// 1. To reduce the code size.
// 2. In some cases reduce critical path (by exposing more ILP).
//
+// The algorithm factors out the reachability of values such that multiple
+// queries to find reachability of values are fast. This is based on finding the
+// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
+// are basically the dominance-frontiers in the inverse graph. So we introduce a
+// data structure (CHI nodes) to keep track of values flowing out of a basic
+// block. We only do this for values with multiple occurrences in the function
+// as they are the potential hoistable candidates. This approach allows us to
+// hoist instructions to a basic block with more than two successors, as well as
+// deal with infinite loops in a trivial way.
+//
+// Limitations: This pass does not hoist fully redundant expressions because
+// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
+// and after gvn-pre because gvn-pre creates opportunities for more instructions
+// to be hoisted.
+//
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
// is disabled in the following cases.
// 1. Scalars across calls.
// 2. geps when corresponding load/store cannot be hoisted.
-//
-// TODO: Hoist from >2 successors. Currently GVNHoist will not hoist stores
-// in this case because it works on two instructions at a time.
-// entry:
-// switch i32 %c1, label %exit1 [
-// i32 0, label %sw0
-// i32 1, label %sw1
-// ]
-//
-// sw0:
-// store i32 1, i32* @G
-// br label %exit
-//
-// sw1:
-// store i32 1, i32* @G
-// br label %exit
-//
-// exit1:
-// store i32 1, i32* @G
-// ret void
-// exit:
-// ret void
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils/Local.h"
+#include <stack>
+
using namespace llvm;
#define DEBUG_TYPE "gvn-hoist"
namespace llvm {
-// Provides a sorting function based on the execution order of two instructions.
-struct SortByDFSIn {
-private:
- DenseMap<const Value *, unsigned> &DFSNumber;
-
-public:
- SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {}
-
- // Returns true when A executes before B.
- bool operator()(const Instruction *A, const Instruction *B) const {
- const BasicBlock *BA = A->getParent();
- const BasicBlock *BB = B->getParent();
- unsigned ADFS, BDFS;
- if (BA == BB) {
- ADFS = DFSNumber.lookup(A);
- BDFS = DFSNumber.lookup(B);
- } else {
- ADFS = DFSNumber.lookup(BA);
- BDFS = DFSNumber.lookup(BB);
- }
- assert(ADFS && BDFS);
- return ADFS < BDFS;
- }
+typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
+typedef SmallVector<Instruction *, 4> SmallVecInsn;
+typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
+// Each element of a hoisting list contains the basic block where to hoist and
+// a list of instructions to be hoisted.
+typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
+typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
+// A map from a pair of VNs to all the instructions with those VNs.
+typedef std::pair<unsigned, unsigned> VNType;
+typedef DenseMap<VNType, SmallVector<Instruction *, 4>> VNtoInsns;
+
+// CHI keeps information about values flowing out of a basic block. It is
+// similar to PHI but in the inverse graph, and used for outgoing values on each
+// edge. For conciseness, it is computed only for instructions with multiple
+// occurrences in the CFG because they are the only hoistable candidates.
+// A (CHI[{V, B, I1}, {V, C, I2}]
+// / \
+// / \
+// B(I1) C (I2)
+// The Value number for both I1 and I2 is V, the CHI node will save the
+// instruction as well as the edge where the value is flowing to.
+struct CHIArg {
+ VNType VN;
+ // Edge destination (shows the direction of flow), may not be where the I is.
+ BasicBlock *Dest;
+ // The instruction (VN) which uses the values flowing out of CHI.
+ Instruction *I;
+ bool operator==(const CHIArg &A) { return VN == A.VN; }
+ bool operator!=(const CHIArg &A) { return !(*this == A); }
};
-// A map from a pair of VNs to all the instructions with those VNs.
-typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
- VNtoInsns;
+typedef SmallVectorImpl<CHIArg>::iterator CHIIt;
+typedef iterator_range<CHIIt> CHIArgs;
+typedef DenseMap<BasicBlock *, SmallVector<CHIArg, 2>> OutValuesType;
+typedef DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>
+ InValuesType;
+
// An invalid value number Used when inserting a single value number into
// VNtoInsns.
enum : unsigned { InvalidVN = ~2U };
const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
};
-typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
-typedef SmallVector<Instruction *, 4> SmallVecInsn;
-typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
-
static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
static const unsigned KnownIDs[] = {
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
// cases reduce critical path (by exposing more ILP).
class GVNHoist {
public:
- GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD,
- MemorySSA *MSSA)
- : DT(DT), AA(AA), MD(MD), MSSA(MSSA),
+ GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
+ MemoryDependenceResults *MD, MemorySSA *MSSA)
+ : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
MSSAUpdater(make_unique<MemorySSAUpdater>(MSSA)),
- HoistingGeps(false),
- HoistedCtr(0)
- { }
+ HoistingGeps(false) {}
bool run(Function &F) {
+ NumFuncArgs = F.arg_size();
VN.setDomTree(DT);
VN.setAliasAnalysis(AA);
VN.setMemDep(MD);
return Res;
}
+ // Copied from NewGVN.cpp
+ // This function provides global ranking of operations so that we can place
+ // them in a canonical order. Note that rank alone is not necessarily enough
+ // for a complete ordering, as constants all have the same rank. However,
+ // generally, we will simplify an operation with all constants so that it
+ // doesn't matter what order they appear in.
