For example::
- from multiprocessing import Pool
+ from multiprocessing import Pool, TimeoutError
+ import time
+ import os
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
- result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
- print result.get(timeout=1) # prints "100" unless your computer is *very* slow
- print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"
+
+ # print "[0, 1, 4,..., 81]"
+ print pool.map(f, range(10))
+
+ # print same numbers in arbitrary order
+ for i in pool.imap_unordered(f, range(10)):
+ print i
+
+ # evaluate "f(20)" asynchronously
+ res = pool.apply_async(f, (20,)) # runs in *only* one process
+ print res.get(timeout=1) # prints "400"
+
+ # evaluate "os.getpid()" asynchronously
+ res = pool.apply_async(os.getpid, ()) # runs in *only* one process
+ print res.get(timeout=1) # prints the PID of that process
+
+ # launching multiple evaluations asynchronously *may* use more processes
+ multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]
+ print [res.get(timeout=1) for res in multiple_results]
+
+ # make a single worker sleep for 10 secs
+ res = pool.apply_async(time.sleep, (10,))
+ try:
+ print res.get(timeout=1)
+ except TimeoutError:
+ print "We lacked patience and got a multiprocessing.TimeoutError"
Note that the methods of a pool should only ever be used by the
process which created it.
The following example demonstrates the use of a pool::
from multiprocessing import Pool
+ import time
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
- result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
+ result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a single process
print result.get(timeout=1) # prints "100" unless your computer is *very* slow
print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"
print it.next() # prints "1"
print it.next(timeout=1) # prints "4" unless your computer is *very* slow
- import time
result = pool.apply_async(time.sleep, (10,))
- print result.get(timeout=1) # raises TimeoutError
+ print result.get(timeout=1) # raises multiprocessing.TimeoutError
.. _multiprocessing-listeners-clients: