From: Jingning Han Date: Fri, 12 Apr 2019 22:59:51 +0000 (-0700) Subject: Use uniform sampling as initial centers for k-means X-Git-Tag: v1.8.1~113^2 X-Git-Url: https://granicus.if.org/sourcecode?a=commitdiff_plain;h=4d14b55ee7237f7ad109f4fae5c3e515a0120a41;p=libvpx Use uniform sampling as initial centers for k-means The Wiener variance output has been sorted prior to the clustering, which allows to directly use the uniform sampling as the initial center points. It avoids empty cluster situations when the samples are heavily distributed at two far ends and leave the middle empty. Change-Id: I159fbfa6bbb4aafd19411fd005666d144cca30fc --- diff --git a/vp9/encoder/vp9_encodeframe.c b/vp9/encoder/vp9_encodeframe.c index 933cd3cb4..d6adce2f6 100644 --- a/vp9/encoder/vp9_encodeframe.c +++ b/vp9/encoder/vp9_encodeframe.c @@ -5788,13 +5788,11 @@ int vp9_get_group_idx(double value, double *boundary_ls, int k) { void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k, KMEANS_DATA *arr, int size) { - double min, max; - double step; int i, j; int itr; int group_idx; - double sum; - int count; + double sum[MAX_KMEANS_GROUPS]; + int count[MAX_KMEANS_GROUPS]; vpx_clear_system_state(); @@ -5802,38 +5800,37 @@ void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k, qsort(arr, size, sizeof(*arr), compare_kmeans_data); - min = arr[0].value; - max = arr[size - 1].value; - // initialize the center points - step = (max - min) * 1. / k; for (j = 0; j < k; ++j) { - ctr_ls[j] = min + j * step + step / 2; + ctr_ls[j] = arr[(size * j) / k].value; } for (itr = 0; itr < 10; ++itr) { compute_boundary_ls(ctr_ls, k, boundary_ls); - group_idx = 0; - count = 0; - sum = 0; + for (i = 0; i < MAX_KMEANS_GROUPS; ++i) { + sum[i] = 0; + count[i] = 0; + } + for (i = 0; i < size; ++i) { + // place samples into clusters + group_idx = 0; while (arr[i].value >= boundary_ls[group_idx]) { ++group_idx; if (group_idx == k - 1) { break; } } + sum[group_idx] += arr[i].value; + ++count[group_idx]; + } - sum += arr[i].value; - ++count; + for (group_idx = 0; group_idx < k; ++group_idx) { + if (count[group_idx] > 0) + ctr_ls[group_idx] = sum[group_idx] / count[group_idx]; - if (i + 1 == size || arr[i + 1].value >= boundary_ls[group_idx]) { - if (count > 0) { - ctr_ls[group_idx] = sum / count; - } - count = 0; - sum = 0; - } + sum[group_idx] = 0; + count[group_idx] = 0; } }