/*
*******************************************************************************
*
-* Copyright (C) 2000-2013, International Business Machines
+* Copyright (C) 2000-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* indentation:4
*
* created at the end of XX century
-* created by: Vladimir Weinstein
+* created by: Vladimir Weinstein,
+* modified in 2013-2014 by Markus Scherer
*
-* This program reads the Franctional UCA table and generates
+* This program reads the Fractional UCA table and generates
* internal format for UCA table as well as inverse UCA table.
-* It then writes binary files containing the data: ucadata.dat
-* & invuca.dat
-* Change history:
-* 02/23/2001 grhoten Made it into a tool
-* 02/23/2001 weiv Moved element & table handling code to i18n
-* 05/09/2001 weiv Case bits are now in the CEs, not in front
-* 10/26/2010 sgill Support for reordering codes
+* It then writes the ucadata.icu binary file containing the data.
*/
#define U_NO_DEFAULT_INCLUDE_UTF_HEADERS 1
+#include <stdio.h>
#include "unicode/utypes.h"
-#include "unicode/putil.h"
-#include "unicode/udata.h"
-#include "unicode/uclean.h"
-#include "unicode/uscript.h"
-#include "unicode/ustring.h"
-#include "unicode/utf16.h"
+#include "unicode/errorcode.h"
+#include "unicode/localpointer.h"
#include "charstr.h"
-#include "ucol_bld.h"
-#include "ucol_imp.h"
-#include "genuca.h"
-#include "uoptions.h"
-#include "uparse.h"
+#include "cmemory.h"
+#include "collation.h"
+#include "collationbasedatabuilder.h"
+#include "collationdata.h"
+#include "collationdatabuilder.h"
+#include "collationdatareader.h"
+#include "collationdatawriter.h"
+#include "collationinfo.h"
+#include "collationrootelements.h"
+#include "collationruleparser.h"
+#include "collationtailoring.h"
+#include "cstring.h"
+#include "normalizer2impl.h"
#include "toolutil.h"
#include "unewdata.h"
-#include "cstring.h"
-#include "cmemory.h"
-
-#include <stdio.h>
+#include "uoptions.h"
+#include "uparse.h"
+#include "writesrc.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
-/** The maximum UTF-16 length (number of UChars) in a UCA contraction. */
-static const int32_t MAX_UCA_CONTRACTION_LENGTH=4;
-
-// script reordering structures
-typedef struct {
- uint16_t reorderCode;
- uint16_t offset;
-} ReorderIndex;
-
-typedef struct {
- uint16_t LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH;
- uint16_t* LEAD_BYTE_TO_SCRIPTS_INDEX;
- uint16_t LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH;
- uint16_t* LEAD_BYTE_TO_SCRIPTS_DATA;
- uint16_t LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET;
-
- uint16_t SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH;
- ReorderIndex* SCRIPT_TO_LEAD_BYTES_INDEX;
- uint16_t SCRIPT_TO_LEAD_BYTES_INDEX_COUNT;
- uint16_t SCRIPT_TO_LEAD_BYTES_DATA_LENGTH;
- uint16_t* SCRIPT_TO_LEAD_BYTES_DATA;
- uint16_t SCRIPT_TO_LEAD_BYTES_DATA_OFFSET;
-} LeadByteConstants;
-
-int ReorderIndexComparer(const void *a, const void *b) {
- return reinterpret_cast<const ReorderIndex*>(a)->reorderCode - reinterpret_cast<const ReorderIndex*>(b)->reorderCode;
-}
-
-/*
- * Global - verbosity
- */
-UBool beVerbose = FALSE;
-
-static UVersionInfo UCAVersion;
-
#if UCONFIG_NO_COLLATION
-/* dummy UDataInfo cf. udata.h */
-static UDataInfo dummyDataInfo = {
- sizeof(UDataInfo),
- 0,
-
- U_IS_BIG_ENDIAN,
- U_CHARSET_FAMILY,
- U_SIZEOF_UCHAR,
- 0,
-
- { 0, 0, 0, 0 }, /* dummy dataFormat */
- { 0, 0, 0, 0 }, /* dummy formatVersion */
- { 0, 0, 0, 0 } /* dummy dataVersion */
-};
+extern "C" int
+main(int argc, char* argv[]) {
+ (void)argc;
+ (void)argv;
+ return 1;
+}
#else
-static const UDataInfo ucaDataInfo={
- sizeof(UDataInfo),
- 0,
+U_NAMESPACE_USE
- U_IS_BIG_ENDIAN,
- U_CHARSET_FAMILY,
- sizeof(UChar),
- 0,
+static UBool beVerbose=FALSE, withCopyright=TRUE;
- {UCA_DATA_FORMAT_0, UCA_DATA_FORMAT_1, UCA_DATA_FORMAT_2, UCA_DATA_FORMAT_3}, /* dataFormat="UCol" */
- /* 03/26/2002 bumped up version since format has changed */
- /* 09/16/2002 bumped up version since we went from UColAttributeValue */
- /* to int32_t in UColOptionSet */
- /* 05/13/2003 This one also updated since we added UCA and UCD versions */
- /* to header */
- /* 09/11/2003 Adding information required by data swapper */
- {UCA_FORMAT_VERSION_0, UCA_FORMAT_VERSION_1, UCA_FORMAT_VERSION_2, UCA_FORMAT_VERSION_3}, /* formatVersion */
- {0, 0, 0, 0} /* dataVersion = Unicode Version*/
-};
+static UVersionInfo UCAVersion={ 0, 0, 0, 0 };
-static const UDataInfo invUcaDataInfo={
+static UDataInfo ucaDataInfo={
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
- sizeof(UChar),
+ U_SIZEOF_UCHAR,
0,
- {INVUCA_DATA_FORMAT_0, INVUCA_DATA_FORMAT_1, INVUCA_DATA_FORMAT_2, INVUCA_DATA_FORMAT_3}, /* dataFormat="InvC" */
- /* 03/26/2002 bumped up version since format has changed */
- /* 04/29/2003 2.1 format - we have added UCA version to header */
- {INVUCA_FORMAT_VERSION_0, INVUCA_FORMAT_VERSION_1, INVUCA_FORMAT_VERSION_2, INVUCA_FORMAT_VERSION_3}, /* formatVersion */
- {0, 0, 0, 0} /* dataVersion = Unicode Version*/
+ { 0x55, 0x43, 0x6f, 0x6c }, // dataFormat="UCol"
+ { 4, 0, 0, 0 }, // formatVersion
+ { 6, 3, 0, 0 } // dataVersion
};
-UCAElements le;
+static char *skipWhiteSpace(char *s) {
+ while(*s == ' ' || *s == '\t') { ++s; }
+ return s;
+}
-// returns number of characters read
-int32_t readElement(char **from, char *to, char separator, UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return 0;
+static int32_t hex2num(char hex) {
+ if(hex>='0' && hex <='9') {
+ return hex-'0';
+ } else if(hex>='a' && hex<='f') {
+ return hex-'a'+10;
+ } else if(hex>='A' && hex<='F') {
+ return hex-'A'+10;
+ } else {
+ return -1;
}
- char buffer[1024];
- int32_t i = 0;
+}
+
+static uint32_t parseWeight(char *&s, const char *separators,
+ int32_t maxBytes, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ uint32_t weight = 0;
+ int32_t numBytes = 0;
for(;;) {
- char c = **from;
- if(c == separator || (separator == ' ' && c == '\t')) {
+ // Check one character after another, so that we don't just run over a 00.
+ int32_t nibble1, nibble2;
+ if((nibble1 = hex2num(s[0])) < 0 || (nibble2 = hex2num(s[1])) < 0) {
+ // Stop when we find something other than a pair of hex digits.
break;
}
- if (c == '\0') {
+ if(numBytes == maxBytes || (numBytes != 0 && nibble1 == 0 && nibble2 <= 1)) {
+ // Too many bytes, or a 00 or 01 byte which is illegal inside a weight.
+ errorCode = U_INVALID_FORMAT_ERROR;
return 0;
}
- if(c != ' ') {
- *(buffer+i++) = c;
+ weight = (weight << 8) | ((uint32_t)nibble1 << 4) | (uint32_t)nibble2;
+ ++numBytes;
+ s += 2;
+ if(*s != ' ') {
+ break;
}
- (*from)++;
+ ++s;
}
- (*from)++;
- *(buffer + i) = 0;
- //*to = (char *)malloc(strlen(buffer)+1);
- strcpy(to, buffer);
- return i;
-}
-
-int32_t skipUntilWhiteSpace(char **from, UErrorCode *status) {
- if (U_FAILURE(*status)) {
+ char c = *s;
+ if(c == 0 || strchr(separators, c) == NULL) {
+ errorCode = U_INVALID_FORMAT_ERROR;
return 0;
}
- int32_t count = 0;
- while (**from != ' ' && **from != '\t' && **from != '\0') {
- (*from)++;
- count++;
+ // numBytes==0 is ok, for example in [,,] or [, 82, 05]
+ // Left-align the weight.
