#define LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
class LLVMContext;
class raw_ostream;
namespace MSSAHelpers {
-
struct AllAccessTag {};
struct DefsOnlyTag {};
}
friend class MemoryDef;
friend class MemoryPhi;
+ /// \brief Used by MemorySSA to change the block of a MemoryAccess when it is
+ /// moved.
+ void setBlock(BasicBlock *BB) { Block = BB; }
+
/// \brief Used for debugging and tracking things about MemoryAccesses.
/// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
virtual unsigned getID() const = 0;
protected:
friend class MemorySSA;
-
+ friend class MemorySSAUpdater;
MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
Instruction *MI, BasicBlock *BB)
: MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
/// Returns the new MemoryAccess.
/// This should be called when a memory instruction is created that is being
/// used to replace an existing memory instruction. It will *not* create PHI
- /// nodes, or verify the clobbering definition. The clobbering definition
- /// must be non-null.
+ /// nodes, or verify the clobbering definition.
+ ///
/// Note: If a MemoryAccess already exists for I, this function will make it
/// inaccessible and it *must* have removeMemoryAccess called on it.
MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt);
- // \brief Splice \p What to just before \p Where.
- //
- // In order to be efficient, the following conditions must be met:
- // - \p Where dominates \p What,
- // - All memory accesses in [\p Where, \p What) are no-alias with \p What.
- //
- // TODO: relax the MemoryDef requirement on Where.
- void spliceMemoryAccessAbove(MemoryDef *Where, MemoryUseOrDef *What);
-
/// \brief Remove a MemoryAccess from MemorySSA, including updating all
/// definitions and uses.
/// This should be called when a memory instruction that has a MemoryAccess
// Used by Memory SSA annotater, dumpers, and wrapper pass
friend class MemorySSAAnnotatedWriter;
friend class MemorySSAPrinterLegacyPass;
+ friend class MemorySSAUpdater;
void verifyDefUses(Function &F) const;
void verifyDomination(Function &F) const;
return It == PerBlockDefs.end() ? nullptr : It->second.get();
}
+ // This is used by the updater to perform the internal memoryssa machinations
+ // for moves. It does not always leave the IR in a correct state, and relies
+ // on the updater to fixup what it breaks, so it is not public.
+ void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
+
private:
class CachingWalker;
class OptimizeUses;
MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
void removeFromLookups(MemoryAccess *);
+ void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &,
const DenseMap<const BasicBlock *, unsigned int> &);
unsigned NextID;
};
+// An automatic updater for MemorySSA that handles arbitrary insertion,
+// deletion, and moves. It performs phi insertion where necessary, and
+// automatically updates the MemorySSA IR to be correct.
+// While updating loads or removing instructions is often easy enough to not
+// need this, updating stores should generally not be attemped outside this
+// API.
+//
+// Basic API usage:
+// Create the memory access you want for the instruction (this is mainly so
+// we know where it is, without having to duplicate the entire set of create
+// functions MemorySSA supports).
+// Call insertDef or insertUse depending on whether it's a MemoryUse or a
+// MemoryDef.
+// That's it.
+//
+// For moving, first, move the instruction itself using the normal SSA
+// instruction moving API, then just call moveBefore or moveAfter with the right
+// arguments.
+//
+class MemorySSAUpdater {
+private:
+ MemorySSA *MSSA;
+ SmallVector<MemoryPhi *, 8> InsertedPHIs;
+ SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
+
+public:
+ MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
+ void insertDef(MemoryDef *Def);
+ void insertUse(MemoryUse *Use);
+ void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
+ void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
+
+private:
+ void moveTo(MemoryUseOrDef *What, BasicBlock *BB,
+ MemorySSA::AccessList::iterator Where);
+ MemoryAccess *getPreviousDef(MemoryAccess *);
+ MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
+ MemoryAccess *getPreviousDefFromEnd(BasicBlock *);
+ MemoryAccess *getPreviousDefRecursive(BasicBlock *);
+ MemoryAccess *recursePhi(MemoryAccess *Phi);
+ template <class RangeType>
+ MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
+ void fixupDefs(const SmallVectorImpl<MemoryAccess *> &);
+};
+
// This pass does eager building and then printing of MemorySSA. It is used by
// the tests to be able to build, dump, and verify Memory SSA.
class MemorySSAPrinterLegacyPass : public FunctionPass {
}
}
+// Move What before Where in the IR. The end result is taht What will belong to
+// the right lists and have the right Block set, but will not otherwise be
+// correct. It will not have the right defining access, and if it is a def,
+// things below it will not properly be updated.