+ unsigned int rank(const Value *V) const {
+ // Prefer constants to undef to anything else
+ // Undef is a constant, have to check it first.
+ // Prefer smaller constants to constantexprs
+ if (isa<ConstantExpr>(V))
+ return 2;
+ if (isa<UndefValue>(V))
+ return 1;
+ if (isa<Constant>(V))
+ return 0;
+ else if (auto *A = dyn_cast<Argument>(V))
+ return 3 + A->getArgNo();
+
+ // Need to shift the instruction DFS by number of arguments + 3 to account
+ // for the constant and argument ranking above.
+ auto Result = DFSNumber.lookup(V);
+ if (Result > 0)
+ return 4 + NumFuncArgs + Result;
+ // Unreachable or something else, just return a really large number.
+ return ~0;
+ }
+
private:
GVN::ValueTable VN;
DominatorTree *DT;
+ PostDominatorTree *PDT;
AliasAnalysis *AA;
MemoryDependenceResults *MD;
MemorySSA *MSSA;
std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
- const bool HoistingGeps;
DenseMap<const Value *, unsigned> DFSNumber;
BBSideEffectsSet BBSideEffects;
- DenseSet<const BasicBlock*> HoistBarrier;
- int HoistedCtr;
+ DenseSet<const BasicBlock *> HoistBarrier;
+
+ SmallVector<BasicBlock *, 32> IDFBlocks;
+ unsigned NumFuncArgs;
+ const bool HoistingGeps;
enum InsKind { Unknown, Scalar, Load, Store };
return false;
}
- // Return true when all paths from HoistBB to the end of the function pass
- // through one of the blocks in WL.
- bool hoistingFromAllPaths(const BasicBlock *HoistBB,
- SmallPtrSetImpl<const BasicBlock *> &WL) {
-
- // Copy WL as the loop will remove elements from it.
- SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end());
-
- for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) {
- // There exists a path from HoistBB to the exit of the function if we are
- // still iterating in DF traversal and we removed all instructions from
- // the work list.
- if (WorkList.empty())
- return false;
-
- const BasicBlock *BB = *It;
- if (WorkList.erase(BB)) {
- // Stop DFS traversal when BB is in the work list.
- It.skipChildren();
- continue;
- }
-
- // We reached the leaf Basic Block => not all paths have this instruction.
- if (!BB->getTerminator()->getNumSuccessors())
- return false;
-
- // When reaching the back-edge of a loop, there may be a path through the
- // loop that does not pass through B or C before exiting the loop.
- if (successorDominate(BB, HoistBB))
- return false;
-
- // Increment DFS traversal when not skipping children.
- ++It;
- }
-
- return true;
- }
-
/* Return true when I1 appears before I2 in the instructions of BB. */
bool firstInBB(const Instruction *I1, const Instruction *I2) {
assert(I1->getParent() == I2->getParent());
// Return true when it is safe to hoist scalar instructions from all blocks in
// WL to HoistBB.
- bool safeToHoistScalar(const BasicBlock *HoistBB,
- SmallPtrSetImpl<const BasicBlock *> &WL,
+ bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
int &NBBsOnAllPaths) {
- // Check that the hoisted expression is needed on all paths.
- if (!hoistingFromAllPaths(HoistBB, WL))
- return false;
+ return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
+ }
- for (const BasicBlock *BB : WL)
- if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths))
+ // In the inverse CFG, the dominance frontier of basic block (BB) is the
+ // point where ANTIC needs to be computed for instructions which are going
+ // to be hoisted. Since this point does not change during gvn-hoist,
+ // we compute it only once (on demand).
+ // The ides is inspired from:
+ // "Partial Redundancy Elimination in SSA Form"
+ // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
+ // They use similar idea in the forward graph to to find fully redundant and
+ // partially redundant expressions, here it is used in the inverse graph to
+ // find fully anticipable instructions at merge point (post-dominator in
+ // the inverse CFG).
+ // Returns the edge via which an instruction in BB will get the values from.
+
+ // Returns true when the values are flowing out to each edge.
+ bool valueAnticipable(CHIArgs C, TerminatorInst *TI) const {
+ if (TI->getNumSuccessors() > std::distance(C.begin(), C.end()))
+ return false; // Not enough args in this CHI.
+
+ for (auto CHI : C) {
+ BasicBlock *Dest = CHI.Dest;
+ // Find if all the edges have values flowing out of BB.
+ bool Found = any_of(TI->successors(), [Dest](const BasicBlock *BB) {
+ return BB == Dest; });
+ if (!Found)
return false;
-
+ }
return true;
}
- // Each element of a hoisting list contains the basic block where to hoist and
- // a list of instructions to be hoisted.
- typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
- typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
-
- // Partition InstructionsToHoist into a set of candidates which can share a
- // common hoisting point. The partitions are collected in HPL. IsScalar is
- // true when the instructions in InstructionsToHoist are scalars. IsLoad is
- // true when the InstructionsToHoist are loads, false when they are stores.
- void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
- HoistingPointList &HPL, InsKind K) {
- // No need to sort for two instructions.