+ while(numBytes < 4) {
+ weight <<= 8;
+ ++numBytes;
}
- return count;
+ return weight;
}
-int32_t skipWhiteSpace(char **from, UErrorCode *status) {
- if (U_FAILURE(*status)) {
- return 0;
- }
- int32_t count = 0;
- while (**from == ' ' || **from == '\t') {
- (*from)++;
- count++;
- }
- return count;
-}
-
-uint32_t getSingleCEValue(char *primary, char *secondary, char *tertiary, UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return 0;
- }
- uint32_t value = 0;
- char primsave = '\0';
- char secsave = '\0';
- char tersave = '\0';
- char *primend = primary+4;
- if(strlen(primary) > 4) {
- primsave = *primend;
- *primend = '\0';
- }
- char *secend = secondary+2;
- if(strlen(secondary) > 2) {
- secsave = *secend;
- *secend = '\0';
- }
- char *terend = tertiary+2;
- if(strlen(tertiary) > 2) {
- tersave = *terend;
- *terend = '\0';
- }
- uint32_t primvalue = (uint32_t)((*primary!='\0')?strtoul(primary, &primend, 16):0);
- uint32_t secvalue = (uint32_t)((*secondary!='\0')?strtoul(secondary, &secend, 16):0);
- uint32_t tervalue = (uint32_t)((*tertiary!='\0')?strtoul(tertiary, &terend, 16):0);
- if(primvalue <= 0xFF) {
- primvalue <<= 8;
- }
-
- value = ((primvalue<<UCOL_PRIMARYORDERSHIFT)&UCOL_PRIMARYORDERMASK)|
- ((secvalue<<UCOL_SECONDARYORDERSHIFT)&UCOL_SECONDARYORDERMASK)|
- (tervalue&UCOL_TERTIARYORDERMASK);
-
- if(primsave!='\0') {
- *primend = primsave;
- }
- if(secsave!='\0') {
- *secend = secsave;
- }
- if(tersave!='\0') {
- *terend = tersave;
- }
- return value;
-}
-
-static uint32_t inverseTable[0xFFFF][3];
-static uint32_t inversePos = 0;
-static UChar stringContinue[0xFFFF];
-static uint32_t sContPos = 0;
-
-static void addNewInverse(UCAElements *element, UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return;
- }
- if(beVerbose && isContinuation(element->CEs[1])) {
- //printf("+");
- }
- inversePos++;
- inverseTable[inversePos][0] = element->CEs[0];
- if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) {
- inverseTable[inversePos][1] = element->CEs[1];
- } else {
- inverseTable[inversePos][1] = 0;
- }
- if(element->cSize < 2) {
- inverseTable[inversePos][2] = element->cPoints[0];
- } else { /* add a new store of cruft */
- inverseTable[inversePos][2] = ((element->cSize+1) << UCOL_INV_SHIFTVALUE) | sContPos;
- memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar));
- sContPos += element->cSize+1;
- }
-}
-
-static void insertInverse(UCAElements *element, uint32_t position, UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return;
- }
-
- if(beVerbose && isContinuation(element->CEs[1])) {
- //printf("+");
- }
- if(position <= inversePos) {
- /*move stuff around */
- uint32_t amountToMove = (inversePos - position+1)*sizeof(inverseTable[0]);
- uprv_memmove(inverseTable[position+1], inverseTable[position], amountToMove);
- }
- inverseTable[position][0] = element->CEs[0];
- if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) {
- inverseTable[position][1] = element->CEs[1];
- } else {
- inverseTable[position][1] = 0;
- }
- if(element->cSize < 2) {
- inverseTable[position][2] = element->cPoints[0];
- } else { /* add a new store of cruft */
- inverseTable[position][2] = ((element->cSize+1) << UCOL_INV_SHIFTVALUE) | sContPos;
- memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar));
- sContPos += element->cSize+1;
- }
- inversePos++;
-}
-
-static void addToExistingInverse(UCAElements *element, uint32_t position, UErrorCode *status) {
-
- if(U_FAILURE(*status)) {
- return;
- }
-
- if((inverseTable[position][2] & UCOL_INV_SIZEMASK) == 0) { /* single element, have to make new extension place and put both guys there */
- stringContinue[sContPos] = (UChar)inverseTable[position][2];
- inverseTable[position][2] = ((element->cSize+3) << UCOL_INV_SHIFTVALUE) | sContPos;
- sContPos++;
- stringContinue[sContPos++] = 0xFFFF;
- memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar));
- sContPos += element->cSize;
- stringContinue[sContPos++] = 0xFFFE;
- } else { /* adding to the already existing continuing table */
- uint32_t contIndex = inverseTable[position][2] & UCOL_INV_OFFSETMASK;
- uint32_t contSize = (inverseTable[position][2] & UCOL_INV_SIZEMASK) >> UCOL_INV_SHIFTVALUE;
-
- if(contIndex+contSize < sContPos) {
- /*fprintf(stderr, ".", sContPos, contIndex+contSize);*/
- memcpy(stringContinue+contIndex+contSize+element->cSize+1, stringContinue+contIndex+contSize, (element->cSize+1)*sizeof(UChar));
- }
-
- stringContinue[contIndex+contSize-1] = 0xFFFF;
- memcpy(stringContinue+contIndex+contSize, element->cPoints, element->cSize*sizeof(UChar));
- sContPos += element->cSize+1;
- stringContinue[contIndex+contSize+element->cSize] = 0xFFFE;
-
- inverseTable[position][2] = ((contSize+element->cSize+1) << UCOL_INV_SHIFTVALUE) | contIndex;
- }
-}
-
-/*
- * Takes two CEs (lead and continuation) and
- * compares them as CEs should be compared:
- * primary vs. primary, secondary vs. secondary
- * tertiary vs. tertiary
+/**
+ * Parse a CE like [0A 86, 05, 17] or [U+4E00, 10].
+ * Stop with an error, or else with the pointer s after the closing bracket.
*/
-static int32_t compareCEs(uint32_t *source, uint32_t *target) {
- uint32_t s1 = source[0], s2, t1 = target[0], t2;
- if(isContinuation(source[1])) {
- s2 = source[1];
- } else {
- s2 = 0;
- }
- if(isContinuation(target[1])) {
- t2 = target[1];
- } else {
- t2 = 0;
- }
-
- uint32_t s = 0, t = 0;
- if(s1 == t1 && s2 == t2) {
- return 0;
- }
- s = (s1 & 0xFFFF0000)|((s2 & 0xFFFF0000)>>16);
- t = (t1 & 0xFFFF0000)|((t2 & 0xFFFF0000)>>16);
- if(s < t) {
- return -1;
- } else if(s > t) {
- return 1;
- } else {
- s = (s1 & 0x0000FF00) | (s2 & 0x0000FF00)>>8;
- t = (t1 & 0x0000FF00) | (t2 & 0x0000FF00)>>8;
- if(s < t) {
- return -1;
- } else if(s > t) {
- return 1;
- } else {
- s = (s1 & 0x000000FF)<<8 | (s2 & 0x000000FF);
- t = (t1 & 0x000000FF)<<8 | (t2 & 0x000000FF);
- if(s < t) {
- return -1;
- } else {
- return 1;
- }
- }
- }
-}
-
-static uint32_t addToInverse(UCAElements *element, UErrorCode *status) {
- uint32_t position = inversePos;
- uint32_t saveElement = element->CEs[0];
- int32_t compResult = 0;
- element->CEs[0] &= 0xFFFFFF3F;
- if(element->noOfCEs == 1) {
- element->CEs[1] = 0;
- }
- if(inversePos == 0) {
- inverseTable[0][0] = inverseTable[0][1] = inverseTable[0][2] = 0;
- addNewInverse(element, status);
- } else if(compareCEs(inverseTable[inversePos], element->CEs) > 0) {
- while((compResult = compareCEs(inverseTable[--position], element->CEs)) > 0);
- if(beVerbose) { printf("p:%u ", (int)position); }
- if(compResult == 0) {
- addToExistingInverse(element, position, status);
- } else {
- insertInverse(element, position+1, status);
- }
- } else if(compareCEs(inverseTable[inversePos], element->CEs) == 0) {
- addToExistingInverse(element, inversePos, status);
- } else {
- addNewInverse(element, status);
- }
- element->CEs[0] = saveElement;
- if(beVerbose) { printf("+"); }
- return inversePos;
-}
-
-static InverseUCATableHeader *assembleInverseTable(UErrorCode *status)
-{
- InverseUCATableHeader *result = NULL;
- uint32_t headerByteSize = paddedsize(sizeof(InverseUCATableHeader));
- uint32_t inverseTableByteSize = (inversePos+2)*sizeof(uint32_t)*3;
- uint32_t contsByteSize = sContPos * sizeof(UChar);
- uint32_t i = 0;
-
- result = (InverseUCATableHeader *)uprv_malloc(headerByteSize + inverseTableByteSize + contsByteSize);
- uprv_memset(result, 0, headerByteSize + inverseTableByteSize + contsByteSize);
- if(result != NULL) {
- result->byteSize = headerByteSize + inverseTableByteSize + contsByteSize;
-
- inversePos++;
- inverseTable[inversePos][0] = 0xFFFFFFFF;
- inverseTable[inversePos][1] = 0xFFFFFFFF;
- inverseTable[inversePos][2] = 0x0000FFFF;
- inversePos++;
-
- for(i = 2; i<inversePos; i++) {
- if(compareCEs(inverseTable[i-1], inverseTable[i]) > 0) {
- fprintf(stderr, "Error at %i: %08X & %08X\n", (int)i, (int)inverseTable[i-1][0], (int)inverseTable[i][0]);
- } else if(inverseTable[i-1][0] == inverseTable[i][0] && !(inverseTable[i-1][1] < inverseTable[i][1])) {
- fprintf(stderr, "Continuation error at %i: %08X %08X & %08X %08X\n", (int)i, (int)inverseTable[i-1][0], (int)inverseTable[i-1][1], (int)inverseTable[i][0], (int)inverseTable[i][1]);
- }
- }
-
- result->tableSize = inversePos;
- result->contsSize = sContPos;
-
- result->table = headerByteSize;
- result->conts = headerByteSize + inverseTableByteSize;
-
- memcpy((uint8_t *)result + result->table, inverseTable, inverseTableByteSize);
- memcpy((uint8_t *)result + result->conts, stringContinue, contsByteSize);
-
- } else {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
- }
-
- return result;
-}
-
-
-static void writeOutInverseData(InverseUCATableHeader *data,
- const char *outputDir,
- const char *copyright,
- UErrorCode *status)
-{
- UNewDataMemory *pData;
-
- long dataLength;
-
- UDataInfo invUcaInfo;
- uprv_memcpy(&invUcaInfo, &invUcaDataInfo, sizeof(UDataInfo));
- uprv_memcpy(invUcaInfo.dataVersion, UCAVersion, U_MAX_VERSION_LENGTH);
-
- pData=udata_create(outputDir, INVC_DATA_TYPE, INVC_DATA_NAME, &invUcaInfo,
- copyright, status);
-
- if(U_FAILURE(*status)) {
- fprintf(stderr, "Error: unable to create %s"INVC_DATA_NAME", error %s\n", outputDir, u_errorName(*status));
- return;
- }
-
- /* write the data to the file */
- if (beVerbose) {
- printf("Writing out inverse UCA table: %s%c%s.%s\n", outputDir, U_FILE_SEP_CHAR,
- INVC_DATA_NAME,
- INVC_DATA_TYPE);
- }
- udata_writeBlock(pData, data, data->byteSize);
-
- /* finish up */
- dataLength=udata_finish(pData, status);
- if(U_FAILURE(*status)) {
- fprintf(stderr, "Error: error %d writing the output file\n", *status);
- return;
- }
-}
-
-static int32_t hex2num(char hex) {
- if(hex>='0' && hex <='9') {
- return hex-'0';
- } else if(hex>='a' && hex<='f') {
- return hex-'a'+10;
- } else if(hex>='A' && hex<='F') {
- return hex-'A'+10;
+static int64_t parseCE(const CollationDataBuilder &builder, char *&s, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ ++s; // skip over the '['
+ if(s[0] == 'U' && s[1] == '+') {
+ // Read a code point and look up its CE.
+ // We use this especially for implicit primary weights,
+ // so that we can use different algorithms in the FractionalUCA.txt
+ // generator and the parser.
+ // The generator may not even need to compute any implicit primaries at all.
+ s += 2;
+ char *end;
+ unsigned long longCp = uprv_strtoul(s, &end, 16);
+ if(end == s || longCp > 0x10ffff) {
+ errorCode = U_INVALID_FORMAT_ERROR;
+ return 0;
+ }
+ UChar32 c = (UChar32)longCp;
+ int64_t ce = builder.getSingleCE(c, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ s = end;
+ if(*s == ']') { // [U+4E00]
+ ++s;
+ return ce;
+ }
+ if(*s != ',') {
+ errorCode = U_INVALID_FORMAT_ERROR;
+ return 0;
+ }
+ // Parse the following, secondary or tertiary weight.