+void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
+ AccessList::iterator Where) {
+ // Keep it in the lookup tables, remove from the lists
+ removeFromLists(What, false);
+ What->setBlock(BB);
+ insertIntoListsBefore(What, BB, Where);
+}
+
MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
return NewAccess;
}
-void MemorySSA::spliceMemoryAccessAbove(MemoryDef *Where,
- MemoryUseOrDef *What) {
- assert(What != getLiveOnEntryDef() && Where != getLiveOnEntryDef() &&
- "Can't splice (above) LOE.");
- assert(dominates(Where, What) && "Only upwards splices are permitted.");
-
- if (Where == What)
- return;
- if (isa<MemoryDef>(What)) {
- // TODO: possibly use removeMemoryAccess' more efficient RAUW
- What->replaceAllUsesWith(What->getDefiningAccess());
- What->setDefiningAccess(Where->getDefiningAccess());
- Where->setDefiningAccess(What);
- }
- AccessList *Src = getWritableBlockAccesses(What->getBlock());
- AccessList *Dest = getWritableBlockAccesses(Where->getBlock());
- Dest->splice(AccessList::iterator(Where), *Src, What);
-
- BlockNumberingValid.erase(What->getBlock());
- if (What->getBlock() != Where->getBlock())
- BlockNumberingValid.erase(Where->getBlock());
-}
-
/// \brief Helper function to create new memory accesses
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
// The assume intrinsic has a control dependency which we model by claiming
}
/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
-///
-/// Because of the way the intrusive list and use lists work, it is important to
-/// do removal in the right order.
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
assert(MA->use_empty() &&
"Trying to remove memory access that still has uses");
auto VMA = ValueToMemoryAccess.find(MemoryInst);
if (VMA->second == MA)
ValueToMemoryAccess.erase(VMA);
+}
+/// \brief Properly remove \p MA from all of MemorySSA's lists.
+///
+/// Because of the way the intrusive list and use lists work, it is important to
+/// do removal in the right order.
+/// ShouldDelete defaults to true, and will cause the memory access to also be
+/// deleted, not just removed.
+void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
// The access list owns the reference, so we erase it from the non-owning list
// first.
if (!isa<MemoryUse>(MA)) {
PerBlockDefs.erase(DefsIt);
}
+ // The erase call here will delete it. If we don't want it deleted, we call
+ // remove instead.
auto AccessIt = PerBlockAccesses.find(MA->getBlock());
std::unique_ptr<AccessList> &Accesses = AccessIt->second;
- Accesses->erase(MA);
+ if (ShouldDelete)
+ Accesses->erase(MA);
+ else
+ Accesses->remove(MA);
+
if (Accesses->empty())
PerBlockAccesses.erase(AccessIt);
}
}
// Re-point the uses at our defining access
- if (!MA->use_empty()) {
+ if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
// Reset optimized on users of this store, and reset the uses.
// A few notes:
// 1. This is a slightly modified version of RAUW to avoid walking the
// The call below to erase will destroy MA, so we can't change the order we
// are doing things here
removeFromLookups(MA);
+ removeFromLists(MA);
}
void MemorySSA::print(raw_ostream &OS) const {
return Use->getDefiningAccess();
return StartingAccess;
}
+// This is the marker algorithm from "Simple and Efficient Construction of
+// Static Single Assignment Form"
+// The simple, non-marker algorithm places phi nodes at any join
+// Here, we place markers, and only place phi nodes if they end up necessary.
+// They are only necessary if they break a cycle (IE we recursively visit
+// ourselves again), or we discover, while getting the value of the operands,
+// that there are two or more definitions needing to be merged.
+// This still will leave non-minimal form in the case of irreducible control
+// flow, where phi nodes may be in cycles with themselves, but unnecessary.
+MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
+ // Single predecessor case, just recurse, we can only have one definition.
