME +is the name of the structure to be defined, and +.Li TYPE +is the type of the elements to be linked into the tail queue. +A pointer to the head of the tail queue can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm TAILQ_EMPTY +evaluates to true if there are no items on the tail queue. +.Pp +The macro +.Nm TAILQ_ENTRY +declares a structure that connects the elements in +the tail queue. +.Pp +The macro +.Nm TAILQ_FIRST +returns the first item on the tail queue or NULL if the tail queue +is empty. +.Pp +The macro +.Nm TAILQ_FOREACH +traverses the tail queue referenced by +.Fa head +in the forward direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm TAILQ_FOREACH_REVERSE +traverses the tail queue referenced by +.Fa head +in the reverse direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm TAILQ_INIT +initializes the tail queue referenced by +.Fa head . +.Pp +The macro +.Nm TAILQ_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the tail queue. +.Pp +The macro +.Nm TAILQ_INSERT_TAIL +inserts the new element +.Fa elm +at the end of the tail queue. +.Pp +The macro +.Nm TAILQ_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm TAILQ_INSERT_BEFORE +inserts the new element +.Fa elm +before the element +.Fa listelm . +.Pp +The macro +.Nm TAILQ_LAST +returns the last item on the tail queue. +If the tail queue is empty the return value is undefined. +.Pp +The macro +.Nm TAILQ_NEXT +returns the next item on the tail queue, or NULL if this item is the last. +.Pp +The macro +.Nm TAILQ_PREV +returns the previous item on the tail queue, or NULL if this item +is the first. +.Pp +The macro +.Nm TAILQ_REMOVE +removes the element +.Fa elm +from the tail queue. +.Sh TAIL QUEUE EXAMPLE +.Bd -literal +TAILQ_HEAD(tailhead, entry) head; +struct tailhead *headp; /* Tail queue head. */ +struct entry { + ... + TAILQ_ENTRY(entry) entries; /* Tail queue. */ + ... +} *n1, *n2, *n3, *np; + +TAILQ_INIT(&head); /* Initialize the queue. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +TAILQ_INSERT_HEAD(&head, n1, entries); + +n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ +TAILQ_INSERT_TAIL(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +TAILQ_INSERT_AFTER(&head, n1, n2, entries); + +n3 = malloc(sizeof(struct entry)); /* Insert before. */ +TAILQ_INSERT_BEFORE(n2, n3, entries); + +TAILQ_REMOVE(&head, n2, entries); /* Deletion. */ +free(n2); + /* Forward traversal. */ +TAILQ_FOREACH(np, &head, entries) + np-> ... + /* Reverse traversal. */ +TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries) + np-> ... + /* TailQ Deletion. */ +while (!TAILQ_EMPTY(head)) { + n1 = TAILQ_FIRST(&head); + TAILQ_REMOVE(&head, n1, entries); + free(n1); +} + /* Faster TailQ Deletion. */ + +n1 = TAILQ_FIRST(&head); +while (n1 != NULL) { + n2 = TAILQ_NEXT(n1, entries); + free(n1); + n1 = n2; +} +TAILQ_INIT(&head); +.Ed +.Sh CIRCULAR QUEUES +A circular queue is headed by a structure defined by the +.Nm CIRCLEQ_HEAD +macro. +This structure contains a pair of pointers, +one to the first element in the circular queue and the other to the +last element in the circular queue. +The elements are doubly linked so that an arbitrary element can be +removed without traversing the queue. +New elements can be added to the queue after an existing element, +before an existing element, at the head of the queue, or at the end +of the queue. +A +.Fa CIRCLEQ_HEAD +structure is declared as follows: +.Bd -literal -offset indent +CIRCLEQ_HEAD(HEADNAME, TYPE) head; +.Ed +.Pp +where +.Li HEADNAME +is the name of the structure to be defined, and +.Li TYPE +is the type of the elements to be linked into the circular queue. +A pointer to the head of the circular queue can later be declared as: +.Bd -literal -offset indent +struct HEADNAME *headp; +.Ed +.Pp +(The names +.Li head +and +.Li headp +are user selectable.) +.Pp +The macro +.Nm CIRCLEQ_EMPTY +evaluates to true if there are no items on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_ENTRY +declares a structure that connects the elements in +the circular queue. +.Pp +The macro +.Nm CIRCLEQ_FIRST +returns the first item on the circle queue. +.Pp +The macro +.Nm CICRLEQ_FOREACH +traverses the circle queue referenced by +.Fa head +in the forward direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm CICRLEQ_FOREACH_REVERSE +traverses the circle queue referenced by +.Fa head +in the reverse direction, assigning each element in turn to +.Fa var . +.Pp +The macro +.Nm CIRCLEQ_INIT +initializes the circular queue referenced by +.Fa head . +.Pp +The macro +.Nm CIRCLEQ_INSERT_HEAD +inserts the new element +.Fa elm +at the head of the circular queue. +.Pp +The macro +.Nm CIRCLEQ_INSERT_TAIL +inserts the new element +.Fa elm +at the end of the circular queue. +.Pp +The macro +.Nm CIRCLEQ_INSERT_AFTER +inserts the new element +.Fa elm +after the element +.Fa listelm . +.Pp +The macro +.Nm CIRCLEQ_INSERT_BEFORE +inserts the new element +.Fa elm +before the element +.Fa listelm . +.Pp +The macro +.Nm CIRCLEQ_LAST +returns the last item on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_NEXT +returns the next item on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_PREV +returns the previous item on the circle queue. +.Pp +The macro +.Nm CIRCLEQ_REMOVE +removes the element +.Fa elm +from the circular queue. +.Sh CIRCULAR QUEUE EXAMPLE +.Bd -literal +CIRCLEQ_HEAD(circleq, entry) head; +struct circleq *headp; /* Circular queue head. */ +struct entry { + ... + CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */ + ... +} *n1, *n2, *np; + +CIRCLEQ_INIT(&head); /* Initialize the circular queue. */ + +n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ +CIRCLEQ_INSERT_HEAD(&head, n1, entries); + +n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ +CIRCLEQ_INSERT_TAIL(&head, n1, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert after. */ +CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); + +n2 = malloc(sizeof(struct entry)); /* Insert before. */ +CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); + +CIRCLEQ_REMOVE(&head, n1, entries); /* Deletion. */ +free(n1); + /* Forward traversal. */ +CIRCLEQ_FOREACH(np, &head, entries) + np-> ... + /* Reverse traversal. */ +CIRCLEQ_FOREACH_REVERSE(np, &head, entries) + np-> ... + /* CircleQ Deletion. */ +while (CIRCLEQ_FIRST(&head) != (void *)&head) { + n1 = CIRCLEQ_HEAD(&head); + CIRCLEQ_REMOVE(&head, n1, entries); + free(n1); +} + /* Faster CircleQ Deletion. */ +n1 = CIRCLEQ_FIRST(&head); +while (n1 != (void *)&head) { + n2 = CIRCLEQ_NEXT(n1, entries); + free(n1); + n1 = n2; +} +CIRCLEQ_INIT(&head); +.Ed +.Sh HISTORY +The +.Nm queue +functions first appeared in +.Bx 4.4 .