if args:
ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
return ans._fix_nan(context)
- return NaN
+ return _NaN
class ConversionSyntax(InvalidOperation):
"""Trying to convert badly formed string.
syntax. The result is [0,qNaN].
"""
def handle(self, context, *args):
- return NaN
+ return _NaN
class DivisionByZero(DecimalException, ZeroDivisionError):
"""Division by 0.
"""
def handle(self, context, sign, *args):
- return Infsign[sign]
+ return _Infsign[sign]
class DivisionImpossible(InvalidOperation):
"""Cannot perform the division adequately.
"""
def handle(self, context, *args):
- return NaN
+ return _NaN
class DivisionUndefined(InvalidOperation, ZeroDivisionError):
"""Undefined result of division.
"""
def handle(self, context, *args):
- return NaN
+ return _NaN
class Inexact(DecimalException):
"""Had to round, losing information.
"""
def handle(self, context, *args):
- return NaN
+ return _NaN
class Rounded(DecimalException):
"""Number got rounded (not necessarily changed during rounding).
def handle(self, context, sign, *args):
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
ROUND_HALF_DOWN, ROUND_UP):
- return Infsign[sign]
+ return _Infsign[sign]
if sign == 0:
if context.rounding == ROUND_CEILING:
- return Infsign[sign]
+ return _Infsign[sign]
return _dec_from_triple(sign, '9'*context.prec,
context.Emax-context.prec+1)
if sign == 1:
if context.rounding == ROUND_FLOOR:
- return Infsign[sign]
+ return _Infsign[sign]
return _dec_from_triple(sign, '9'*context.prec,
context.Emax-context.prec+1)
if self._isinfinity():
if not other:
return context._raise_error(InvalidOperation, '(+-)INF * 0')
- return Infsign[resultsign]
+ return _Infsign[resultsign]
if other._isinfinity():
if not self:
return context._raise_error(InvalidOperation, '0 * (+-)INF')
- return Infsign[resultsign]
+ return _Infsign[resultsign]
resultexp = self._exp + other._exp
return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
if self._isinfinity():
- return Infsign[sign]
+ return _Infsign[sign]
if other._isinfinity():
context._raise_error(Clamped, 'Division by infinity')
ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
return ans, ans
else:
- return (Infsign[sign],
+ return (_Infsign[sign],
context._raise_error(InvalidOperation, 'INF % x'))
if not other:
if other._isinfinity():
return context._raise_error(InvalidOperation, 'INF // INF')
else:
- return Infsign[self._sign ^ other._sign]
+ return _Infsign[self._sign ^ other._sign]
if not other:
if self:
if not other:
return context._raise_error(InvalidOperation,
'INF * 0 in fma')
- product = Infsign[self._sign ^ other._sign]
+ product = _Infsign[self._sign ^ other._sign]
elif other._exp == 'F':
if not self:
return context._raise_error(InvalidOperation,
'0 * INF in fma')
- product = Infsign[self._sign ^ other._sign]
+ product = _Infsign[self._sign ^ other._sign]
else:
product = _dec_from_triple(self._sign ^ other._sign,
str(int(self._int) * int(other._int)),
if not self:
return context._raise_error(InvalidOperation, '0 ** 0')
else:
- return Dec_p1
+ return _Dec_p1
# result has sign 1 iff self._sign is 1 and other is an odd integer
result_sign = 0
if other._sign == 0:
return _dec_from_triple(result_sign, '0', 0)
else:
- return Infsign[result_sign]
+ return _Infsign[result_sign]
# Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
if self._isinfinity():
if other._sign == 0:
- return Infsign[result_sign]
+ return _Infsign[result_sign]
else:
return _dec_from_triple(result_sign, '0', 0)
# 1**other = 1, but the choice of exponent and the flags
# depend on the exponent of self, and on whether other is a
# positive integer, a negative integer, or neither
- if self == Dec_p1:
+ if self == _Dec_p1:
if other._isinteger():
# exp = max(self._exp*max(int(other), 0),
# 1-context.prec) but evaluating int(other) directly
if (other._sign == 0) == (self_adj < 0):
return _dec_from_triple(result_sign, '0', 0)
else:
- return Infsign[result_sign]
+ return _Infsign[result_sign]