- if (InstructionsToHoist.size() > 2) {
- SortByDFSIn Pred(DFSNumber);
- std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
- }
-
+ // Check if it is safe to hoist values tracked by CHI in the range
+ // [Begin, End) and accumulate them in Safe.
+ void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
+ SmallVectorImpl<CHIArg> &Safe) {
int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
-
- SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
- SmallVecImplInsn::iterator Start = II;
- Instruction *HoistPt = *II;
- BasicBlock *HoistBB = HoistPt->getParent();
- MemoryUseOrDef *UD;
- if (K != InsKind::Scalar)
- UD = MSSA->getMemoryAccess(HoistPt);
-
- for (++II; II != InstructionsToHoist.end(); ++II) {
- Instruction *Insn = *II;
- BasicBlock *BB = Insn->getParent();
- BasicBlock *NewHoistBB;
- Instruction *NewHoistPt;
-
- if (BB == HoistBB) { // Both are in the same Basic Block.
- NewHoistBB = HoistBB;
- NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt;
+ for (auto CHI : C) {
+ Instruction *Insn = CHI.I;
+ if (!Insn) // No instruction was inserted in this CHI.
+ continue;
+ if (K == InsKind::Scalar) {
+ if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
+ Safe.push_back(CHI);
} else {
- // If the hoisting point contains one of the instructions,
- // then hoist there, otherwise hoist before the terminator.
- NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
- if (NewHoistBB == BB)
- NewHoistPt = Insn;
- else if (NewHoistBB == HoistBB)
- NewHoistPt = HoistPt;
- else
- NewHoistPt = NewHoistBB->getTerminator();
+ MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
+ if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
+ Safe.push_back(CHI);
}
+ }
+ }
- SmallPtrSet<const BasicBlock *, 2> WL;
- WL.insert(HoistBB);
- WL.insert(BB);
+ typedef DenseMap<VNType, SmallVector<Instruction *, 2>> RenameStackType;
+ // Push all the VNs corresponding to BB into RenameStack.
+ void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
+ RenameStackType &RenameStack) {
+ auto it1 = ValueBBs.find(BB);
+ if (it1 != ValueBBs.end()) {
+ // Iterate in reverse order to keep lower ranked values on the top.
+ for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
+ // Get the value of instruction I
+ DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
+ RenameStack[VI.first].push_back(VI.second);
+ }
+ }
+ }
- if (K == InsKind::Scalar) {
- if (safeToHoistScalar(NewHoistBB, WL, NumBBsOnAllPaths)) {
- // Extend HoistPt to NewHoistPt.
- HoistPt = NewHoistPt;
- HoistBB = NewHoistBB;
- continue;
- }
- } else {
- // When NewBB already contains an instruction to be hoisted, the
- // expression is needed on all paths.
- // Check that the hoisted expression is needed on all paths: it is
- // unsafe to hoist loads to a place where there may be a path not
- // loading from the same address: for instance there may be a branch on
- // which the address of the load may not be initialized.
- if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
- hoistingFromAllPaths(NewHoistBB, WL)) &&
- // Also check that it is safe to move the load or store from HoistPt
- // to NewHoistPt, and from Insn to NewHoistPt.
- safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NumBBsOnAllPaths) &&
- safeToHoistLdSt(NewHoistPt, Insn, MSSA->getMemoryAccess(Insn),
- K, NumBBsOnAllPaths)) {
- // Extend HoistPt to NewHoistPt.
- HoistPt = NewHoistPt;
- HoistBB = NewHoistBB;
- continue;
- }
+ void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
+ RenameStackType &RenameStack) {
+ // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
+ for (auto Pred : predecessors(BB)) {
+ auto P = CHIBBs.find(Pred);
+ if (P == CHIBBs.end()) {
+ continue;
}
+ DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
+ // A CHI is found (BB -> Pred is an edge in the CFG)
+ // Pop the stack until Top(V) = Ve.
+ auto &VCHI = P->second;
+ for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
+ CHIArg &C = *It;
+ if (!C.Dest) {
+ auto si = RenameStack.find(C.VN);
+ // The Basic Block where CHI is must dominate the value we want to
+ // track in a CHI. In the PDom walk, there can be values in the
+ // stack which are not control dependent e.g., nested loop.
+ if (si != RenameStack.end() && si->second.size() &&
+ DT->dominates(Pred, si->second.back()->getParent())) {
+ C.Dest = BB; // Assign the edge
+ C.I = si->second.pop_back_val(); // Assign the argument
+ DEBUG(dbgs() << "\nCHI Inserted in BB: " << C.Dest->getName()
+ << *C.I << ", VN: " << C.VN.first << ", "
+ << C.VN.second);
+ }
+ // Move to next CHI of a different value
+ It = std::find_if(It, VCHI.end(),
+ [It](CHIArg &A) { return A != *It; });
+ } else
+ ++It;
+ }
+ }
+ }
- // At this point it is not safe to extend the current hoisting to
- // NewHoistPt: save the hoisting list so far.
- if (std::distance(Start, II) > 1)
- HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
-
- // Start over from BB.