+ s = skipWhiteSpace(s + 1);
+ uint32_t w = parseWeight(s, ",]", 2, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ if(*s == ']') { // [U+4E00, 10]
+ ++s;
+ // Set the tertiary weight to w.
+ return (ce & INT64_C(0xffffffffffff0000)) | (w >> 16);
+ }
+ // Set the secondary weight to w: [U+9F9C, 70, 20]
+ ce = (ce & INT64_C(0xffffffff00000000)) | w;
+ // Parse and set the tertiary weight.
+ s = skipWhiteSpace(s + 1);
+ w = parseWeight(s, "]", 2, errorCode);
+ ++s;
+ return ce | (w >> 16);
} else {
- return 0;
+ uint32_t p = parseWeight(s, ",", 4, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ int64_t ce = (int64_t)p << 32;
+ s = skipWhiteSpace(s + 1);
+ uint32_t w = parseWeight(s, ",", 2, errorCode);
+ if(U_FAILURE(errorCode)) { return 0; }
+ ce |= w;
+ s = skipWhiteSpace(s + 1);
+ w = parseWeight(s, "]", 2, errorCode);
+ ++s;
+ return ce | (w >> 16);
}
}
-// static char* CHARACTER_CATEGORY_REORDER_CODES[] = {
-// "Zs", "Nd", "Sc"
-// };
-// static const uint16_t CHARACTER_CATEGORY_REORDER_CODE_OFFSET = 0x1000;
-// static uint16_t CHARACTER_CATEGORY_REORDER_CODES_VALUE[] = {
-// U_SPACE_SEPARATOR + CHARACTER_CATEGORY_REORDER_CODE_OFFSET,
-// U_DECIMAL_DIGIT_NUMBER + CHARACTER_CATEGORY_REORDER_CODE_OFFSET,
-// U_CURRENCY_SYMBOL + CHARACTER_CATEGORY_REORDER_CODE_OFFSET
-// };
-
static const struct {
const char *name;
int32_t code;
{ "TERMINATOR", -2 }, // -2 means "ignore"
{ "LEVEL-SEPARATOR", -2 },
{ "FIELD-SEPARATOR", -2 },
- { "COMPRESS", -2 }, // TODO: We should parse/store which lead bytes are compressible; there is a ticket for that.
+ { "COMPRESS", -3 },
+ // The standard name is "PUNCT" but FractionalUCA.txt uses the long form.
{ "PUNCTUATION", UCOL_REORDER_CODE_PUNCTUATION },
{ "IMPLICIT", USCRIPT_HAN }, // Implicit weights are usually for Han characters. Han & unassigned share a lead byte.
{ "TRAILING", -2 }, // We do not reorder trailing weights (those after implicits).
};
int32_t getReorderCode(const char* name) {
- int32_t code = ucol_findReorderingEntry(name);
- if (code >= 0) {
- return code;
- }
- code = u_getPropertyValueEnum(UCHAR_SCRIPT, name);
+ int32_t code = CollationRuleParser::getReorderCode(name);
if (code >= 0) {
return code;
}
return -1; // Same as UCHAR_INVALID_CODE or USCRIPT_INVALID_CODE.
}
-UCAElements *readAnElement(FILE *data, tempUCATable *t, UCAConstants *consts, LeadByteConstants *leadByteConstants, UErrorCode *status) {
- static int itemsToDataBlock = 0;
- static int scriptDataWritten = 0;
- char buffer[2048], primary[100], secondary[100], tertiary[100];
- UChar uBuffer[2048];
- UChar uBuffer2[2048];
- UChar leadByte[100], scriptCode[100];
- int32_t i = 0;
- unsigned int theValue;
- char *pointer = NULL;
- char *commentStart = NULL;
- char *startCodePoint = NULL;
- char *endCodePoint = NULL;
- char *result = fgets(buffer, 2048, data);
- int32_t buflen = (int32_t)uprv_strlen(buffer);
- if(U_FAILURE(*status)) {
- return 0;
- }
- *primary = *secondary = *tertiary = '\0';
- *leadByte = *scriptCode = '\0';
- if(result == NULL) {
- if(feof(data)) {
- return NULL;
- } else {
- fprintf(stderr, "empty line but no EOF!\n");
- *status = U_INVALID_FORMAT_ERROR;
- return NULL;
- }
- }
- while(buflen>0 && (buffer[buflen-1] == '\r' || buffer[buflen-1] == '\n')) {
- buffer[--buflen] = 0;
- }
+enum ActionType {
+ READCE,
+ READPRIMARY,
+ READBYTE,
+ READUNIFIEDIDEOGRAPH,
+ READUCAVERSION,
+ READLEADBYTETOSCRIPTS,
+ IGNORE
+};
- if(buffer[0] == 0 || buffer[0] == '#') {
- return NULL; // just a comment, skip whole line
- }
+static struct {
+ const char *const name;
+ int64_t value;
+ const ActionType what_to_do;
+} vt[] = {
+ {"[first tertiary ignorable", 0, IGNORE},
+ {"[last tertiary ignorable", 0, IGNORE},
+ {"[first secondary ignorable", 0, READCE},
+ {"[last secondary ignorable", 0, READCE},
+ {"[first primary ignorable", 0, READCE},
+ {"[last primary ignorable", 0, READCE},
+ {"[first variable", 0, READCE},
+ {"[last variable", 0, READCE},
+ {"[first regular", 0, READCE},
+ {"[last regular", 0, READCE},
+ {"[first implicit", 0, READCE},
+ {"[last implicit", 0, READCE},
+ {"[first trailing", 0, READCE},
+ {"[last trailing", 0, READCE},
+
+ {"[Unified_Ideograph", 0, READUNIFIEDIDEOGRAPH},
+
+ {"[fixed first implicit byte", 0, IGNORE},
+ {"[fixed last implicit byte", 0, IGNORE},
+ {"[fixed first trail byte", 0, IGNORE},
+ {"[fixed last trail byte", 0, IGNORE},
+ {"[fixed first special byte", 0, IGNORE},
+ {"[fixed last special byte", 0, IGNORE},
+ {"[fixed secondary common byte", 0, READBYTE},
+ {"[fixed last secondary common byte", 0, READBYTE},
+ {"[fixed first ignorable secondary byte", 0, READBYTE},
+ {"[fixed tertiary common byte", 0, READBYTE},
+ {"[fixed first ignorable tertiary byte", 0, READBYTE},
+ {"[variable top = ", 0, IGNORE},
+ {"[UCA version = ", 0, READUCAVERSION},
+ {"[top_byte", 0, READLEADBYTETOSCRIPTS},
+ {"[reorderingTokens", 0, IGNORE},
+ {"[categories", 0, IGNORE},
+ {"[first tertiary in secondary non-ignorable", 0, IGNORE},
+ {"[last tertiary in secondary non-ignorable", 0, IGNORE},
+ {"[first secondary in primary non-ignorable", 0, IGNORE},
+ {"[last secondary in primary non-ignorable", 0, IGNORE},
+};
- UCAElements *element = ≤
- memset(element, 0, sizeof(*element));
+static int64_t getOptionValue(const char *name) {
+ for (int32_t i = 0; i < LENGTHOF(vt); ++i) {
+ if(uprv_strcmp(name, vt[i].name) == 0) {
+ return vt[i].value;
+ }
+ }
+ return 0;
+}
- enum ActionType {
- READCE,
- READHEX1,
- READHEX2,
- READUCAVERSION,
- READLEADBYTETOSCRIPTS,
- READSCRIPTTOLEADBYTES,
- IGNORE,
- };
+static UnicodeString *leadByteScripts = NULL;
- // Directives.
