void EmitSLEB128(int64_t Value, const char *Desc = nullptr) const;
/// Emit the specified unsigned leb128 value.
- void EmitULEB128(uint64_t Value, const char *Desc = nullptr,
- unsigned PadTo = 0) const;
+ void EmitULEB128(uint64_t Value, const char *Desc = nullptr) const;
+
+ /// Emit the specified unsigned leb128 value padded to a specific number
+ /// bytes
+ void EmitPaddedULEB128(uint64_t Value, unsigned PadTo,
+ const char *Desc = nullptr) const;
/// Emit a .byte 42 directive that corresponds to an encoding. If verbose
/// assembly output is enabled, we output comments describing the encoding.
/// \brief Special case of EmitULEB128Value that avoids the client having to
/// pass in a MCExpr for constant integers.
- void EmitULEB128IntValue(uint64_t Value, unsigned Padding = 0);
+ void EmitULEB128IntValue(uint64_t Value);
+
+ /// \brief Like EmitULEB128Value but pads the output to specific number of
+ /// bytes.
+ void EmitPaddedULEB128IntValue(uint64_t Value, unsigned PadTo);
/// \brief Special case of EmitSLEB128Value that avoids the client having to
/// pass in a MCExpr for constant integers.
/// Utility function to encode a SLEB128 value to an output stream.
inline void encodeSLEB128(int64_t Value, raw_ostream &OS,
- unsigned Padding = 0) {
+ unsigned PadTo = 0) {
bool More;
+ unsigned Count = 0;
do {
uint8_t Byte = Value & 0x7f;
// NOTE: this assumes that this signed shift is an arithmetic right shift.
Value >>= 7;
More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) ||
((Value == -1) && ((Byte & 0x40) != 0))));
- if (More || Padding != 0)
+ Count++;
+ if (More || Count < PadTo)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
OS << char(Byte);
} while (More);
// Pad with 0x80 and emit a terminating byte at the end.
- if (Padding != 0) {
+ if (Count < PadTo) {
uint8_t PadValue = Value < 0 ? 0x7f : 0x00;
- for (; Padding != 1; --Padding)
+ for (; Count < PadTo - 1; ++Count)
OS << char(PadValue | 0x80);
OS << char(PadValue);
}
/// Utility function to encode a SLEB128 value to a buffer. Returns
/// the length in bytes of the encoded value.
-inline unsigned encodeSLEB128(int64_t Value, uint8_t *p, unsigned Padding = 0) {
+inline unsigned encodeSLEB128(int64_t Value, uint8_t *p, unsigned PadTo = 0) {
uint8_t *orig_p = p;
+ unsigned Count = 0;
bool More;
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) ||
((Value == -1) && ((Byte & 0x40) != 0))));
- if (More || Padding != 0)
+ Count++;
+ if (More || Count < PadTo)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
*p++ = Byte;
} while (More);
// Pad with 0x80 and emit a terminating byte at the end.
- if (Padding != 0) {
+ if (Count < PadTo) {
uint8_t PadValue = Value < 0 ? 0x7f : 0x00;
- for (; Padding != 1; --Padding)
+ for (; Count < PadTo - 1; ++Count)
*p++ = (PadValue | 0x80);
*p++ = PadValue;
}
/// Utility function to encode a ULEB128 value to an output stream.
inline void encodeULEB128(uint64_t Value, raw_ostream &OS,
- unsigned Padding = 0) {
+ unsigned PadTo = 0) {
+ unsigned Count = 0;
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
- if (Value != 0 || Padding != 0)
+ Count++;
+ if (Value != 0 || Count < PadTo)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
OS << char(Byte);
} while (Value != 0);
// Pad with 0x80 and emit a null byte at the end.
- if (Padding != 0) {
- for (; Padding != 1; --Padding)
+ if (Count < PadTo) {
+ for (; Count < PadTo - 1; ++Count)
OS << '\x80';
OS << '\x00';
+ Count++;
}
}
/// Utility function to encode a ULEB128 value to a buffer. Returns
/// the length in bytes of the encoded value.
inline unsigned encodeULEB128(uint64_t Value, uint8_t *p,
- unsigned Padding = 0) {
+ unsigned PadTo = 0) {
uint8_t *orig_p = p;
+ unsigned Count = 0;
do {
uint8_t Byte = Value & 0x7f;
Value >>= 7;
- if (Value != 0 || Padding != 0)
+ Count++;
+ if (Value != 0 || Count < PadTo)
Byte |= 0x80; // Mark this byte to show that more bytes will follow.
*p++ = Byte;
} while (Value != 0);
// Pad with 0x80 and emit a null byte at the end.
- if (Padding != 0) {
- for (; Padding != 1; --Padding)
+ if (Count < PadTo) {
+ for (; Count < PadTo - 1; ++Count)
*p++ = '\x80';
*p++ = '\x00';
}
+
return (unsigned)(p - orig_p);
}
}
/// EmitULEB128 - emit the specified unsigned leb128 value.