+ if (BasicBlock *Pred = BB->getSinglePredecessor()) {
+ return getPreviousDefFromEnd(Pred);
+ } else if (VisitedBlocks.count(BB)) {
+ // We hit our node again, meaning we had a cycle, we must insert a phi
+ // node to break it so we have an operand. The only case this will
+ // insert useless phis is if we have irreducible control flow.
+ return MSSA->createMemoryPhi(BB);
+ } else if (VisitedBlocks.insert(BB).second) {
+ // Mark us visited so we can detect a cycle
+ SmallVector<MemoryAccess *, 8> PhiOps;
+
+ // Recurse to get the values in our predecessors for placement of a
+ // potential phi node. This will insert phi nodes if we cycle in order to
+ // break the cycle and have an operand.
+ for (auto *Pred : predecessors(BB))
+ PhiOps.push_back(getPreviousDefFromEnd(Pred));
+
+ // Now try to simplify the ops to avoid placing a phi.
+ // This may return null if we never created a phi yet, that's okay
+ MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
+ bool PHIExistsButNeedsUpdate = false;
+ // See if the existing phi operands match what we need.
+ // Unlike normal SSA, we only allow one phi node per block, so we can't just
+ // create a new one.
+ if (Phi && Phi->getNumOperands() != 0)
+ if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
+ PHIExistsButNeedsUpdate = true;
+ }
+
+ // See if we can avoid the phi by simplifying it.
+ auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
+ // If we couldn't simplify, we may have to create a phi
+ if (Result == Phi) {
+ if (!Phi)
+ Phi = MSSA->createMemoryPhi(BB);
+
+ // These will have been filled in by the recursive read we did above.
+ if (PHIExistsButNeedsUpdate) {
+ std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
+ std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
+ } else {
+ unsigned i = 0;
+ for (auto *Pred : predecessors(BB))
+ Phi->addIncoming(PhiOps[i++], Pred);
+ }
+
+ Result = Phi;
+ }
+ if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
+ InsertedPHIs.push_back(MP);
+ // Set ourselves up for the next variable by resetting visited state.
+ VisitedBlocks.erase(BB);
+ return Result;
+ }
+ llvm_unreachable("Should have hit one of the three cases above");
+}
+
+// This starts at the memory access, and goes backwards in the block to find the
+// previous definition. If a definition is not found the block of the access,
+// it continues globally, creating phi nodes to ensure we have a single
+// definition.
+MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
+ auto *LocalResult = getPreviousDefInBlock(MA);
+
+ return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
+}
+
+// This starts at the memory access, and goes backwards in the block to the find
+// the previous definition. If the definition is not found in the block of the
+// access, it returns nullptr.
+MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
+ auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
+
+ // It's possible there are no defs, or we got handed the first def to start.
+ if (Defs) {
+ // If this is a def, we can just use the def iterators.
+ if (!isa<MemoryUse>(MA)) {
+ auto Iter = MA->getReverseDefsIterator();
+ ++Iter;
+ if (Iter != Defs->rend())
+ return &*Iter;
+ } else {
+ // Otherwise, have to walk the all access iterator.
+ auto Iter = MA->getReverseIterator();
+ ++Iter;
+ while (&*Iter != &*Defs->begin()) {
+ if (!isa<MemoryUse>(*Iter))
+ return &*Iter;
+ --Iter;
+ }
+ // At this point it must be pointing at firstdef
+ assert(&*Iter == &*Defs->begin() &&
+ "Should have hit first def walking backwards");
+ return &*Iter;
+ }
+ }
+ return nullptr;
+}
+
+// This starts at the end of block
+MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
+ auto *Defs = MSSA->getWritableBlockDefs(BB);
+
+ if (Defs)
+ return &*Defs->rbegin();
+
+ return getPreviousDefRecursive(BB);
+}
+// Recurse over a set of phi uses to eliminate the trivial ones
+MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
+ if (!Phi)
+ return nullptr;
+ TrackingVH<MemoryAccess> Res(Phi);
+ SmallVector<TrackingVH<Value>, 8> Uses;
+ std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
+ for (auto &U : Uses) {
+ if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
+ auto OperRange = UsePhi->operands();
+ tryRemoveTrivialPhi(UsePhi, OperRange);
+ }
+ }
+ return Res;
+}
+
+// Eliminate trivial phis
+// Phis are trivial if they are defined either by themselves, or all the same
+// argument.
+// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
+// We recursively try to remove them.
+template <class RangeType>
+MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
+ RangeType &Operands) {
+ // Detect equal or self arguments
+ MemoryAccess *Same = nullptr;
+ for (auto &Op : Operands) {
+ // If the same or self, good so far
+ if (Op == Phi || Op == Same)
+ continue;
+ // not the same, return the phi since it's not eliminatable by us
+ if (Same)
+ return Phi;
+ Same = cast<MemoryAccess>(Op);
+ }
+ // Never found a non-self reference, the phi is undef
+ if (Same == nullptr)
+ return MSSA->getLiveOnEntryDef();
+ if (Phi) {
+ Phi->replaceAllUsesWith(Same);
+ MSSA->removeMemoryAccess(Phi);
+ }
+
+ // We should only end up recursing in case we replaced something, in which
+ // case, we may have made other Phis trivial.
+ return recursePhi(Same);
+}
+
+void MemorySSAUpdater::insertUse(MemoryUse *MU) {
+ InsertedPHIs.clear();
+ MU->setDefiningAccess(getPreviousDef(MU));
+ // Unlike for defs, there is no extra work to do. Because uses do not create
+ // new may-defs, there are only two cases:
+ //
+ // 1. There was a def already below us, and therefore, we should not have
+ // created a phi node because it was already needed for the def.
+ //
+ // 2. There is no def below us, and therefore, there is no extra renaming work
+ // to do.
+}
+
+void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
+ MemoryAccess *NewDef) {
+ // Replace any operand with us an incoming block with the new defining
+ // access.
+ int i = MP->getBasicBlockIndex(BB);
+ assert(i != -1 && "Should have found the basic block in the phi");
+ while (MP->getIncomingBlock(i) == BB) {
+ // Unlike above, there is already a phi node here, so we only need
+ // to set the right value.
+ MP->setIncomingValue(i, NewDef);
+ ++i;
+ }
+}
+
+// A brief description of the algorithm:
+// First, we compute what should define the new def, using the SSA
+// construction algorithm.
+// Then, we update the defs below us (and any new phi nodes) in the graph to
+// point to the correct new defs, to ensure we only have one variable, and no
+// disconnected stores.
+void MemorySSAUpdater::insertDef(MemoryDef *MD) {
+ InsertedPHIs.clear();
+
+ // See if we had a local def, and if not, go hunting.
+ MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
+ bool DefBeforeSameBlock = DefBefore != nullptr;
+ if (!DefBefore)
+ DefBefore = getPreviousDefRecursive(MD->getBlock());
+
+ // There is a def before us, which means we can replace any store/phi uses
+ // of that thing with us, since we are in the way of whatever was there
+ // before.
+ // We now define that def's memorydefs and memoryphis
+ for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); UI != UE;) {
+ Use &U = *UI++;
+ // Leave the uses alone
+ if (isa<MemoryUse>(U.getUser()))
+ continue;
+ U.set(MD);
+ }
+ // and that def is now our defining access.
+ // We change them in this order otherwise we will appear in the use list
+ // above and reset ourselves.
+ MD->setDefiningAccess(DefBefore);
+
+ SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
+ InsertedPHIs.end());
+ if (!DefBeforeSameBlock) {
+ // If there was a local def before us, we must have the same effect it
+ // did. Because every may-def is the same, any phis/etc we would create, it
+ // would also have created. If there was no local def before us, we
+ // performed a global update, and have to search all successors and make
+ // sure we update the first def in each of them (following all paths until
+ // we hit the first def along each path). This may also insert phi nodes.
+ // TODO: There are other cases we can skip this work, such as when we have a
+ // single successor, and only used a straight line of single pred blocks
+ // backwards to find the def. To make that work, we'd have to track whether
+ // getDefRecursive only ever used the single predecessor case. These types
+ // of paths also only exist in between CFG simplifications.