- if(buffer[0] == '[') {
- uint32_t cnt = 0;
- static const struct {
- char name[128];
- uint32_t *what;
- ActionType what_to_do;
- } vt[] = { {"[first tertiary ignorable", consts->UCA_FIRST_TERTIARY_IGNORABLE, READCE},
- {"[last tertiary ignorable", consts->UCA_LAST_TERTIARY_IGNORABLE, READCE},
- {"[first secondary ignorable", consts->UCA_FIRST_SECONDARY_IGNORABLE, READCE},
- {"[last secondary ignorable", consts->UCA_LAST_SECONDARY_IGNORABLE, READCE},
- {"[first primary ignorable", consts->UCA_FIRST_PRIMARY_IGNORABLE, READCE},
- {"[last primary ignorable", consts->UCA_LAST_PRIMARY_IGNORABLE, READCE},
- {"[first variable", consts->UCA_FIRST_VARIABLE, READCE},
- {"[last variable", consts->UCA_LAST_VARIABLE, READCE},
- {"[first regular", consts->UCA_FIRST_NON_VARIABLE, READCE},
- {"[last regular", consts->UCA_LAST_NON_VARIABLE, READCE},
- {"[first implicit", consts->UCA_FIRST_IMPLICIT, READCE},
- {"[last implicit", consts->UCA_LAST_IMPLICIT, READCE},
- {"[first trailing", consts->UCA_FIRST_TRAILING, READCE},
- {"[last trailing", consts->UCA_LAST_TRAILING, READCE},
-
- {"[fixed top", &consts->UCA_PRIMARY_TOP_MIN, READHEX1},
- {"[fixed first implicit byte", &consts->UCA_PRIMARY_IMPLICIT_MIN, READHEX1},
- {"[fixed last implicit byte", &consts->UCA_PRIMARY_IMPLICIT_MAX, READHEX1},
- {"[fixed first trail byte", &consts->UCA_PRIMARY_TRAILING_MIN, READHEX1},
- {"[fixed last trail byte", &consts->UCA_PRIMARY_TRAILING_MAX, READHEX1},
- {"[fixed first special byte", &consts->UCA_PRIMARY_SPECIAL_MIN, READHEX1},
- {"[fixed last special byte", &consts->UCA_PRIMARY_SPECIAL_MAX, READHEX1},
- {"[variable top = ", &t->options->variableTopValue, READHEX2},
- {"[UCA version = ", NULL, READUCAVERSION},
- {"[top_byte", NULL, READLEADBYTETOSCRIPTS},
- {"[reorderingTokens", NULL, READSCRIPTTOLEADBYTES},
- {"[categories", NULL, IGNORE},
- {"[first tertiary in secondary non-ignorable", NULL, IGNORE},
- {"[last tertiary in secondary non-ignorable", NULL, IGNORE},
- {"[first secondary in primary non-ignorable", NULL, IGNORE},
- {"[last secondary in primary non-ignorable", NULL, IGNORE},
- };
- for (cnt = 0; cnt<sizeof(vt)/sizeof(vt[0]); cnt++) {
- uint32_t vtLen = (uint32_t)uprv_strlen(vt[cnt].name);
+static void readAnOption(
+ CollationBaseDataBuilder &builder, char *buffer, UErrorCode *status) {
+ for (int32_t cnt = 0; cnt<LENGTHOF(vt); cnt++) {
+ int32_t vtLen = (int32_t)uprv_strlen(vt[cnt].name);
if(uprv_strncmp(buffer, vt[cnt].name, vtLen) == 0) {
ActionType what_to_do = vt[cnt].what_to_do;
+ char *pointer = skipWhiteSpace(buffer + vtLen);
if (what_to_do == IGNORE) { //vt[cnt].what_to_do == IGNORE
- return NULL;
- } else if(what_to_do == READHEX1 || what_to_do == READHEX2) {
- pointer = buffer+vtLen;
- int32_t numBytes = readElement(&pointer, primary, ']', status) / 2;
- if(numBytes != (what_to_do == READHEX1 ? 1 : 2)) {
- fprintf(stderr, "Value of \"%s\" has unexpected number of %d bytes\n",
- buffer, (int)numBytes);
- //*status = U_INVALID_FORMAT_ERROR;
- return NULL;
- }
- *(vt[cnt].what) = (uint32_t)uprv_strtoul(primary, &pointer, 16);
- if(*pointer != 0) {
- fprintf(stderr, "Value of \"%s\" is not a hexadecimal number\n", buffer);
- //*status = U_INVALID_FORMAT_ERROR;
- return NULL;
- }
+ return;
} else if (what_to_do == READCE) {
- // TODO: combine & clean up the two CE parsers
- pointer = strchr(buffer+vtLen, '[');
- if(pointer) {
- pointer++;
- element->sizePrim[0]=readElement(&pointer, primary, ',', status) / 2;
- element->sizeSec[0]=readElement(&pointer, secondary, ',', status) / 2;
- element->sizeTer[0]=readElement(&pointer, tertiary, ']', status) / 2;
- vt[cnt].what[0] = getSingleCEValue(primary, secondary, tertiary, status);
- if(element->sizePrim[0] > 2 || element->sizeSec[0] > 1 || element->sizeTer[0] > 1) {
- uint32_t CEi = 1;
- uint32_t value = UCOL_CONTINUATION_MARKER; /* Continuation marker */
- if(2*CEi<element->sizePrim[i]) {
- value |= ((hex2num(*(primary+4*CEi))&0xF)<<28);
- value |= ((hex2num(*(primary+4*CEi+1))&0xF)<<24);
- }
-
- if(2*CEi+1<element->sizePrim[i]) {
- value |= ((hex2num(*(primary+4*CEi+2))&0xF)<<20);
- value |= ((hex2num(*(primary+4*CEi+3))&0xF)<<16);
- }
-
- if(CEi<element->sizeSec[i]) {
- value |= ((hex2num(*(secondary+2*CEi))&0xF)<<12);
- value |= ((hex2num(*(secondary+2*CEi+1))&0xF)<<8);
+ vt[cnt].value = parseCE(builder, pointer, *status);
+ if(U_SUCCESS(*status) && *pointer != ']') {
+ *status = U_INVALID_FORMAT_ERROR;
+ }
+ if(U_FAILURE(*status)) {
+ fprintf(stderr, "Syntax error: unable to parse the CE from line '%s'\n", buffer);
+ return;
+ }
+ } else if(what_to_do == READPRIMARY) {
+ vt[cnt].value = parseWeight(pointer, "]", 4, *status);
+ if(U_FAILURE(*status)) {
+ fprintf(stderr, "Value of \"%s\" is not a primary weight\n", buffer);
+ return;
+ }
+ } else if(what_to_do == READBYTE) {
+ vt[cnt].value = parseWeight(pointer, "]", 1, *status) >> 24;
+ if(U_FAILURE(*status)) {
+ fprintf(stderr, "Value of \"%s\" is not a valid byte\n", buffer);
+ return;
+ }
+ } else if(what_to_do == READUNIFIEDIDEOGRAPH) {
+ UVector32 unihan(*status);
+ if(U_FAILURE(*status)) { return; }
+ for(;;) {
+ if(*pointer == ']') { break; }
+ if(*pointer == 0) {
+ // Missing ] after ranges.
+ *status = U_INVALID_FORMAT_ERROR;
+ return;
}
-
- if(CEi<element->sizeTer[i]) {
- value |= ((hex2num(*(tertiary+2*CEi))&0x3)<<4);
- value |= (hex2num(*(tertiary+2*CEi+1))&0xF);
+ char *s = pointer;
+ while(*s != ' ' && *s != '\t' && *s != ']' && *s != '\0') { ++s; }
+ char c = *s;
+ *s = 0;
+ uint32_t start, end;
+ u_parseCodePointRange(pointer, &start, &end, status);
+ *s = c;
+ if(U_FAILURE(*status)) {
+ fprintf(stderr, "Syntax error: unable to parse one of the ranges from line '%s'\n", buffer);
+ *status = U_INVALID_FORMAT_ERROR;
+ return;
}
-
- CEi++;
-
- vt[cnt].what[1] = value;
- //element->CEs[CEindex++] = value;
- } else {
- vt[cnt].what[1] = 0;
+ unihan.addElement((UChar32)start, *status);
+ unihan.addElement((UChar32)end, *status);
+ pointer = skipWhiteSpace(s);
}
- } else {
- fprintf(stderr, "Failed to read a CE from line %s\n", buffer);
- }
- } else if (what_to_do == READUCAVERSION) { //vt[cnt].what_to_do == READUCAVERSION
- u_versionFromString(UCAVersion, buffer+vtLen);
- if(beVerbose) {
- char uca[U_MAX_VERSION_STRING_LENGTH];
- u_versionToString(UCAVersion, uca);
- printf("UCA version %s\n", uca);
- }
- UVersionInfo UCDVersion;
- u_getUnicodeVersion(UCDVersion);
- if (UCAVersion[0] != UCDVersion[0] || UCAVersion[1] != UCDVersion[1]) {
- char uca[U_MAX_VERSION_STRING_LENGTH];
- char ucd[U_MAX_VERSION_STRING_LENGTH];
- u_versionToString(UCAVersion, uca);
- u_versionToString(UCDVersion, ucd);
- // Warning, not error, to permit bootstrapping during a version upgrade.
- fprintf(stderr, "warning: UCA version %s != UCD version %s\n", uca, ucd);
- // *status = U_INVALID_FORMAT_ERROR;
- // return NULL;
- }
- } else if (what_to_do == READLEADBYTETOSCRIPTS) { //vt[cnt].what_to_do == READLEADBYTETOSCRIPTS
- pointer = buffer + vtLen;
- skipWhiteSpace(&pointer, status);
-
- uint16_t leadByte = (hex2num(*pointer++) * 16) + hex2num(*pointer++);
- //printf("~~~~ processing lead byte = %02x\n", leadByte);
- if (leadByte >= leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH) {
- fprintf(stderr, "Lead byte larger than allocated table!");
- // set status and return
- *status = U_INTERNAL_PROGRAM_ERROR;
- return NULL;
+ builder.initHanRanges(unihan.getBuffer(), unihan.size(), *status);
+ } else if (what_to_do == READUCAVERSION) {
+ u_versionFromString(UCAVersion, pointer);
+ if(beVerbose) {
+ char uca[U_MAX_VERSION_STRING_LENGTH];
+ u_versionToString(UCAVersion, uca);
+ printf("UCA version %s\n", uca);
}
- skipWhiteSpace(&pointer, status);
-
- int32_t reorderCodeArray[100];
- uint32_t reorderCodeArrayCount = 0;
- char scriptName[100];
- int32_t elementLength = 0;
- while ((elementLength = readElement(&pointer, scriptName, ' ', status)) > 0) {
- if (scriptName[0] == ']') {
+ UVersionInfo UCDVersion;
+ u_getUnicodeVersion(UCDVersion);
+ if (UCAVersion[0] != UCDVersion[0] || UCAVersion[1] != UCDVersion[1]) {
+ char uca[U_MAX_VERSION_STRING_LENGTH];
+ char ucd[U_MAX_VERSION_STRING_LENGTH];
+ u_versionToString(UCAVersion, uca);
+ u_versionToString(UCDVersion, ucd);
+ // Warning, not error, to permit bootstrapping during a version upgrade.
+ fprintf(stderr, "warning: UCA version %s != UCD version %s\n", uca, ucd);
+ }
+ } else if (what_to_do == READLEADBYTETOSCRIPTS) {
+ uint16_t leadByte = (hex2num(*pointer++) * 16);
+ leadByte += hex2num(*pointer++);
+
+ if(0xe0 <= leadByte && leadByte < Collation::UNASSIGNED_IMPLICIT_BYTE) {
+ // Extend the Hani range to the end of what this implementation uses.
+ // FractionalUCA.txt assumes a different algorithm for implicit primary weights,
+ // and different high-lead byte ranges.
+ leadByteScripts[leadByte] = leadByteScripts[0xdf];
+ return;
+ }
+
+ UnicodeString scripts;
+ for(;;) {
+ pointer = skipWhiteSpace(pointer);
+ if (*pointer == ']') {
break;
}
+ const char *scriptName = pointer;
+ char c;
+ while((c = *pointer) != 0 && c != ' ' && c != '\t' && c != ']') { ++pointer; }
+ if(c == 0) {
+ fprintf(stderr, "Syntax error: unterminated list of scripts: '%s'\n", buffer);
+ *status = U_INVALID_FORMAT_ERROR;
+ return;
+ }
+ *pointer = 0;
int32_t reorderCode = getReorderCode(scriptName);
+ *pointer = c;
+ if (reorderCode == -3) { // COMPRESS
+ builder.setCompressibleLeadByte(leadByte);
+ continue;
+ }
if (reorderCode == -2) {
continue; // Ignore "TERMINATOR" etc.