-void AsmPrinter::EmitULEB128(uint64_t Value, const char *Desc,
- unsigned PadTo) const {
+void AsmPrinter::EmitPaddedULEB128(uint64_t Value, unsigned PadTo,
+ const char *Desc) const {
if (isVerbose() && Desc)
OutStreamer->AddComment(Desc);
- OutStreamer->EmitULEB128IntValue(Value, PadTo);
+ OutStreamer->EmitPaddedULEB128IntValue(Value, PadTo);
+}
+
+void AsmPrinter::EmitULEB128(uint64_t Value, const char *Desc) const {
+ if (isVerbose() && Desc)
+ OutStreamer->AddComment(Desc);
+
+ OutStreamer->EmitULEB128IntValue(Value);
}
static const char *DecodeDWARFEncoding(unsigned Encoding) {
sizeof(int8_t) + // TType format
(HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size
TTypeBaseOffset; // TType base offset
- unsigned SizeAlign = (4 - TotalSize) & 3;
+ unsigned PadBytes = (4 - TotalSize) & 3;
if (HaveTTData) {
// Account for any extra padding that will be added to the call site table
// length.
- Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
- SizeAlign = 0;
+ Asm->EmitPaddedULEB128(TTypeBaseOffset, TTypeBaseOffsetSize + PadBytes,
+ "@TType base offset");
+ PadBytes = 0;
}
bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
// Add extra padding if it wasn't added to the TType base offset.
- Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
+ Asm->EmitPaddedULEB128(CallSiteTableLength,
+ CallSiteTableLengthSize + PadBytes,
+ "Call site table length");
// Emit the landing pad site information.
unsigned idx = 0;
Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
// Add extra padding if it wasn't added to the TType base offset.
- Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
+ Asm->EmitPaddedULEB128(CallSiteTableLength,
+ CallSiteTableLengthSize + PadBytes,
+ "Call site table length");
unsigned Entry = 0;
for (SmallVectorImpl<CallSiteEntry>::const_iterator
/// EmitULEB128Value - Special case of EmitULEB128Value that avoids the
/// client having to pass in a MCExpr for constant integers.
-void MCStreamer::EmitULEB128IntValue(uint64_t Value, unsigned Padding) {
+void MCStreamer::EmitPaddedULEB128IntValue(uint64_t Value, unsigned PadTo) {
SmallString<128> Tmp;
raw_svector_ostream OSE(Tmp);
- encodeULEB128(Value, OSE, Padding);
+ encodeULEB128(Value, OSE, PadTo);
EmitBytes(OSE.str());
}
+void MCStreamer::EmitULEB128IntValue(uint64_t Value) {
+ EmitPaddedULEB128IntValue(Value, 0);
+}
+
/// EmitSLEB128Value - Special case of EmitSLEB128Value that avoids the
/// client having to pass in a MCExpr for constant integers.
void MCStreamer::EmitSLEB128IntValue(int64_t Value) {
WasmObjectWriter::~WasmObjectWriter() {}
-// Return the padding size to write a 32-bit value into a 5-byte ULEB128.
-static unsigned PaddingFor5ByteULEB128(uint32_t X) {
- return X == 0 ? 4 : (4u - (31u - countLeadingZeros(X)) / 7u);
-}
-
-// Return the padding size to write a 32-bit value into a 5-byte SLEB128.
-static unsigned PaddingFor5ByteSLEB128(int32_t X) {
- return 5 - getSLEB128Size(X);
-}
-
// Write out a section header and a patchable section size field.
void WasmObjectWriter::startSection(SectionBookkeeping &Section,
unsigned SectionId,
report_fatal_error("section size does not fit in a uint32_t");
DEBUG(dbgs() << "endSection size=" << Size << "\n");
- unsigned Padding = PaddingFor5ByteULEB128(Size);
// Write the final section size to the payload_len field, which follows
// the section id byte.