# from here on, the result always goes through the call
# to _fix at the end of this function.
"""
# if one is negative and the other is positive, it's easy
if self._sign and not other._sign:
- return Dec_n1
+ return _Dec_n1
if not self._sign and other._sign:
- return Dec_p1
+ return _Dec_p1
sign = self._sign
# let's handle both NaN types
if self_nan == other_nan:
if self._int < other._int:
if sign:
- return Dec_p1
+ return _Dec_p1
else:
- return Dec_n1
+ return _Dec_n1
if self._int > other._int:
if sign:
- return Dec_n1
+ return _Dec_n1
else:
- return Dec_p1
- return Dec_0
+ return _Dec_p1
+ return _Dec_0
if sign:
if self_nan == 1:
- return Dec_n1
+ return _Dec_n1
if other_nan == 1:
- return Dec_p1
+ return _Dec_p1
if self_nan == 2:
- return Dec_n1
+ return _Dec_n1
if other_nan == 2:
- return Dec_p1
+ return _Dec_p1
else:
if self_nan == 1:
- return Dec_p1
+ return _Dec_p1
if other_nan == 1:
- return Dec_n1
+ return _Dec_n1
if self_nan == 2:
- return Dec_p1
+ return _Dec_p1
if other_nan == 2:
- return Dec_n1
+ return _Dec_n1
if self < other:
- return Dec_n1
+ return _Dec_n1
if self > other:
- return Dec_p1
+ return _Dec_p1
if self._exp < other._exp:
if sign:
- return Dec_p1
+ return _Dec_p1
else:
- return Dec_n1
+ return _Dec_n1
if self._exp > other._exp:
if sign:
- return Dec_n1
+ return _Dec_n1
else:
- return Dec_p1
- return Dec_0
+ return _Dec_p1
+ return _Dec_0
def compare_total_mag(self, other):
# exp(-Infinity) = 0
if self._isinfinity() == -1:
- return Dec_0
+ return _Dec_0
# exp(0) = 1
if not self:
- return Dec_p1
+ return _Dec_p1
# exp(Infinity) = Infinity
if self._isinfinity() == 1:
# ln(0.0) == -Infinity
if not self:
- return negInf
+ return _negInf
# ln(Infinity) = Infinity
if self._isinfinity() == 1:
- return Inf
+ return _Inf
# ln(1.0) == 0.0
- if self == Dec_p1:
- return Dec_0
+ if self == _Dec_p1:
+ return _Dec_0
# ln(negative) raises InvalidOperation
if self._sign == 1:
# log10(0.0) == -Infinity
if not self:
- return negInf
+ return _negInf
# log10(Infinity) = Infinity
if self._isinfinity() == 1:
- return Inf
+ return _Inf
# log10(negative or -Infinity) raises InvalidOperation
if self._sign == 1:
# logb(+/-Inf) = +Inf
if self._isinfinity():
- return Inf
+ return _Inf
# logb(0) = -Inf, DivisionByZero
if not self:
return ans
if self._isinfinity() == -1:
- return negInf
+ return _negInf
if self._isinfinity() == 1:
return _dec_from_triple(0, '9'*context.prec, context.Etop())
return ans
if self._isinfinity() == 1:
- return Inf
+ return _Inf
if self._isinfinity() == -1:
return _dec_from_triple(1, '9'*context.prec, context.Etop())
##### Useful Constants (internal use only) ################################
# Reusable defaults
-Inf = Decimal('Inf')
-negInf = Decimal('-Inf')
-NaN = Decimal('NaN')
-Dec_0 = Decimal(0)
-Dec_p1 = Decimal(1)
-Dec_n1 = Decimal(-1)
-
-# Infsign[sign] is infinity w/ that sign
-Infsign = (Inf, negInf)
+_Inf = Decimal('Inf')
+_negInf = Decimal('-Inf')
+_NaN = Decimal('NaN')
+_Dec_0 = Decimal(0)
+_Dec_p1 = Decimal(1)
+_Dec_n1 = Decimal(-1)
+
+# _Infsign[sign] is infinity w/ that sign
+_Infsign = (_Inf, _negInf)