}
- if (reorderCode < 0) {
- printf("Syntax error: unable to parse reorder code from '%s'\n", scriptName);
+ if (reorderCode < 0 || 0xffff < reorderCode) {
+ fprintf(stderr, "Syntax error: unable to parse reorder code from '%s'\n", scriptName);
*status = U_INVALID_FORMAT_ERROR;
- return NULL;
+ return;
}
- if (reorderCodeArrayCount >= LENGTHOF(reorderCodeArray)) {
- printf("reorder code array count is greater than allocated size!\n");
- *status = U_INTERNAL_PROGRAM_ERROR;
- return NULL;
- }
- reorderCodeArray[reorderCodeArrayCount++] = reorderCode;
- }
- //printf("reorderCodeArrayCount = %d\n", reorderCodeArrayCount);
- switch (reorderCodeArrayCount) {
- case 0:
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte] = 0;
- break;
- case 1:
- // TODO = move 0x8000 into defined constant
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte] = 0x8000 | reorderCodeArray[0];
- break;
- default:
- if (reorderCodeArrayCount + leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET > leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH) {
- // Error condition
- }
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte] = leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET;
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA[leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET++] = reorderCodeArrayCount;
- for (int reorderCodeIndex = 0; reorderCodeIndex < reorderCodeArrayCount; reorderCodeIndex++) {
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA[leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET++] = reorderCodeArray[reorderCodeIndex];
- }
+ scripts.append((UChar)reorderCode);
}
- } else if (what_to_do == READSCRIPTTOLEADBYTES) { //vt[cnt].what_to_do == READSCRIPTTOLEADBYTES
- uint16_t leadByteArray[256];
- uint32_t leadByteArrayCount = 0;
- char scriptName[100];
-
- pointer = buffer + vtLen;
- skipWhiteSpace(&pointer, status);
- uint32_t scriptNameLength = readElement(&pointer, scriptName, '\t', status);
- int32_t reorderCode = getReorderCode(scriptName);
- if (reorderCode >= 0) {
- //printf("^^^ processing reorder code = %04x (%s)\n", reorderCode, scriptName);
- skipWhiteSpace(&pointer, status);
-
- int32_t elementLength = 0;
- char leadByteString[100];
- while ((elementLength = readElement(&pointer, leadByteString, '=', status)) == 2) {
- //printf("\tleadByteArrayCount = %d, elementLength = %d, leadByteString = %s\n", leadByteArrayCount, elementLength, leadByteString);
- uint32_t leadByte = (hex2num(leadByteString[0]) * 16) + hex2num(leadByteString[1]);
- leadByteArray[leadByteArrayCount++] = (uint16_t) leadByte;
- skipUntilWhiteSpace(&pointer, status);
- }
-
- if (leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT >= leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH) {
- //printf("\tError condition\n");
- //printf("\tindex count = %d, total index size = %d\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT, sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX) / sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0]));
- // Error condition
- *status = U_INTERNAL_PROGRAM_ERROR;
- return NULL;
+ if(!scripts.isEmpty()) {
+ if(leadByteScripts == NULL) {
+ leadByteScripts = new UnicodeString[256];
}
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].reorderCode = reorderCode;
-
- //printf("\tlead byte count = %d\n", leadByteArrayCount);
- //printf("\tlead byte array = ");
- //for (int i = 0; i < leadByteArrayCount; i++) {
- // printf("%02x, ", leadByteArray[i]);
- //}
- //printf("\n");
-
- switch (leadByteArrayCount) {
- case 0:
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset = 0;
- break;
- case 1:
- // TODO = move 0x8000 into defined constant
- //printf("\t+++++ lead byte = &x\n", leadByteArray[0]);
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset = 0x8000 | leadByteArray[0];
- break;
- default:
- //printf("\t+++++ lead bytes written to data block - %d\n", itemsToDataBlock++);
- //printf("\tlead bytes = ");
- //for (int i = 0; i < leadByteArrayCount; i++) {
- // printf("%02x, ", leadByteArray[i]);
- //}
- //printf("\n");
- //printf("\tBEFORE data bytes = ");
- //for (int i = 0; i < leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; i++) {
- // printf("%02x, ", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[i]);
- //}
- //printf("\n");
- //printf("\tdata offset = %d, data length = %d\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_LENGTH);
- if ((leadByteArrayCount + leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET) > leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_LENGTH) {
- //printf("\tError condition\n");
- // Error condition
- *status = U_INTERNAL_PROGRAM_ERROR;
- return NULL;
- }
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset = leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET;
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET++] = leadByteArrayCount;
- scriptDataWritten++;
- memcpy(&leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET],
- leadByteArray, leadByteArrayCount * sizeof(leadByteArray[0]));
- scriptDataWritten += leadByteArrayCount;
- //printf("\tlead byte data written = %d\n", scriptDataWritten);
- //printf("\tcurrentIndex.reorderCode = %04x, currentIndex.offset = %04x\n",
- // leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT.reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT.offset);
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET += leadByteArrayCount;
- //printf("\tdata offset = %d\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET);
- //printf("\tAFTER data bytes = ");
- //for (int i = 0; i < leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; i++) {
- // printf("%02x, ", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[i]);
- //}
- //printf("\n");
- }
- //if (reorderCode >= 0x1000) {
- // printf("@@@@ reorderCode = %x, offset = %x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset);
- // for (int i = 0; i < leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; i++) {
- // printf("%02x, ", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[i]);
- // }
- // printf("\n");
- // }
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT++;
+ leadByteScripts[leadByte] = scripts;
}
}
- return NULL;
+ return;
+ }
+ }
+ fprintf(stderr, "Warning: unrecognized option: %s\n", buffer);
+}
+
+static UBool
+readAnElement(FILE *data,
+ CollationBaseDataBuilder &builder,
+ UnicodeString &prefix, UnicodeString &s,
+ int64_t ces[32], int32_t &cesLength,
+ UErrorCode *status) {
+ if(U_FAILURE(*status)) {
+ return FALSE;
+ }
+ char buffer[2048];
+ char *result = fgets(buffer, 2048, data);
+ if(result == NULL) {
+ if(feof(data)) {
+ return FALSE;
+ } else {
+ fprintf(stderr, "empty line but no EOF!\n");
+ *status = U_INVALID_FORMAT_ERROR;
+ return FALSE;
}
- }
- fprintf(stderr, "Warning: unrecognized option: %s\n", buffer);
- //*status = U_INVALID_FORMAT_ERROR;
- return NULL;
+ }
+ int32_t buflen = (int32_t)uprv_strlen(buffer);
+ while(buflen>0 && (buffer[buflen-1] == '\r' || buffer[buflen-1] == '\n')) {
+ buffer[--buflen] = 0;
+ }
+
+ if(buffer[0] == 0 || buffer[0] == '#') {
+ return FALSE; // just a comment, skip whole line
}
- startCodePoint = buffer;
- endCodePoint = strchr(startCodePoint, ';');
+ // Directives.
+ if(buffer[0] == '[') {
+ readAnOption(builder, buffer, status);
+ return FALSE;
+ }
- if(endCodePoint == 0) {
+ char *startCodePoint = buffer;
+ char *endCodePoint = strchr(startCodePoint, ';');
+ if(endCodePoint == NULL) {
fprintf(stderr, "error - line with no code point!\n");
*status = U_INVALID_FORMAT_ERROR; /* No code point - could be an error, but probably only an empty line */
- return NULL;
+ return FALSE;
} else {
- *(endCodePoint) = 0;
+ *endCodePoint = 0;
}
char *pipePointer = strchr(buffer, '|');
if (pipePointer != NULL) {
// Read the prefix string which precedes the actual string.
*pipePointer = 0;
- element->prefixSize =
+ UChar *prefixChars = prefix.getBuffer(32);
+ int32_t prefixSize =
u_parseString(startCodePoint,
- element->prefixChars, LENGTHOF(element->prefixChars),
+ prefixChars, prefix.getCapacity(),
NULL, status);
if(U_FAILURE(*status)) {
+ prefix.releaseBuffer(0);
fprintf(stderr, "error - parsing of prefix \"%s\" failed: %s\n",
startCodePoint, u_errorName(*status));
*status = U_INVALID_FORMAT_ERROR;
- return NULL;
+ return FALSE;
}
- element->prefix = element->prefixChars;
+ prefix.releaseBuffer(prefixSize);
startCodePoint = pipePointer + 1;
}
// Read the string which gets the CE(s) assigned.
- element->cSize =
+ UChar *uchars = s.getBuffer(32);
+ int32_t cSize =
u_parseString(startCodePoint,
- element->uchars, LENGTHOF(element->uchars),
+ uchars, s.getCapacity(),
NULL, status);
if(U_FAILURE(*status)) {
+ s.releaseBuffer(0);
fprintf(stderr, "error - parsing of code point(s) \"%s\" failed: %s\n",
startCodePoint, u_errorName(*status));
*status = U_INVALID_FORMAT_ERROR;
- return NULL;
+ return FALSE;
}
- element->cPoints = element->uchars;
+ s.releaseBuffer(cSize);
- startCodePoint = endCodePoint+1;
+ char *pointer = endCodePoint + 1;
- commentStart = strchr(startCodePoint, '#');
+ char *commentStart = strchr(pointer, '#');
if(commentStart == NULL) {
- commentStart = strlen(startCodePoint) + startCodePoint;
+ commentStart = strchr(pointer, 0);
}
- i = 0;
- uint32_t CEindex = 0;
- element->noOfCEs = 0;
+ cesLength = 0;
for(;;) {
- endCodePoint = strchr(startCodePoint, ']');
- if(endCodePoint == NULL || endCodePoint >= commentStart) {
+ pointer = skipWhiteSpace(pointer);
+ if(pointer == commentStart) {
break;
}
- pointer = strchr(startCodePoint, '[');
- pointer++;
-
- element->sizePrim[i]=readElement(&pointer, primary, ',', status) / 2;
- element->sizeSec[i]=readElement(&pointer, secondary, ',', status) / 2;
- element->sizeTer[i]=readElement(&pointer, tertiary, ']', status) / 2;
-
-
- /* I want to get the CEs entered right here, including continuation */
- element->CEs[CEindex++] = getSingleCEValue(primary, secondary, tertiary, status);
-
- uint32_t CEi = 1;
- while(2*CEi<element->sizePrim[i] || CEi<element->sizeSec[i] || CEi<element->sizeTer[i]) {
- uint32_t value = UCOL_CONTINUATION_MARKER; /* Continuation marker */
- if(2*CEi<element->sizePrim[i]) {
- value |= ((hex2num(*(primary+4*CEi))&0xF)<<28);
- value |= ((hex2num(*(primary+4*CEi+1))&0xF)<<24);
- }
-
- if(2*CEi+1<element->sizePrim[i]) {
- value |= ((hex2num(*(primary+4*CEi+2))&0xF)<<20);
- value |= ((hex2num(*(primary+4*CEi+3))&0xF)<<16);
- }
-
- if(CEi<element->sizeSec[i]) {
- value |= ((hex2num(*(secondary+2*CEi))&0xF)<<12);
- value |= ((hex2num(*(secondary+2*CEi+1))&0xF)<<8);
- }
-
- if(CEi<element->sizeTer[i]) {
- value |= ((hex2num(*(tertiary+2*CEi))&0x3)<<4);
- value |= (hex2num(*(tertiary+2*CEi+1))&0xF);
- }
-
- CEi++;
-
- element->CEs[CEindex++] = value;
+ if(cesLength >= 31) {
+ fprintf(stderr, "Error: Too many CEs on line '%s'\n", buffer);
+ *status = U_INVALID_FORMAT_ERROR;
+ return FALSE;
}
-
- startCodePoint = endCodePoint+1;
- i++;
- }
- element->noOfCEs = CEindex;
-#if 0
- element->isThai = UCOL_ISTHAIPREVOWEL(element->cPoints[0]);
-#endif
- // we don't want any strange stuff after useful data!