uint8_t Buffer[16];
- unsigned SizeLen = encodeULEB128(Size, Buffer, Padding);
+ unsigned SizeLen = encodeULEB128(Size, Buffer, 5);
assert(SizeLen == 5);
getStream().pwrite((char *)Buffer, SizeLen, Section.SizeOffset);
}
static void
WritePatchableLEB(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) {
uint8_t Buffer[5];
- unsigned Padding = PaddingFor5ByteULEB128(X);
- unsigned SizeLen = encodeULEB128(X, Buffer, Padding);
+ unsigned SizeLen = encodeULEB128(X, Buffer, 5);
assert(SizeLen == 5);
Stream.pwrite((char *)Buffer, SizeLen, Offset);
}
static void
WritePatchableSLEB(raw_pwrite_stream &Stream, int32_t X, uint64_t Offset) {
uint8_t Buffer[5];
- unsigned Padding = PaddingFor5ByteSLEB128(X);
- unsigned SizeLen = encodeSLEB128(X, Buffer, Padding);
+ unsigned SizeLen = encodeSLEB128(X, Buffer, 5);
assert(SizeLen == 5);
Stream.pwrite((char *)Buffer, SizeLen, Offset);
}
} else if (MO.isExpr()) {
const MCOperandInfo &Info = Desc.OpInfo[i];
llvm::MCFixupKind FixupKind;
- size_t PaddedSize;
+ size_t PaddedSize = 5;
if (Info.OperandType == WebAssembly::OPERAND_I32IMM) {
FixupKind = MCFixupKind(WebAssembly::fixup_code_sleb128_i32);
- PaddedSize = 5;
} else if (Info.OperandType == WebAssembly::OPERAND_I64IMM) {
FixupKind = MCFixupKind(WebAssembly::fixup_code_sleb128_i64);
PaddedSize = 10;
Info.OperandType == WebAssembly::OPERAND_OFFSET32 ||
Info.OperandType == WebAssembly::OPERAND_TYPEINDEX) {
FixupKind = MCFixupKind(WebAssembly::fixup_code_uleb128_i32);
- PaddedSize = 5;
} else if (Info.OperandType == WebAssembly::OPERAND_GLOBAL) {
FixupKind = MCFixupKind(WebAssembly::fixup_code_global_index);
- PaddedSize = 5;
} else {
llvm_unreachable("unexpected symbolic operand kind");
}
OS.tell() - Start, MO.getExpr(),
FixupKind, MI.getLoc()));
++MCNumFixups;
- encodeULEB128(0, OS, PaddedSize - 1);
+ encodeULEB128(0, OS, PaddedSize);
} else {
llvm_unreachable("unexpected operand kind");
}
EXPECT_SLEB128_EQ("\xc0\x00", 64, 0);
// Encode SLEB128 with some extra padding bytes
- EXPECT_SLEB128_EQ("\x80\x00", 0, 1);
- EXPECT_SLEB128_EQ("\x80\x80\x00", 0, 2);
- EXPECT_SLEB128_EQ("\xff\x80\x00", 0x7f, 1);
- EXPECT_SLEB128_EQ("\xff\x80\x80\x00", 0x7f, 2);
- EXPECT_SLEB128_EQ("\x80\x81\x00", 0x80, 1);
- EXPECT_SLEB128_EQ("\x80\x81\x80\x00", 0x80, 2);
- EXPECT_SLEB128_EQ("\xc0\x7f", -0x40, 1);
- EXPECT_SLEB128_EQ("\xc0\xff\x7f", -0x40, 2);
- EXPECT_SLEB128_EQ("\x80\xff\x7f", -0x80, 1);
- EXPECT_SLEB128_EQ("\x80\xff\xff\x7f", -0x80, 2);
+ EXPECT_SLEB128_EQ("\x80\x00", 0, 2);
+ EXPECT_SLEB128_EQ("\x80\x80\x00", 0, 3);
+ EXPECT_SLEB128_EQ("\xff\x80\x00", 0x7f, 3);
+ EXPECT_SLEB128_EQ("\xff\x80\x80\x00", 0x7f, 4);
+ EXPECT_SLEB128_EQ("\x80\x81\x00", 0x80, 3);
+ EXPECT_SLEB128_EQ("\x80\x81\x80\x00", 0x80, 4);
+ EXPECT_SLEB128_EQ("\xc0\x7f", -0x40, 2);
+
+ EXPECT_SLEB128_EQ("\xc0\xff\x7f", -0x40, 3);
+ EXPECT_SLEB128_EQ("\x80\xff\x7f", -0x80, 3);
+ EXPECT_SLEB128_EQ("\x80\xff\xff\x7f", -0x80, 4);
#undef EXPECT_SLEB128_EQ
}
EXPECT_ULEB128_EQ("\x81\x02", 0x101, 0);
// Encode ULEB128 with some extra padding bytes
- EXPECT_ULEB128_EQ("\x80\x00", 0, 1);
- EXPECT_ULEB128_EQ("\x80\x80\x00", 0, 2);
- EXPECT_ULEB128_EQ("\xff\x00", 0x7f, 1);
- EXPECT_ULEB128_EQ("\xff\x80\x00", 0x7f, 2);
- EXPECT_ULEB128_EQ("\x80\x81\x00", 0x80, 1);
- EXPECT_ULEB128_EQ("\x80\x81\x80\x00", 0x80, 2);
+ EXPECT_ULEB128_EQ("\x80\x00", 0, 2);
+ EXPECT_ULEB128_EQ("\x80\x80\x00", 0, 3);
+ EXPECT_ULEB128_EQ("\xff\x00", 0x7f, 2);
+ EXPECT_ULEB128_EQ("\xff\x80\x00", 0x7f, 3);
+ EXPECT_ULEB128_EQ("\x80\x81\x00", 0x80, 3);
+ EXPECT_ULEB128_EQ("\x80\x81\x80\x00", 0x80, 4);
#undef EXPECT_ULEB128_EQ
}