- Start = II;
- if (K != InsKind::Scalar)
- UD = MSSA->getMemoryAccess(*Start);
- HoistPt = Insn;
- HoistBB = BB;
- NumBBsOnAllPaths = MaxNumberOfBBSInPath;
+ // Walk the post-dominator tree top-down and use a stack for each value to
+ // store the last value you see. When you hit a CHI from a given edge, the
+ // value to use as the argument is at the top of the stack, add the value to
+ // CHI and pop.
+ void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
+ auto Root = PDT->getNode(nullptr);
+ if (!Root)
+ return;
+ // Depth first walk on PDom tree to fill the CHIargs at each PDF.
+ RenameStackType RenameStack;
+ for (auto Node : depth_first(Root)) {
+ BasicBlock *BB = Node->getBlock();
+ if (!BB)
+ continue;
+
+ // Collect all values in BB and push to stack.
+ fillRenameStack(BB, ValueBBs, RenameStack);
+
+ // Fill outgoing values in each CHI corresponding to BB.
+ fillChiArgs(BB, CHIBBs, RenameStack);
}
+ }
+
+ // Walk all the CHI-nodes to find ones which have a empty-entry and remove
+ // them Then collect all the instructions which are safe to hoist and see if
+ // they form a list of anticipable values. OutValues contains CHIs
+ // corresponding to each basic block.
+ void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
+ HoistingPointList &HPL) {
+ auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
+
+ // CHIArgs now have the outgoing values, so check for anticipability and
+ // accumulate hoistable candidates in HPL.
+ for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
+ BasicBlock *BB = A.first;
+ SmallVectorImpl<CHIArg> &CHIs = A.second;
+ // Vector of PHIs contains PHIs for different instructions.
+ // Sort the args according to their VNs, such that identical
+ // instructions are together.
+ std::sort(CHIs.begin(), CHIs.end(), cmpVN);
+ auto TI = BB->getTerminator();
+ auto B = CHIs.begin();
+ // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
+ auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
+ [B](CHIArg &A) { return A != *B; });
+ auto PrevIt = CHIs.begin();
+ while (PrevIt != PHIIt) {
+ // Collect values which satisfy safety checks.
+ SmallVector<CHIArg, 2> Safe;
+ // We check for safety first because there might be multiple values in
+ // the same path, some of which are not safe to be hoisted, but overall
+ // each edge has at least one value which can be hoisted, making the
+ // value anticipable along that path.
+ checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
+
+ // List of safe values should be anticipable at TI.
+ if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
+ HPL.push_back({BB, SmallVecInsn()});
+ SmallVecInsn &V = HPL.back().second;
+ for (auto B : Safe)
+ V.push_back(B.I);
+ }
- // Save the last partition.
- if (std::distance(Start, II) > 1)
- HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
+ // Check other VNs
+ PrevIt = PHIIt;
+ PHIIt = std::find_if(PrevIt, CHIs.end(),
+ [PrevIt](CHIArg &A) { return A != *PrevIt; });
+ }
+ }
}
- // Initialize HPL from Map.
+ // Compute insertion points for each values which can be fully anticipated at
+ // a dominator. HPL contains all such values.
void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
InsKind K) {
+ // Sort VNs based on their rankings
+ std::vector<VNType> Ranks;
for (const auto &Entry : Map) {
- if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
- return;
+ Ranks.push_back(Entry.first);
+ }
- const SmallVecInsn &V = Entry.second;
+ // TODO: Remove fully-redundant expressions.
+ // Get instruction from the Map, assume that all the Instructions
+ // with same VNs have same rank (this is an approximation).
+ std::sort(Ranks.begin(), Ranks.end(),
+ [this, &Map](const VNType &r1, const VNType &r2) {
+ return (rank(*Map.lookup(r1).begin()) <
+ rank(*Map.lookup(r2).begin()));
+ });
+
+ // - Sort VNs according to their rank, and start with lowest ranked VN
+ // - Take a VN and for each instruction with same VN
+ // - Find the dominance frontier in the inverse graph (PDF)
+ // - Insert the chi-node at PDF
+ // - Remove the chi-nodes with missing entries
+ // - Remove values from CHI-nodes which do not truly flow out, e.g.,
+ // modified along the path.
+ // - Collect the remaining values that are still anticipable
+ SmallVector<BasicBlock *, 2> IDFBlocks;
+ ReverseIDFCalculator IDFs(*PDT);
+ OutValuesType OutValue;
+ InValuesType InValue;
+ for (const auto &R : Ranks) {
+ const SmallVecInsn &V = Map.lookup(R);
if (V.size() < 2)
continue;
-
- // Compute the insertion point and the list of expressions to be hoisted.
- SmallVecInsn InstructionsToHoist;
- for (auto I : V)
- // We don't need to check for hoist-barriers here because if
- // I->getParent() is a barrier then I precedes the barrier.
- if (!hasEH(I->getParent()))
- InstructionsToHoist.push_back(I);
-
- if (!InstructionsToHoist.empty())
- partitionCandidates(InstructionsToHoist, HPL, K);
+ const VNType &VN = R;
+ SmallPtrSet<BasicBlock *, 2> VNBlocks;
+ for (auto &I : V) {
+ BasicBlock *BBI = I->getParent();
+ if (!hasEH(BBI))
+ VNBlocks.insert(BBI);
+ }
+ // Compute the Post Dominance Frontiers of each basic block
+ // The dominance frontier of a live block X in the reverse
+ // control graph is the set of blocks upon which X is control
+ // dependent. The following sequence computes the set of blocks
+ // which currently have dead terminators that are control
+ // dependence sources of a block which is in NewLiveBlocks.