- if (pointer == NULL) {
- /* huh? Did we get ']' without the '['? Pair your brackets! */
- *status=U_INVALID_FORMAT_ERROR;
- }
- else {
- while(pointer < commentStart) {
- if(*pointer != ' ' && *pointer != '\t')
- {
- *status=U_INVALID_FORMAT_ERROR;
- break;
- }
- pointer++;
+ ces[cesLength++] = parseCE(builder, pointer, *status);
+ if(U_FAILURE(*status)) {
+ fprintf(stderr, "Syntax error parsing CE from line '%s' - %s\n",
+ buffer, u_errorName(*status));
+ return FALSE;
}
}
- if(element->cSize == 1 && element->cPoints[0] == 0xfffe) {
+
+ if(s.length() == 1 && s[0] == 0xfffe) {
// UCA 6.0 gives U+FFFE a special minimum weight using the
// byte 02 which is the merge-sort-key separator and illegal for any
// other characters.
} else {
// Rudimentary check for valid bytes in CE weights.
- // For a more comprehensive check see cintltst /tscoll/citertst/TestCEValidity
- for (i = 0; i < (int32_t)CEindex; ++i) {
- uint32_t value = element->CEs[i];
- uint8_t bytes[4] = {
- (uint8_t)(value >> 24),
- (uint8_t)(value >> 16),
- (uint8_t)(value >> 8),
- (uint8_t)(value & UCOL_NEW_TERTIARYORDERMASK)
- };
- for (int j = 0; j < 4; ++j) {
- if (0 != bytes[j] && bytes[j] < 3) {
- fprintf(stderr, "Warning: invalid UCA weight byte %02X for %s\n", bytes[j], buffer);
- return NULL;
+ // For a more comprehensive check see CollationTest::TestRootElements(),
+ // intltest collate/CollationTest/TestRootElements
+ for (int32_t i = 0; i < cesLength; ++i) {
+ int64_t ce = ces[i];
+ UBool isCompressible = FALSE;
+ for (int j = 7; j >= 0; --j) {
+ uint8_t b = (uint8_t)(ce >> (j * 8));
+ if(j <= 1) { b &= 0x3f; } // tertiary bytes use 6 bits
+ if (b == 1) {
+ fprintf(stderr, "Warning: invalid UCA weight byte 01 for %s\n", buffer);
+ return FALSE;
+ }
+ if ((j == 7 || j == 3 || j == 1) && b == 2) {
+ fprintf(stderr, "Warning: invalid UCA weight lead byte 02 for %s\n", buffer);
+ return FALSE;
+ }
+ if (j == 7) {
+ isCompressible = builder.isCompressibleLeadByte(b);
+ } else if (j == 6) {
+ // Primary second bytes 03 and FF are compression terminators.
+ // 02, 03 and FF are usable when the lead byte is not compressible.
+ // 02 is unusable and 03 is the low compression terminator when the lead byte is compressible.
+ if (isCompressible && (b <= 3 || b == 0xff)) {
+ fprintf(stderr, "Warning: invalid UCA primary second weight byte %02X for %s\n",
+ b, buffer);
+ return FALSE;
+ }
}
- }
- // Primary second bytes 03 and FF are compression terminators.
- if (!isContinuation(value) && (bytes[1] == 3 || bytes[1] == 0xFF)) {
- fprintf(stderr, "Warning: invalid UCA primary second weight byte %02X for %s\n",
- bytes[1], buffer);
- return NULL;
}
}
}
- if(U_FAILURE(*status)) {
- fprintf(stderr, "problem putting stuff in hash table %s\n", u_errorName(*status));
- *status = U_INTERNAL_PROGRAM_ERROR;
- return NULL;
- }
-
- return element;
+ return TRUE;
}
-
-void writeOutData(UCATableHeader *data,
- UCAConstants *consts,
- LeadByteConstants *leadByteConstants,
- UChar contractions[][MAX_UCA_CONTRACTION_LENGTH],
- uint32_t noOfcontractions,
- const char *outputDir,
- const char *copyright,
- UErrorCode *status)
+static void
+parseFractionalUCA(const char *filename,
+ CollationBaseDataBuilder &builder,
+ UErrorCode *status)
{
- if(U_FAILURE(*status)) {
+ if(U_FAILURE(*status)) { return; }
+ FILE *data = fopen(filename, "r");
+ if(data == NULL) {
+ fprintf(stderr, "Couldn't open file: %s\n", filename);
+ *status = U_FILE_ACCESS_ERROR;
return;
}
+ uint32_t line = 0;
- uint32_t size = data->size;
+ UChar32 maxCodePoint = 0;
+ while(!feof(data)) {
+ if(U_FAILURE(*status)) {
+ fprintf(stderr, "Something returned an error %i (%s) while processing line %u of %s. Exiting...\n",
+ *status, u_errorName(*status), (int)line, filename);
+ exit(*status);
+ }
- data->UCAConsts = data->size;
- data->size += paddedsize(sizeof(UCAConstants));
+ line++;
- if(noOfcontractions != 0) {
- uprv_memset(&contractions[noOfcontractions][0], 0, MAX_UCA_CONTRACTION_LENGTH*U_SIZEOF_UCHAR);
- noOfcontractions++;
+ UnicodeString prefix;
+ UnicodeString s;
+ int64_t ces[32];
+ int32_t cesLength = 0;
+ if(readAnElement(data, builder, prefix, s, ces, cesLength, status)) {
+ // we have read the line, now do something sensible with the read data!
+ uint32_t p = (uint32_t)(ces[0] >> 32);
+
+ if(s.length() > 1 && s[0] == 0xFDD0) {
+ // FractionalUCA.txt contractions starting with U+FDD0
+ // are only entered into the inverse table,
+ // not into the normal collation data.
+ builder.addRootElements(ces, cesLength, *status);
+ if(s.length() == 2 && s[1] == 0x34 && cesLength == 1) {
+ // Lead byte for numeric sorting.
+ builder.setNumericPrimary(p);
+ }
+ } else {
+ UChar32 c = s.char32At(0);
+ if(c > maxCodePoint) { maxCodePoint = c; }
+
+ // We ignore the CEs for U+FFFD..U+FFFF and for the unassigned first primary.
+ // CollationBaseDataBuilder::init() maps them to special CEs.
+ // Except for U+FFFE, these have higher primaries in v2 than in FractionalUCA.txt.
+ if(0xfffd <= c && c <= 0xffff) { continue; }
+ if(s.length() == 2 && s[0] == 0xFDD1 && s[1] == 0xFDD0) {
+ continue;
+ }
+ if(0xe0000000 <= p && p < 0xf0000000) {
+ fprintf(stderr,
+ "Error: Unexpected mapping to an implicit or trailing primary"
+ " on line %u of %s.\n",
+ (int)line, filename);
+ exit(U_INVALID_FORMAT_ERROR);
+ }
- data->contractionUCACombos = data->size;
- data->contractionUCACombosWidth = (uint8_t)MAX_UCA_CONTRACTION_LENGTH;
- data->contractionUCACombosSize = noOfcontractions;
- data->size += paddedsize((noOfcontractions*MAX_UCA_CONTRACTION_LENGTH*U_SIZEOF_UCHAR));
+ builder.add(prefix, s, ces, cesLength, *status);
+ }
+ }
}
- data->scriptToLeadByte = data->size;
- //printf("@@@@ script to lead byte offset = 0x%x (%d)\n", data->size, data->size);
- data->size +=
- sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT) + // index table header
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT * sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0]) + // index table
- sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET) + // data table header
- leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET * sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[0]); // data table
- data->leadByteToScript = data->size;
- //printf("@@@@ lead byte to script offset = 0x%x (%d)\n", data->size, data->size);
- data->size +=
- sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH) + // index table header
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[0]) + // index table
- sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET) + // data table header
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET * sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA[0]); // data table
-
- UNewDataMemory *pData;
-
- long dataLength;
- UDataInfo ucaInfo;
- uprv_memcpy(&ucaInfo, &ucaDataInfo, sizeof(UDataInfo));
- uprv_memcpy(ucaInfo.dataVersion, UCAVersion, U_MAX_VERSION_LENGTH);
-
- pData=udata_create(outputDir, UCA_DATA_TYPE, UCA_DATA_NAME, &ucaInfo,
- copyright, status);
- if(U_FAILURE(*status)) {
- fprintf(stderr, "Error: unable to create %s"UCA_DATA_NAME", error %s\n", outputDir, u_errorName(*status));
+ int32_t numRanges = 0;
+ int32_t numRangeCodePoints = 0;
+ UChar32 rangeFirst = U_SENTINEL;
+ UChar32 rangeLast = U_SENTINEL;
+ uint32_t rangeFirstPrimary = 0;
+ uint32_t rangeLastPrimary = 0;
+ int32_t rangeStep = -1;
+
+ // Detect ranges of characters in primary code point order,
+ // with 3-byte primaries and
+ // with consistent "step" differences between adjacent primaries.
+ // This relies on the FractionalUCA generator using the same primary-weight incrementation.
+ // Start at U+0180: No ranges for common Latin characters.
+ // Go one beyond maxCodePoint in case a range ends there.
+ for(UChar32 c = 0x180; c <= (maxCodePoint + 1); ++c) {
+ UBool action;
+ uint32_t p = builder.getLongPrimaryIfSingleCE(c);
+ if(p != 0) {
+ // p is a "long" (three-byte) primary.
+ if(rangeFirst >= 0 && c == (rangeLast + 1) && p > rangeLastPrimary) {
+ // Find the offset between the two primaries.
+ int32_t step = CollationBaseDataBuilder::diffThreeBytePrimaries(
+ rangeLastPrimary, p, builder.isCompressiblePrimary(p));
+ if(rangeFirst == rangeLast && step >= 2) {
+ // c == rangeFirst + 1, store the "step" between range primaries.
+ rangeStep = step;
+ rangeLast = c;
+ rangeLastPrimary = p;
+ action = 0; // continue range
+ } else if(rangeStep == step) {
+ // Continue the range with the same "step" difference.
+ rangeLast = c;
+ rangeLastPrimary = p;
+ action = 0; // continue range
+ } else {
+ action = 1; // maybe finish range, start a new one
+ }
+ } else {
+ action = 1; // maybe finish range, start a new one
+ }
+ } else {
+ action = -1; // maybe finish range, do not start a new one
+ }
+ if(action != 0 && rangeFirst >= 0) {
+ // Finish a range.
+ // Set offset CE32s for a long range, leave single CEs for a short range.
