public:
FormatSpecifier(bool isPrintf)
: CS(isPrintf), UsesPositionalArg(false), argIndex(0) {}
+
+ virtual ~FormatSpecifier();
void setLengthModifier(LengthModifier lm) {
LM = lm;
bool usesPositionalArg() const { return UsesPositionalArg; }
bool hasValidLengthModifier() const;
+
+ /// \brief Returns the type that a data argument
+ /// paired with this format specifier should have. This method
+ /// will an invalid ArgTypeResult if the format specifier does not have
+ /// a matching data argument or the matching argument matches
+ /// more than one type.
+ virtual ArgTypeResult getArgType(ASTContext &Ctx) const = 0;
+
+ const ConversionSpecifier &getConversionSpecifier() const {
+ return CS;
+ }
};
} // end analyze_format_string namespace
return getConversionSpecifier().consumesDataArgument();
}
- /// \brief Returns the builtin type that a data argument
+ /// \brief Returns the type that a data argument
/// paired with this format specifier should have. This method
- /// will return null if the format specifier does not have
+ /// will an invalid ArgTypeResult if the format specifier does not have
/// a matching data argument or the matching argument matches
/// more than one type.
ArgTypeResult getArgType(ASTContext &Ctx) const;
bool hasValidPrecision() const;
bool hasValidFieldWidth() const;
+
+ static bool classof(const analyze_format_string::FormatSpecifier *FS) {
+ return FS->getConversionSpecifier().isPrintfKind();
+ }
+
};
} // end analyze_printf namespace
}
};
+using analyze_format_string::ArgTypeResult;
using analyze_format_string::LengthModifier;
using analyze_format_string::OptionalAmount;
using analyze_format_string::OptionalFlag;
bool consumesDataArgument() const {
return CS.consumesDataArgument() && !SuppressAssignment;
}
+
+ /// \brief Returns the type that a data argument
+ /// paired with this format specifier should have. This method
+ /// will an invalid ArgTypeResult if the format specifier does not have
+ /// a matching data argument or the matching argument matches
+ /// more than one type.
+ ArgTypeResult getArgType(ASTContext &Ctx) const;
static ScanfSpecifier Parse(const char *beg, const char *end);
};
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen,
unsigned argIndex);
+
+ void CheckArgType(const analyze_format_string::FormatSpecifier &FS,
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen,
+ unsigned argIndex);
};
}
return true;
}
+void CheckFormatHandler::CheckArgType(
+ const analyze_format_string::FormatSpecifier &FS,
+ const analyze_format_string::ConversionSpecifier &CS,
+ const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
+
+ const Expr *Ex = getDataArg(argIndex);
+ const analyze_format_string::ArgTypeResult &ATR = FS.getArgType(S.Context);
+
+ if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
+ // Check if we didn't match because of an implicit cast from a 'char'
+ // or 'short' to an 'int'. This is done because scanf/printf are varargs
+ // functions.
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
+ if (ICE->getType() == S.Context.IntTy)
+ if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
+ return;
+
+ if (const analyze_printf::PrintfSpecifier *PFS =
+ dyn_cast<analyze_printf::PrintfSpecifier>(&FS)) {
+ // We may be able to offer a FixItHint if it is a supported type.
+ analyze_printf::PrintfSpecifier fixedFS(*PFS);
+ if (fixedFS.fixType(Ex->getType())) {
+ // Get the fix string from the fixed format specifier
+ llvm::SmallString<128> buf;
+ llvm::raw_svector_ostream os(buf);
+ fixedFS.toString(os);
+
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_conversion_argument_type_mismatch)
+ << ATR.getRepresentativeType(S.Context) << Ex->getType()
+ << getSpecifierRange(startSpecifier, specifierLen)
+ << Ex->getSourceRange()
+ << FixItHint::CreateReplacement(
+ getSpecifierRange(startSpecifier, specifierLen), os.str());
+ }
+ else {
+ S.Diag(getLocationOfByte(CS.getStart()),
+ diag::warn_printf_conversion_argument_type_mismatch)
+ << ATR.getRepresentativeType(S.Context) << Ex->getType()
+ << getSpecifierRange(startSpecifier, specifierLen)
+ << Ex->getSourceRange();
+ }
+ }
+ }
+}
+
//===--- CHECK: Printf format string checking ------------------------------===//
namespace {
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
return false;
- // Now type check the data expression that matches the
- // format specifier.
- const Expr *Ex = getDataArg(argIndex);
- const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
- if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
- // Check if we didn't match because of an implicit cast from a 'char'
- // or 'short' to an 'int'. This is done because printf is a varargs
- // function.
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
- if (ICE->getType() == S.Context.IntTy)
- if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
- return true;
-
- // We may be able to offer a FixItHint if it is a supported type.
- PrintfSpecifier fixedFS = FS;
- bool success = fixedFS.fixType(Ex->getType());
-
- if (success) {
- // Get the fix string from the fixed format specifier
- llvm::SmallString<128> buf;
- llvm::raw_svector_ostream os(buf);
- fixedFS.toString(os);
-
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_printf_conversion_argument_type_mismatch)
- << ATR.getRepresentativeType(S.Context) << Ex->getType()
- << getSpecifierRange(startSpecifier, specifierLen)
- << Ex->getSourceRange()
- << FixItHint::CreateReplacement(
- getSpecifierRange(startSpecifier, specifierLen),
- os.str());
- }
- else {
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_printf_conversion_argument_type_mismatch)
- << ATR.getRepresentativeType(S.Context) << Ex->getType()
- << getSpecifierRange(startSpecifier, specifierLen)
- << Ex->getSourceRange();
- }
- }
-
+ CheckArgType(FS, CS, startSpecifier, specifierLen, argIndex);
+
return true;
}