+ IDFs.setDefiningBlocks(VNBlocks);
+ IDFs.calculate(IDFBlocks);
+
+ // Make a map of BB vs instructions to be hoisted.
+ for (unsigned i = 0; i < V.size(); ++i) {
+ InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
+ }
+ // Insert empty CHI node for this VN. This is used to factor out
+ // basic blocks where the ANTIC can potentially change.
+ for (auto IDFB : IDFBlocks) { // TODO: Prune out useless CHI insertions.
+ for (unsigned i = 0; i < V.size(); ++i) {
+ CHIArg C = {VN, nullptr, nullptr};
+ if (DT->dominates(IDFB, V[i]->getParent())) { // Ignore spurious PDFs.
+ // InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
+ OutValue[IDFB].push_back(C);
+ DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
+ << ", for Insn: " << *V[i]);
+ }
+ }
+ }
}
+
+ // Insert CHI args at each PDF to iterate on factored graph of
+ // control dependence.
+ insertCHI(InValue, OutValue);
+ // Using the CHI args inserted at each PDF, find fully anticipable values.
+ findHoistableCandidates(OutValue, K, HPL);
}
// Return true when all operands of Instr are available at insertion point
Repl->replaceUsesOfWith(Gep, ClonedGep);
}
+ void updateAlignment(Instruction *I, Instruction *Repl) {
+ if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
+ ReplacementLoad->setAlignment(
+ std::min(ReplacementLoad->getAlignment(),
+ cast<LoadInst>(I)->getAlignment()));
+ ++NumLoadsRemoved;
+ } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
+ ReplacementStore->setAlignment(
+ std::min(ReplacementStore->getAlignment(),
+ cast<StoreInst>(I)->getAlignment()));
+ ++NumStoresRemoved;
+ } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
+ ReplacementAlloca->setAlignment(
+ std::max(ReplacementAlloca->getAlignment(),
+ cast<AllocaInst>(I)->getAlignment()));
+ } else if (isa<CallInst>(Repl)) {
+ ++NumCallsRemoved;
+ }
+ }
+
+ // Remove all the instructions in Candidates and replace their usage with Repl.
+ // Returns the number of instructions removed.
+ unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
+ MemoryUseOrDef *NewMemAcc) {
+ unsigned NR = 0;
+ for (Instruction *I : Candidates) {
+ if (I != Repl) {
+ ++NR;
+ updateAlignment(I, Repl);
+ if (NewMemAcc) {
+ // Update the uses of the old MSSA access with NewMemAcc.
+ MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
+ OldMA->replaceAllUsesWith(NewMemAcc);
+ MSSAUpdater->removeMemoryAccess(OldMA);
+ }
+
+ Repl->andIRFlags(I);
+ combineKnownMetadata(Repl, I);
+ I->replaceAllUsesWith(Repl);
+ // Also invalidate the Alias Analysis cache.
+ MD->removeInstruction(I);
+ I->eraseFromParent();
+ }
+ }
+ return NR;
+ }
+
+ // Replace all Memory PHI usage with NewMemAcc.
+ void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
+ SmallPtrSet<MemoryPhi *, 4> UsePhis;
+ for (User *U : NewMemAcc->users())
+ if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
+ UsePhis.insert(Phi);
+
+ for (MemoryPhi *Phi : UsePhis) {
+ auto In = Phi->incoming_values();
+ if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
+ Phi->replaceAllUsesWith(NewMemAcc);
+ MSSAUpdater->removeMemoryAccess(Phi);
+ }
+ }
+ }
+
+ // Remove all other instructions and replace them with Repl.
+ unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
+ BasicBlock *DestBB, bool MoveAccess) {
+ MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
+ if (MoveAccess && NewMemAcc) {
+ // The definition of this ld/st will not change: ld/st hoisting is
+ // legal when the ld/st is not moved past its current definition.
+ MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
+ }
+
+ // Replace all other instructions with Repl with memory access NewMemAcc.
+ unsigned NR = rauw(Candidates, Repl, NewMemAcc);
+
+ // Remove MemorySSA phi nodes with the same arguments.
+ if (NewMemAcc)
+ raMPHIuw(NewMemAcc);
+ return NR;
+ }
+
// In the case Repl is a load or a store, we make all their GEPs
// available: GEPs are not hoisted by default to avoid the address
// computations to be hoisted without the associated load or store.
for (const HoistingPointInfo &HP : HPL) {
// Find out whether we already have one of the instructions in HoistPt,
// in which case we do not have to move it.
- BasicBlock *HoistPt = HP.first;
+ BasicBlock *DestBB = HP.first;
const SmallVecInsn &InstructionsToHoist = HP.second;
Instruction *Repl = nullptr;
for (Instruction *I : InstructionsToHoist)
- if (I->getParent() == HoistPt)
+ if (I->getParent() == DestBB)
// If there are two instructions in HoistPt to be hoisted in place:
// update Repl to be the first one, such that we can rename the uses
// of the second based on the first.
bool MoveAccess = true;
if (Repl) {
// Repl is already in HoistPt: it remains in place.