+ UBool didSetRange = builder.maybeSetPrimaryRange(
+ rangeFirst, rangeLast,
+ rangeFirstPrimary, rangeStep, *status);
+ if(U_FAILURE(*status)) {
+ fprintf(stderr,
+ "failure setting code point order range U+%04lx..U+%04lx "
+ "%08lx..%08lx step %d - %s\n",
+ (long)rangeFirst, (long)rangeLast,
+ (long)rangeFirstPrimary, (long)rangeLastPrimary,
+ (int)rangeStep, u_errorName(*status));
+ } else if(didSetRange) {
+ int32_t rangeLength = rangeLast - rangeFirst + 1;
+ if(beVerbose) {
+ printf("* set code point order range U+%04lx..U+%04lx [%d] "
+ "%08lx..%08lx step %d\n",
+ (long)rangeFirst, (long)rangeLast,
+ (int)rangeLength,
+ (long)rangeFirstPrimary, (long)rangeLastPrimary,
+ (int)rangeStep);
+ }
+ ++numRanges;
+ numRangeCodePoints += rangeLength;
+ }
+ rangeFirst = U_SENTINEL;
+ rangeStep = -1;
+ }
+ if(action > 0) {
+ // Start a new range.
+ rangeFirst = rangeLast = c;
+ rangeFirstPrimary = rangeLastPrimary = p;
+ }
+ }
+ printf("** set %d ranges with %d code points\n", (int)numRanges, (int)numRangeCodePoints);
+
+ // Idea: Probably best to work in two passes.
+ // Pass 1 for reading all data, setting isCompressible flags (and reordering groups)
+ // and finding ranges.
+ // Then set the ranges in a newly initialized builder
+ // for optimal compression (makes sure that adjacent blocks can overlap easily).
+ // Then set all mappings outside the ranges.
+ //
+ // In the first pass, we could store mappings in a simple list,
+ // with single-character/single-long-primary-CE mappings in a UTrie2;
+ // or store the mappings in a temporary builder;
+ // or we could just parse the input file again in the second pass.
+ //
+ // Ideally set/copy U+0000..U+017F before setting anything else,
+ // then set default Han/Hangul, then set the ranges, then copy non-range mappings.
+ // It should be easy to copy mappings from an un-built builder to a new one.
+ // Add CollationDataBuilder::copyFrom(builder, code point, errorCode) -- copy contexts & expansions.
+
+ if(UCAVersion[0] == 0 && UCAVersion[1] == 0 && UCAVersion[2] == 0 && UCAVersion[3] == 0) {
+ fprintf(stderr, "UCA version not specified. Cannot create data file!\n");
+ fclose(data);
return;
}
- /* write the data to the file */
if (beVerbose) {
- printf("Writing out UCA table: %s%c%s.%s\n", outputDir,
- U_FILE_SEP_CHAR,
- U_ICUDATA_NAME "_" UCA_DATA_NAME,
- UCA_DATA_TYPE);
+ printf("\nLines read: %u\n", (int)line);
}
- udata_writeBlock(pData, data, size);
- // output the constants here
- udata_writeBlock(pData, consts, sizeof(UCAConstants));
+ fclose(data);
- if (beVerbose) {
- printf("first tertiary ignorable = %x %x\n", consts->UCA_FIRST_TERTIARY_IGNORABLE[0], consts->UCA_FIRST_TERTIARY_IGNORABLE[1]);
- printf("last tertiary ignorable = %x %x\n", consts->UCA_LAST_TERTIARY_IGNORABLE[0], consts->UCA_LAST_TERTIARY_IGNORABLE[1]);
- printf("first secondary ignorable = %x %x\n", consts->UCA_FIRST_SECONDARY_IGNORABLE[0], consts->UCA_FIRST_SECONDARY_IGNORABLE[1]);
- printf("contractionUCACombosSize = %d\n", data->contractionUCACombosSize);
- printf("contractionSize = %d\n", data->contractionSize);
- printf("number of UCA contractions = %d\n", noOfcontractions);
+ return;
+}
+
+static void
+buildAndWriteBaseData(CollationBaseDataBuilder &builder,
+ const char *path, UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+
+ if(getOptionValue("[fixed secondary common byte") != Collation::COMMON_BYTE) {
+ fprintf(stderr, "error: unexpected [fixed secondary common byte]");
+ errorCode = U_INVALID_FORMAT_ERROR;
+ return;
}
-
- if(noOfcontractions != 0) {
- udata_writeBlock(pData, contractions, noOfcontractions*MAX_UCA_CONTRACTION_LENGTH*U_SIZEOF_UCHAR);
- udata_writePadding(pData, paddedsize((noOfcontractions*MAX_UCA_CONTRACTION_LENGTH*U_SIZEOF_UCHAR)) - noOfcontractions*MAX_UCA_CONTRACTION_LENGTH*U_SIZEOF_UCHAR);
+ if(getOptionValue("[fixed tertiary common byte") != Collation::COMMON_BYTE) {
+ fprintf(stderr, "error: unexpected [fixed tertiary common byte]");
+ errorCode = U_INVALID_FORMAT_ERROR;
+ return;
}
- // output the script to lead bytes table here
- if (beVerbose) {
- printf("Writing Script to Lead Byte Data\n");
- printf("\tindex table size = %x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT);
- printf("\tdata block size = %x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET);
+ if(leadByteScripts != NULL) {
+ uint32_t firstLead = Collation::MERGE_SEPARATOR_BYTE + 1;
+ do {
+ // Find the range of lead bytes with this set of scripts.
+ const UnicodeString &firstScripts = leadByteScripts[firstLead];
+ if(firstScripts.isEmpty()) {
+ fprintf(stderr, "[top_byte 0x%02X] has no reorderable scripts\n", (int)firstLead);
+ errorCode = U_INVALID_FORMAT_ERROR;
+ return;
+ }
+ uint32_t lead = firstLead;
+ for(;;) {
+ ++lead;
+ const UnicodeString &scripts = leadByteScripts[lead];
+ // The scripts should either be the same or disjoint.
+ // We do not test if all reordering groups have disjoint sets of scripts.
+ if(scripts.isEmpty() || firstScripts.indexOf(scripts[0]) < 0) { break; }
+ if(scripts != firstScripts) {
+ fprintf(stderr,
+ "[top_byte 0x%02X] includes script %d from [top_byte 0x%02X] "
+ "but not all scripts match\n",
+ (int)firstLead, scripts[0], (int)lead);
+ errorCode = U_INVALID_FORMAT_ERROR;
+ return;
+ }
+ }
+ // lead is one greater than the last lead byte with the same set of scripts as firstLead.
+ builder.addReorderingGroup(firstLead, lead - 1, firstScripts, errorCode);
+ if(U_FAILURE(errorCode)) { return; }
+ firstLead = lead;
+ } while(firstLead < Collation::UNASSIGNED_IMPLICIT_BYTE);
+ delete[] leadByteScripts;
+ }
+
+ CollationData data(*Normalizer2Factory::getNFCImpl(errorCode));
+ builder.enableFastLatin();
+ builder.build(data, errorCode);
+ if(U_FAILURE(errorCode)) {
+ fprintf(stderr, "builder.build() failed: %s\n",
+ u_errorName(errorCode));
+ return;
}
- udata_write16(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT);
- udata_write16(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET);
-// printf("#### Script to Lead Byte Index Before Sort\n");
-// for (int reorderCodeIndex = 0; reorderCodeIndex < leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT; reorderCodeIndex++) {
-// printf("\t%04x = %04x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].offset);
-// }
- qsort(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT, sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0]), ReorderIndexComparer);
- udata_writeBlock(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT * sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0]));
-// printf("#### Script to Lead Byte Index After Sort\n");
-// for (int reorderCodeIndex = 0; reorderCodeIndex < leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT; reorderCodeIndex++) {
-// printf("\t%04x = %04x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].offset);
-// }
-
- // write out the script to lead bytes data block
- udata_writeBlock(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET * sizeof(*leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA));
-
- if (beVerbose) {
- printf("Writing Lead Byte To Script Data\n");
- printf("\tindex table size = %x\n", leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH);
- printf("\tdata block size = %x\n", leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET);
+
+ // The CollationSettings constructor gives us the properly encoded
+ // default options, so that we need not duplicate them here.
+ CollationSettings settings;
+
+ UVector32 rootElements(errorCode);
+ for(int32_t i = 0; i < CollationRootElements::IX_COUNT; ++i) {
+ rootElements.addElement(0, errorCode);
}
- // output the header info
- udata_write16(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH);
- udata_write16(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET);
-
- // output the index table
- udata_writeBlock(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX,
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX)[0]);
-// for (int leadByte = 0; leadByte < leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH; leadByte++) {
-// printf("\t%02x = %04x\n", leadByte, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte]);
-// }
-
- // output the data
- udata_writeBlock(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA,
- leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET * sizeof(*leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA));
-
-
- /* finish up */
- dataLength=udata_finish(pData, status);
- if(U_FAILURE(*status)) {
- fprintf(stderr, "Error: error %d writing the output file\n", *status);
+ builder.buildRootElementsTable(rootElements, errorCode);
+ if(U_FAILURE(errorCode)) {
+ fprintf(stderr, "builder.buildRootElementsTable() failed: %s\n",
+ u_errorName(errorCode));
return;
}
-}
+ int32_t index = CollationRootElements::IX_COUNT;
+ rootElements.setElementAt(index, CollationRootElements::IX_FIRST_TERTIARY_INDEX);
-enum {
- /*
- * Maximum number of UCA contractions we can store.
- * May need to be increased for a new Unicode version.