+ FixupList.push_back(MD);
+ }
+
+ while (!FixupList.empty()) {
+ unsigned StartingPHISize = InsertedPHIs.size();
+ fixupDefs(FixupList);
+ FixupList.clear();
+ // Put any new phis on the fixup list, and process them
+ FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
+ }
+}
+
+void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
+ SmallPtrSet<const BasicBlock *, 8> Seen;
+ SmallVector<const BasicBlock *, 16> Worklist;
+ for (auto *NewDef : Vars) {
+ // First, see if there is a local def after the operand.
+ auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
+ auto DefIter = NewDef->getDefsIterator();
+
+ // If there is a local def after us, we only have to rename that.
+ if (++DefIter != Defs->end()) {
+ cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
+ continue;
+ }
+
+ // Otherwise, we need to search down through the CFG.
+ // For each of our successors, handle it directly if their is a phi, or
+ // place on the fixup worklist.
+ for (const auto *S : successors(NewDef->getBlock())) {
+ if (auto *MP = MSSA->getMemoryAccess(S))
+ setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
+ else
+ Worklist.push_back(S);
+ }
+
+ while (!Worklist.empty()) {
+ const BasicBlock *FixupBlock = Worklist.back();
+ Worklist.pop_back();
+
+ // Get the first def in the block that isn't a phi node.
+ if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
+ auto *FirstDef = &*Defs->begin();
+ // The loop above and below should have taken care of phi nodes
+ assert(!isa<MemoryPhi>(FirstDef) &&
+ "Should have already handled phi nodes!");
+ // We are now this def's defining access, make sure we actually dominate
+ // it
+ assert(MSSA->dominates(NewDef, FirstDef) &&
+ "Should have dominated the new access");
+
+ // This may insert new phi nodes, because we are not guaranteed the
+ // block we are processing has a single pred, and depending where the
+ // store was inserted, it may require phi nodes below it.
+ cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
+ return;
+ }
+ // We didn't find a def, so we must continue.
+ for (const auto *S : successors(FixupBlock)) {
+ // If there is a phi node, handle it.
+ // Otherwise, put the block on the worklist
+ if (auto *MP = MSSA->getMemoryAccess(S))
+ setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
+ else {
+ // If we cycle, we should have ended up at a phi node that we already
+ // processed. FIXME: Double check this
+ if (!Seen.insert(S).second)
+ continue;
+ Worklist.push_back(S);
+ }
+ }
+ }
+ }
+}
+
+// Move What before Where in the MemorySSA IR.
+void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
+ MemorySSA::AccessList::iterator Where) {
+ // Replace all our users with our defining access.
+ What->replaceAllUsesWith(What->getDefiningAccess());
+
+ // Let MemorySSA take care of moving it around in the lists.
+ MSSA->moveTo(What, BB, Where);
+
+ // Now reinsert it into the IR and do whatever fixups needed.
+ if (auto *MD = dyn_cast<MemoryDef>(What))
+ insertDef(MD);
+ else
+ insertUse(cast<MemoryUse>(What));
+}
+// Move What before Where in the MemorySSA IR.
+void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
+ moveTo(What, Where->getBlock(), Where->getIterator());
+}
+
+// Move What after Where in the MemorySSA IR.
+void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
+ moveTo(What, Where->getBlock(), ++Where->getIterator());
+}
+
} // namespace llvm
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
+TEST_F(MemorySSATest, CreateLoadsAndStoreUpdater) {
+ // We create a diamond, then build memoryssa with no memory accesses, and
+ // incrementally update it by inserting a store in the, entry, a load in the
+ // merge point, then a store in the branch, another load in the merge point,
+ // and then a store in the entry.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left, Left->begin());
+ Argument *PointerArg = &*F->arg_begin();
+ B.SetInsertPoint(Left);
+ B.CreateBr(Merge);
+ B.SetInsertPoint(Right);
+ B.CreateBr(Merge);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ // Add the store
+ B.SetInsertPoint(Entry, Entry->begin());
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *EntryStoreAccess = MSSA.createMemoryAccessInBB(
+ EntryStore, nullptr, Entry, MemorySSA::Beginning);
+ Updater.insertDef(cast<MemoryDef>(EntryStoreAccess));
+
+ // Add the load
+ B.SetInsertPoint(Merge, Merge->begin());
+ LoadInst *FirstLoad = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should not already exist.
+ MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_EQ(MP, nullptr);
+
+ // Create the load memory access
+ MemoryUse *FirstLoadAccess = cast<MemoryUse>(MSSA.createMemoryAccessInBB(
+ FirstLoad, nullptr, Merge, MemorySSA::Beginning));
+ Updater.insertUse(FirstLoadAccess);
+ // Should just have a load using the entry access, because it should discover
+ // the phi is trivial
+ EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), EntryStoreAccess);
+
+ // Create a store on the left
+ // Add the store
+ B.SetInsertPoint(Left, Left->begin());
+ StoreInst *LeftStore = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *LeftStoreAccess = MSSA.createMemoryAccessInBB(
+ LeftStore, nullptr, Left, MemorySSA::Beginning);
+ Updater.insertDef(cast<MemoryDef>(LeftStoreAccess));
+ // We don't touch existing loads, so we need to create a new one to get a phi
+ // Add the second load
+ B.SetInsertPoint(Merge, Merge->begin());
+ LoadInst *SecondLoad = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should not already exist.
+ MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_EQ(MP, nullptr);
+
+ // Create the load memory access
+ MemoryUse *SecondLoadAccess = cast<MemoryUse>(MSSA.createMemoryAccessInBB(
+ SecondLoad, nullptr, Merge, MemorySSA::Beginning));
+ Updater.insertUse(SecondLoadAccess);
+ // Now the load should be a phi of the entry store and the left store
+ MemoryPhi *MergePhi =
+ dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
+ EXPECT_NE(MergePhi, nullptr);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
+ // Now create a store below the existing one in the entry
+ B.SetInsertPoint(Entry, --Entry->end());
+ StoreInst *SecondEntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *SecondEntryStoreAccess = MSSA.createMemoryAccessInBB(
+ SecondEntryStore, nullptr, Entry, MemorySSA::End);
+ Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess));
+ // and make sure the phi below it got updated, despite being blocks away
+ MergePhi = dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
+ EXPECT_NE(MergePhi, nullptr);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SecondEntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, CreateALoadUpdater) {
+ // We create a diamond, then build memoryssa with no memory accesses, and
+ // incrementally update it by inserting a store in one of the branches, and a
+ // load in the merge point
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left, Left->begin());
+ Argument *PointerArg = &*F->arg_begin();
+ B.SetInsertPoint(Left);
+ B.CreateBr(Merge);
+ B.SetInsertPoint(Right);
+ B.CreateBr(Merge);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ B.SetInsertPoint(Left, Left->begin());
+ // Add the store
+ StoreInst *SI = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *StoreAccess =
+ MSSA.createMemoryAccessInBB(SI, nullptr, Left, MemorySSA::Beginning);
+ Updater.insertDef(cast<MemoryDef>(StoreAccess));
+
+ // Add the load
+ B.SetInsertPoint(Merge, Merge->begin());
+ LoadInst *LoadInst = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should not already exist.
+ MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_EQ(MP, nullptr);
+
+ // Create the load memory acccess
+ MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.createMemoryAccessInBB(
+ LoadInst, nullptr, Merge, MemorySSA::Beginning));
+ Updater.insertUse(LoadAccess);
+ MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
+ EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
+ MSSA.verifyMemorySSA();
+}
TEST_F(MemorySSATest, MoveAStore) {
// We create a diamond where there is a in the entry, a store on one side, and
// a load at the end. After building MemorySSA, we test updating by moving
- // the store from the side block to the entry block.
+ // the store from the side block to the entry block. This destroys the old
+ // access.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
MSSA.verifyMemorySSA();
}
+TEST_F(MemorySSATest, MoveAStoreUpdater) {
+ // We create a diamond where there is a in the entry, a store on one side, and
+ // a load at the end. After building MemorySSA, we test updating by moving
+ // the store from the side block to the entry block. This destroys the old
+ // access.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ auto *MergeLoad = B.CreateLoad(PointerArg);
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Move the store
+ SideStore->moveBefore(Entry->getTerminator());
+ auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
+ auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
+ auto *NewStoreAccess = MSSA.createMemoryAccessAfter(
+ SideStore, EntryStoreAccess, EntryStoreAccess);
+ // Before, the load will point to a phi of the EntryStore and SideStore.
+ auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
+ EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
+ MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ MSSA.removeMemoryAccess(SideStoreAccess);
+ Updater.insertDef(cast<MemoryDef>(NewStoreAccess));
+ // After it's a phi of the new side store access.