- assert(allOperandsAvailable(Repl, HoistPt) &&
+ assert(allOperandsAvailable(Repl, DestBB) &&
"instruction depends on operands that are not available");
MoveAccess = false;
} else {
// We can move Repl in HoistPt only when all operands are available.
// The order in which hoistings are done may influence the availability
// of operands.
- if (!allOperandsAvailable(Repl, HoistPt)) {
+ if (!allOperandsAvailable(Repl, DestBB)) {
// When HoistingGeps there is nothing more we can do to make the
// operands available: just continue.
continue;
// When not HoistingGeps we need to copy the GEPs.
- if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist))
+ if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
continue;
}
// Move the instruction at the end of HoistPt.
- Instruction *Last = HoistPt->getTerminator();
+ Instruction *Last = DestBB->getTerminator();
MD->removeInstruction(Repl);
Repl->moveBefore(Last);
DFSNumber[Repl] = DFSNumber[Last]++;
}
- MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl);
-
- if (MoveAccess) {
- if (MemoryUseOrDef *OldMemAcc =
- dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) {
- // The definition of this ld/st will not change: ld/st hoisting is
- // legal when the ld/st is not moved past its current definition.
- MemoryAccess *Def = OldMemAcc->getDefiningAccess();
- NewMemAcc =
- MSSAUpdater->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End);
- OldMemAcc->replaceAllUsesWith(NewMemAcc);
- MSSAUpdater->removeMemoryAccess(OldMemAcc);
- }
- }
+ NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
+
if (isa<LoadInst>(Repl))
++NL;
++NC;
else // Scalar
++NI;
-
- // Remove and rename all other instructions.
- for (Instruction *I : InstructionsToHoist)
- if (I != Repl) {
- ++NR;
- if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
- ReplacementLoad->setAlignment(
- std::min(ReplacementLoad->getAlignment(),
- cast<LoadInst>(I)->getAlignment()));
- ++NumLoadsRemoved;
- } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
- ReplacementStore->setAlignment(
- std::min(ReplacementStore->getAlignment(),
- cast<StoreInst>(I)->getAlignment()));
- ++NumStoresRemoved;
- } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
- ReplacementAlloca->setAlignment(
- std::max(ReplacementAlloca->getAlignment(),
- cast<AllocaInst>(I)->getAlignment()));
- } else if (isa<CallInst>(Repl)) {
- ++NumCallsRemoved;
- }
-
- if (NewMemAcc) {
- // Update the uses of the old MSSA access with NewMemAcc.
- MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
- OldMA->replaceAllUsesWith(NewMemAcc);
- MSSAUpdater->removeMemoryAccess(OldMA);
- }
-
- Repl->andIRFlags(I);
- combineKnownMetadata(Repl, I);
- I->replaceAllUsesWith(Repl);
- // Also invalidate the Alias Analysis cache.
- MD->removeInstruction(I);
- I->eraseFromParent();
- }
-
- // Remove MemorySSA phi nodes with the same arguments.
- if (NewMemAcc) {
- SmallPtrSet<MemoryPhi *, 4> UsePhis;
- for (User *U : NewMemAcc->users())
- if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
- UsePhis.insert(Phi);
-
- for (auto *Phi : UsePhis) {
- auto In = Phi->incoming_values();
- if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
- Phi->replaceAllUsesWith(NewMemAcc);
- MSSAUpdater->removeMemoryAccess(Phi);
- }
- }
- }
}
NumHoisted += NL + NS + NC + NI;
// If I1 cannot guarantee progress, subsequent instructions
// in BB cannot be hoisted anyways.
if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
- HoistBarrier.insert(BB);
- break;
+ HoistBarrier.insert(BB);
+ break;
}
// Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
// deeper may increase the register pressure and compilation time.
if (skipFunction(F))
return false;
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
- GVNHoist G(&DT, &AA, &MD, &MSSA);
+ GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
return G.run(F);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PostDominatorTreeWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MemoryDependenceWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
-} // namespace
+} // namespace llvm
PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
AliasAnalysis &AA = AM.getResult<AAManager>(F);
MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
- GVNHoist G(&DT, &AA, &MD, &MSSA);
+ GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
if (!G.run(F))
return PreservedAnalyses::all();
--- /dev/null
+; RUN: opt -S -gvn-hoist < %s | FileCheck %s
+
+; Checking gvn-hoist in case of indirect branches.
+
+; Check that the bitcast is is not hoisted because it is after an indirect call
+; CHECK-LABEL: @foo
+; CHECK-LABEL: l1.preheader:
+; CHECK-NEXT: bitcast
+; CHECK-LABEL: l1
+; CHECK: bitcast
+
+%class.bar = type { i8*, %class.base* }
+%class.base = type { i32 (...)** }
+
+@bar = local_unnamed_addr global i32 ()* null, align 8
+@bar1 = local_unnamed_addr global i32 ()* null, align 8
+
+define i32 @foo(i32* nocapture readonly %i) {
+entry:
+ %agg.tmp = alloca %class.bar, align 8
+ %x= getelementptr inbounds %class.bar, %class.bar* %agg.tmp, i64 0, i32 1
+ %y = load %class.base*, %class.base** %x, align 8
+ %0 = load i32, i32* %i, align 4
+ %.off = add i32 %0, -1
+ %switch = icmp ult i32 %.off, 2
+ br i1 %switch, label %l1.preheader, label %sw.default
+
+l1.preheader: ; preds = %sw.default, %entry
+ %b1 = bitcast %class.base* %y to void (%class.base*)***
+ br label %l1
+
+l1: ; preds = %l1.preheader, %l1
+ %1 = load i32 ()*, i32 ()** @bar, align 8
+ %call = tail call i32 %1()
+ %b2 = bitcast %class.base* %y to void (%class.base*)***
+ br label %l1
+
+sw.default: ; preds = %entry
+ %2 = load i32 ()*, i32 ()** @bar1, align 8
+ %call2 = tail call i32 %2()
+ br label %l1.preheader
+}
+
+
+; Any instruction inside an infinite loop will not be hoisted because
+; there is no path to exit of the function.
+
+; CHECK-LABEL: @foo1
+; CHECK-LABEL: l1.preheader:
+; CHECK-NEXT: bitcast
+; CHECK-LABEL: l1:
+; CHECK: bitcast
+
+define i32 @foo1(i32* nocapture readonly %i) {
+entry:
+ %agg.tmp = alloca %class.bar, align 8
+ %x= getelementptr inbounds %class.bar, %class.bar* %agg.tmp, i64 0, i32 1
+ %y = load %class.base*, %class.base** %x, align 8
+ %0 = load i32, i32* %i, align 4
+ %.off = add i32 %0, -1
+ %switch = icmp ult i32 %.off, 2
+ br i1 %switch, label %l1.preheader, label %sw.default
+
+l1.preheader: ; preds = %sw.default, %entry
+ %b1 = bitcast %class.base* %y to void (%class.base*)***
+ %y1 = load %class.base*, %class.base** %x, align 8
+ br label %l1
+
+l1: ; preds = %l1.preheader, %l1
+ %b2 = bitcast %class.base* %y to void (%class.base*)***
+ %1 = load i32 ()*, i32 ()** @bar, align 8
+ %y2 = load %class.base*, %class.base** %x, align 8
+ %call = tail call i32 %1()
+ br label %l1
+
+sw.default: ; preds = %entry
+ %2 = load i32 ()*, i32 ()** @bar1, align 8
+ %call2 = tail call i32 %2()
+ br label %l1.preheader
+}
+
+; Check that bitcast is hoisted even when one of them is partially redundant.
+; CHECK-LABEL: @test13
+; CHECK: bitcast
+; CHECK-NOT: bitcast
+
+define i32 @test13(i32* %P, i8* %Ptr, i32* nocapture readonly %i) {
+entry:
+ %agg.tmp = alloca %class.bar, align 8
+ %x= getelementptr inbounds %class.bar, %class.bar* %agg.tmp, i64 0, i32 1
+ %y = load %class.base*, %class.base** %x, align 8
+ indirectbr i8* %Ptr, [label %BrBlock, label %B2]
+
+B2:
+ %b1 = bitcast %class.base* %y to void (%class.base*)***
+ store i32 4, i32 *%P
+ br label %BrBlock
+
+BrBlock:
+ %b2 = bitcast %class.base* %y to void (%class.base*)***
+ %L = load i32, i32* %P
+ %C = icmp eq i32 %L, 42
+ br i1 %C, label %T, label %F
+
+T:
+ ret i32 123
+F:
+ ret i32 1422
+}
+
+; Check that the bitcast is not hoisted because anticipability
+; cannot be guaranteed here as one of the indirect branch targets
+; do not have the bitcast instruction.