+ EXPECT_EQ(MergePhi->getIncomingValue(0), NewStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), NewStoreAccess);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, MoveAStoreUpdaterMove) {
+ // We create a diamond where there is a in the entry, a store on one side, and
+ // a load at the end. After building MemorySSA, we test updating by moving
+ // the store from the side block to the entry block. This does not destroy
+ // the old access.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ auto *MergeLoad = B.CreateLoad(PointerArg);
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Move the store
+ auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
+ auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
+ // Before, the load will point to a phi of the EntryStore and SideStore.
+ auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
+ EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
+ MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ SideStore->moveBefore(*EntryStore->getParent(), ++EntryStore->getIterator());
+ Updater.moveAfter(SideStoreAccess, EntryStoreAccess);
+ // After, it's a phi of the side store.
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
+
+ MSSA.verifyMemorySSA();
+}
+
TEST_F(MemorySSATest, RemoveAPhi) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
EXPECT_EQ(NewLoadAccess->getDefiningAccess(), LoadClobber);
}
-#if 0
-// Test out MemorySSA::spliceMemoryAccessAbove.
-TEST_F(MemorySSATest, SpliceAboveMemoryDef) {
+// Test out MemorySSAUpdater::moveBefore
+TEST_F(MemorySSATest, MoveAboveMemoryDef) {
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
StoreInst *StoreB = B.CreateStore(ConstantInt::get(Int8, 0), B_);
LoadInst *LoadB = B.CreateLoad(B_);
StoreInst *StoreA1 = B.CreateStore(ConstantInt::get(Int8, 4), A);
- // splice this above StoreB
StoreInst *StoreC = B.CreateStore(ConstantInt::get(Int8, 4), C);
StoreInst *StoreA2 = B.CreateStore(ConstantInt::get(Int8, 4), A);
LoadInst *LoadC = B.CreateLoad(C);
MemorySSA &MSSA = *Analyses->MSSA;
MemorySSAWalker &Walker = *Analyses->Walker;
+ MemorySSAUpdater Updater(&MSSA);
StoreC->moveBefore(StoreB);
- MSSA.spliceMemoryAccessAbove(cast<MemoryDef>(MSSA.getMemoryAccess(StoreB)),
- MSSA.getMemoryAccess(StoreC));
+ Updater.moveBefore(cast<MemoryDef>(MSSA.getMemoryAccess(StoreC)),
+ cast<MemoryDef>(MSSA.getMemoryAccess(StoreB)));
MSSA.verifyMemorySSA();
EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreA1),
MSSA.getMemoryAccess(StoreA2)));
}
-#endif
+
+TEST_F(MemorySSATest, Irreducible) {
+ // Create the equivalent of
+ // x = something
+ // if (...)
+ // goto second_loop_entry
+ // while (...) {
+ // second_loop_entry:
+ // }
+ // use(x)
+
+ SmallVector<PHINode *, 8> Inserted;
+ IRBuilder<> B(C);
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+
+ // Make blocks
+ BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
+ BasicBlock *LoopStartBB = BasicBlock::Create(C, "loopstart", F);
+ BasicBlock *LoopMainBB = BasicBlock::Create(C, "loopmain", F);
+ BasicBlock *AfterLoopBB = BasicBlock::Create(C, "afterloop", F);
+ B.SetInsertPoint(IfBB);
+ B.CreateCondBr(B.getTrue(), LoopMainBB, LoopStartBB);
+ B.SetInsertPoint(LoopStartBB);
+ B.CreateBr(LoopMainBB);
+ B.SetInsertPoint(LoopMainBB);
+ B.CreateCondBr(B.getTrue(), LoopStartBB, AfterLoopBB);
+ B.SetInsertPoint(AfterLoopBB);
+ Argument *FirstArg = &*F->arg_begin();
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ // Create the load memory acccess
+ LoadInst *LoadInst = B.CreateLoad(FirstArg);
+ MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.createMemoryAccessInBB(
+ LoadInst, nullptr, AfterLoopBB, MemorySSA::Beginning));
+ Updater.insertUse(LoadAccess);
+ MSSA.verifyMemorySSA();
+}