+
+; CHECK-LABEL: @test14
+; CHECK-LABEL: B2:
+; CHECK-NEXT: bitcast
+; CHECK-LABEL: BrBlock:
+; CHECK-NEXT: bitcast
+
+define i32 @test14(i32* %P, i8* %Ptr, i32* nocapture readonly %i) {
+entry:
+ %agg.tmp = alloca %class.bar, align 8
+ %x= getelementptr inbounds %class.bar, %class.bar* %agg.tmp, i64 0, i32 1
+ %y = load %class.base*, %class.base** %x, align 8
+ indirectbr i8* %Ptr, [label %BrBlock, label %B2, label %T]
+
+B2:
+ %b1 = bitcast %class.base* %y to void (%class.base*)***
+ store i32 4, i32 *%P
+ br label %BrBlock
+
+BrBlock:
+ %b2 = bitcast %class.base* %y to void (%class.base*)***
+ %L = load i32, i32* %P
+ %C = icmp eq i32 %L, 42
+ br i1 %C, label %T, label %F
+
+T:
+ %pi = load i32, i32* %i, align 4
+ ret i32 %pi
+F:
+ %pl = load i32, i32* %P
+ ret i32 %pl
+}
+
+
+; Check that the bitcast is not hoisted because of a cycle
+; due to indirect branches
+; CHECK-LABEL: @test16
+; CHECK-LABEL: B2:
+; CHECK-NEXT: bitcast
+; CHECK-LABEL: BrBlock:
+; CHECK-NEXT: bitcast
+
+define i32 @test16(i32* %P, i8* %Ptr, i32* nocapture readonly %i) {
+entry:
+ %agg.tmp = alloca %class.bar, align 8
+ %x= getelementptr inbounds %class.bar, %class.bar* %agg.tmp, i64 0, i32 1
+ %y = load %class.base*, %class.base** %x, align 8
+ indirectbr i8* %Ptr, [label %BrBlock, label %B2]
+
+B2:
+ %b1 = bitcast %class.base* %y to void (%class.base*)***
+ %0 = load i32, i32* %i, align 4
+ store i32 %0, i32 *%P
+ br label %BrBlock
+
+BrBlock:
+ %b2 = bitcast %class.base* %y to void (%class.base*)***
+ %L = load i32, i32* %P
+ %C = icmp eq i32 %L, 42
+ br i1 %C, label %T, label %F
+
+T:
+ indirectbr i32* %P, [label %BrBlock, label %B2]
+
+F:
+ indirectbr i8* %Ptr, [label %BrBlock, label %B2]
+}
+
+
+@_ZTIi = external constant i8*
+
+; Check that an instruction is not hoisted out of landing pad (%lpad4)
+; Also within a landing pad no redundancies are removed by gvn-hoist,
+; however an instruction may be hoisted into a landing pad if
+; landing pad has direct branches (e.g., %lpad to %catch1, %catch)
+; This CFG has a cycle (%lpad -> %catch1 -> %lpad4 -> %lpad)
+
+; CHECK-LABEL: @foo2
+; Check that nothing gets hoisted out of %lpad
+; CHECK-LABEL: lpad:
+; CHECK: %bc1 = add i32 %0, 10
+; CHECK: %bc7 = add i32 %0, 10
+
+; Check that the add is hoisted
+; CHECK-LABEL: catch1:
+; CHECK-NEXT: invoke
+
+; Check that the add is hoisted
+; CHECK-LABEL: catch:
+; CHECK-NEXT: load
+
+; Check that other adds are not hoisted
+; CHECK-LABEL: lpad4:
+; CHECK: %bc5 = add i32 %0, 10
+; CHECK-LABEL: unreachable:
+; CHECK: %bc2 = add i32 %0, 10
+
+; Function Attrs: noinline uwtable
+define i32 @foo2(i32* nocapture readonly %i) local_unnamed_addr personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
+entry:
+ %0 = load i32, i32* %i, align 4
+ %cmp = icmp eq i32 %0, 0
+ br i1 %cmp, label %try.cont, label %if.then
+
+if.then:
+ %exception = tail call i8* @__cxa_allocate_exception(i64 4) #2
+ %1 = bitcast i8* %exception to i32*
+ store i32 %0, i32* %1, align 16
+ invoke void @__cxa_throw(i8* %exception, i8* bitcast (i8** @_ZTIi to i8*), i8* null) #3
+ to label %unreachable unwind label %lpad
+
+lpad:
+ %2 = landingpad { i8*, i32 }
+ catch i8* bitcast (i8** @_ZTIi to i8*)
+ catch i8* null
+ %bc1 = add i32 %0, 10
+ %3 = extractvalue { i8*, i32 } %2, 0
+ %4 = extractvalue { i8*, i32 } %2, 1
+ %5 = tail call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIi to i8*)) #2
+ %matches = icmp eq i32 %4, %5
+ %bc7 = add i32 %0, 10
+ %6 = tail call i8* @__cxa_begin_catch(i8* %3) #2
+ br i1 %matches, label %catch1, label %catch
+
+catch1:
+ %bc3 = add i32 %0, 10
+ invoke void @__cxa_rethrow() #3
+ to label %unreachable unwind label %lpad4
+
+catch:
+ %bc4 = add i32 %0, 10
+ %7 = load i32, i32* %i, align 4
+ %add = add nsw i32 %7, 1
+ tail call void @__cxa_end_catch()
+ br label %try.cont
+
+lpad4:
+ %8 = landingpad { i8*, i32 }
+ cleanup
+ %bc5 = add i32 %0, 10
+ tail call void @__cxa_end_catch() #2
+ invoke void @__cxa_throw(i8* %exception, i8* bitcast (i8** @_ZTIi to i8*), i8* null) #3
+ to label %unreachable unwind label %lpad
+
+try.cont:
+ %k.0 = phi i32 [ %add, %catch ], [ 0, %entry ]
+ %bc6 = add i32 %0, 10
+ ret i32 %k.0
+
+unreachable:
+ %bc2 = add i32 %0, 10
+ ret i32 %bc2
+}
+
+declare i8* @__cxa_allocate_exception(i64) local_unnamed_addr
+
+declare void @__cxa_throw(i8*, i8*, i8*) local_unnamed_addr
+
+declare i32 @__gxx_personality_v0(...)
+
+; Function Attrs: nounwind readnone
+declare i32 @llvm.eh.typeid.for(i8*) #1
+
+declare i8* @__cxa_begin_catch(i8*) local_unnamed_addr
+
+declare void @__cxa_end_catch() local_unnamed_addr
+
+declare void @__cxa_rethrow() local_unnamed_addr
+
+attributes #1 = { nounwind readnone }
+attributes #2 = { nounwind }
+attributes #3 = { noreturn }