- */
- MAX_UCA_CONTRACTIONS=2048
-};
+ while((rootElements.elementAti(index) & 0xffff0000) == 0) { ++index; }
+ rootElements.setElementAt(index, CollationRootElements::IX_FIRST_SECONDARY_INDEX);
-static int32_t
-write_uca_table(const char *filename,
- const char *outputDir,
- const char *copyright,
- UErrorCode *status)
-{
- FILE *data = fopen(filename, "r");
- if(data == NULL) {
- fprintf(stderr, "Couldn't open file: %s\n", filename);
- return -1;
+ while((rootElements.elementAti(index) & CollationRootElements::SEC_TER_DELTA_FLAG) != 0) {
+ ++index;
}
- uint32_t line = 0;
- UCAElements *element = NULL;
- UCATableHeader *myD = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader));
- /* test for NULL */
- if(myD == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- fclose(data);
- return 0;
+ rootElements.setElementAt(index, CollationRootElements::IX_FIRST_PRIMARY_INDEX);
+
+ rootElements.setElementAt(Collation::COMMON_SEC_AND_TER_CE,
+ CollationRootElements::IX_COMMON_SEC_AND_TER_CE);
+
+ int32_t secTerBoundaries = (int32_t)getOptionValue("[fixed last secondary common byte") << 24;
+ secTerBoundaries |= (int32_t)getOptionValue("[fixed first ignorable secondary byte") << 16;
+ secTerBoundaries |= (int32_t)getOptionValue("[fixed first ignorable tertiary byte");
+ rootElements.setElementAt(secTerBoundaries, CollationRootElements::IX_SEC_TER_BOUNDARIES);
+
+ LocalMemory<uint8_t> buffer;
+ int32_t capacity = 1000000;
+ uint8_t *dest = buffer.allocateInsteadAndCopy(capacity);
+ if(dest == NULL) {
+ fprintf(stderr, "memory allocation (%ld bytes) for file contents failed\n",
+ (long)capacity);
+ errorCode = U_MEMORY_ALLOCATION_ERROR;
+ return;
}
- uprv_memset(myD, 0, sizeof(UCATableHeader));
- UColOptionSet *opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet));
- /* test for NULL */
- if(opts == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- uprv_free(myD);
- fclose(data);
- return 0;
+ int32_t indexes[CollationDataReader::IX_TOTAL_SIZE + 1];
+ int32_t totalSize = CollationDataWriter::writeBase(
+ data, settings,
+ rootElements.getBuffer(), rootElements.size(),
+ indexes, dest, capacity,
+ errorCode);
+ if(U_FAILURE(errorCode)) {
+ fprintf(stderr, "CollationDataWriter::writeBase(capacity = %ld) failed: %s\n",
+ (long)capacity, u_errorName(errorCode));
+ return;
}
- uprv_memset(opts, 0, sizeof(UColOptionSet));
- UChar contractions[MAX_UCA_CONTRACTIONS][MAX_UCA_CONTRACTION_LENGTH];
- uprv_memset(contractions, 0, sizeof(contractions));
- uint32_t noOfContractions = 0;
- UCAConstants consts;
- uprv_memset(&consts, 0, sizeof(consts));
-#if 0
- UCAConstants consts = {
- UCOL_RESET_TOP_VALUE,
- UCOL_FIRST_PRIMARY_IGNORABLE,
- UCOL_LAST_PRIMARY_IGNORABLE,
- UCOL_LAST_PRIMARY_IGNORABLE_CONT,
- UCOL_FIRST_SECONDARY_IGNORABLE,
- UCOL_LAST_SECONDARY_IGNORABLE,
- UCOL_FIRST_TERTIARY_IGNORABLE,
- UCOL_LAST_TERTIARY_IGNORABLE,
- UCOL_FIRST_VARIABLE,
- UCOL_LAST_VARIABLE,
- UCOL_FIRST_NON_VARIABLE,
- UCOL_LAST_NON_VARIABLE,
-
- UCOL_NEXT_TOP_VALUE,
-/*
- UCOL_NEXT_FIRST_PRIMARY_IGNORABLE,
- UCOL_NEXT_LAST_PRIMARY_IGNORABLE,
- UCOL_NEXT_FIRST_SECONDARY_IGNORABLE,
- UCOL_NEXT_LAST_SECONDARY_IGNORABLE,
- UCOL_NEXT_FIRST_TERTIARY_IGNORABLE,
- UCOL_NEXT_LAST_TERTIARY_IGNORABLE,
- UCOL_NEXT_FIRST_VARIABLE,
- UCOL_NEXT_LAST_VARIABLE,
-*/
-
- PRIMARY_IMPLICIT_MIN,
- PRIMARY_IMPLICIT_MAX
- };
-#endif
-
- //printf("Allocating LeadByteConstants\n");
- LeadByteConstants leadByteConstants;
- uprv_memset(&leadByteConstants, 0x00, sizeof(LeadByteConstants));
-
- leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH = 256;
- leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX = (ReorderIndex*) uprv_malloc(leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH * sizeof(ReorderIndex));
- uprv_memset(leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX, 0x00, leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH * sizeof(ReorderIndex));
- leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA_LENGTH = 1024;
- leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA = (uint16_t*) uprv_malloc(leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA_LENGTH * sizeof(uint16_t));
- uprv_memset(leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA, 0x00, leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA_LENGTH * sizeof(uint16_t));
- //printf("\tFinished Allocating LeadByteConstants\n");
-
- leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH = 256;
- leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX = (uint16_t*) uprv_malloc(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(uint16_t));
- uprv_memset(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX, 0x8000 | USCRIPT_INVALID_CODE, leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(uint16_t));
- leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH = 1024;
- leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET = 1; // offset by 1 to leave zero location for those lead bytes with no reorder codes
- leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA = (uint16_t*) uprv_malloc(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH * sizeof(uint16_t));
- uprv_memset(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA, 0x00, leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH * sizeof(uint16_t));
-
- uprv_memset(inverseTable, 0xDA, sizeof(int32_t)*3*0xFFFF);
-
- opts->variableTopValue = 0;
- opts->strength = UCOL_TERTIARY;
- opts->frenchCollation = UCOL_OFF;
- opts->alternateHandling = UCOL_NON_IGNORABLE; /* attribute for handling variable elements*/
- opts->caseFirst = UCOL_OFF; /* who goes first, lower case or uppercase */
- opts->caseLevel = UCOL_OFF; /* do we have an extra case level */
- opts->normalizationMode = UCOL_OFF; /* attribute for normalization */
- opts->hiraganaQ = UCOL_OFF; /* attribute for JIS X 4061, used only in Japanese */
- opts->numericCollation = UCOL_OFF;
- myD->jamoSpecial = FALSE;
-
- tempUCATable *t = uprv_uca_initTempTable(myD, opts, NULL, IMPLICIT_TAG, LEAD_SURROGATE_TAG, status);
- if(U_FAILURE(*status))
- {
- fprintf(stderr, "Failed to init UCA temp table: %s\n", u_errorName(*status));
- uprv_free(opts);
- uprv_free(myD);
- fclose(data);
- return -1;
+ printf("*** CLDR root collation part sizes ***\n");
+ CollationInfo::printSizes(totalSize, indexes);
+ printf("*** CLDR root collation size: %6ld (with file header but no copyright string)\n",
+ (long)totalSize + 32); // 32 bytes = DataHeader rounded up to 16-byte boundary
+
+ CollationTailoring::makeBaseVersion(UCAVersion, ucaDataInfo.dataVersion);
+ UNewDataMemory *pData=udata_create(path, "icu", "ucadata", &ucaDataInfo,
+ withCopyright ? U_COPYRIGHT_STRING : NULL, &errorCode);
+ if(U_FAILURE(errorCode)) {
+ fprintf(stderr, "genuca: udata_create(%s, ucadata.icu) failed - %s\n",
+ path, u_errorName(errorCode));
+ return;
}
- // * set to zero
- struct {
- UChar32 start;
- UChar32 end;
- int32_t value;
- } ranges[] =
- {
- {0xAC00, 0xD7B0, UCOL_SPECIAL_FLAG | (HANGUL_SYLLABLE_TAG << 24) }, //0 HANGUL_SYLLABLE_TAG,/* AC00-D7AF*/
- //{0xD800, 0xDC00, UCOL_SPECIAL_FLAG | (LEAD_SURROGATE_TAG << 24) }, //1 LEAD_SURROGATE_TAG, already set in utrie_open() /* D800-DBFF*/
- {0xDC00, 0xE000, UCOL_SPECIAL_FLAG | (TRAIL_SURROGATE_TAG << 24) }, //2 TRAIL_SURROGATE DC00-DFFF
- // Now directly handled in the collation code by the swapCJK function.
- //{0x3400, 0x4DB6, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //3 CJK_IMPLICIT_TAG, /* 0x3400-0x4DB5*/
- //{0x4E00, 0x9FA6, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //4 CJK_IMPLICIT_TAG, /* 0x4E00-0x9FA5*/
- //{0xF900, 0xFA2E, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //5 CJK_IMPLICIT_TAG, /* 0xF900-0xFA2D*/
- //{0x20000, 0x2A6D7, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //6 CJK_IMPLICIT_TAG, /* 0x20000-0x2A6D6*/
- //{0x2F800, 0x2FA1E, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //7 CJK_IMPLICIT_TAG, /* 0x2F800-0x2FA1D*/
- };
- uint32_t i = 0;
-
- for(i = 0; i<sizeof(ranges)/sizeof(ranges[0]); i++) {
- /*ucmpe32_setRange32(t->mapping, ranges[i].start, ranges[i].end, ranges[i].value); */
- utrie_setRange32(t->mapping, ranges[i].start, ranges[i].end, ranges[i].value, TRUE);
+ udata_writeBlock(pData, dest, totalSize);
+ long dataLength = udata_finish(pData, &errorCode);
+ if(U_FAILURE(errorCode)) {
+ fprintf(stderr, "genuca: error %s writing the output file\n", u_errorName(errorCode));
+ return;
}
+ if(dataLength != (long)totalSize) {
+ fprintf(stderr,
+ "udata_finish(ucadata.icu) reports %ld bytes written but should be %ld\n",
+ dataLength, (long)totalSize);
+ errorCode=U_INTERNAL_PROGRAM_ERROR;
+ }
+}
- int32_t surrogateCount = 0;
- while(!feof(data)) {
- if(U_FAILURE(*status)) {
- fprintf(stderr, "Something returned an error %i (%s) while processing line %u of %s. Exiting...\n",
- *status, u_errorName(*status), (int)line, filename);
- exit(*status);
- }
-
- line++;
- if(beVerbose) {
- printf("%u ", (int)line);
+/**
+ * Adds each lead surrogate to the bmp set if any of the 1024
+ * associated supplementary code points is in the supp set.
+ * These can be one and the same set.
+ */
+static void
+setLeadSurrogatesForAssociatedSupplementary(UnicodeSet &bmp, const UnicodeSet &supp) {
+ UChar32 c = 0x10000;
+ for(UChar lead = 0xd800; lead < 0xdc00; ++lead, c += 0x400) {
+ if(supp.containsSome(c, c + 0x3ff)) {
+ bmp.add(lead);
}
- element = readAnElement(data, t, &consts, &leadByteConstants, status);
- if(element != NULL) {
- // we have read the line, now do something sensible with the read data!
+ }
+}
- // if element is a contraction, we want to add it to contractions[]
- int32_t length = (int32_t)element->cSize;
- if(length > 1 && element->cPoints[0] != 0xFDD0) { // this is a contraction
- if(U16_IS_LEAD(element->cPoints[0]) && U16_IS_TRAIL(element->cPoints[1]) && length == 2) {
- surrogateCount++;
- } else {
- if(noOfContractions>=MAX_UCA_CONTRACTIONS) {
- fprintf(stderr,
- "\nMore than %d contractions. Please increase MAX_UCA_CONTRACTIONS in genuca.cpp. "
- "Exiting...\n",
- (int)MAX_UCA_CONTRACTIONS);
- exit(U_BUFFER_OVERFLOW_ERROR);
- }
- if(length > MAX_UCA_CONTRACTION_LENGTH) {
- fprintf(stderr,
- "\nLine %d: Contraction of length %d is too long. Please increase MAX_UCA_CONTRACTION_LENGTH in genuca.cpp. "
- "Exiting...\n",
- (int)line, (int)length);
- exit(U_BUFFER_OVERFLOW_ERROR);
- }
- UChar *t = &contractions[noOfContractions][0];
- u_memcpy(t, element->cPoints, length);
- t += length;
- for(; length < MAX_UCA_CONTRACTION_LENGTH; ++length) {
- *t++ = 0;
+static int32_t
+makeBMPFoldedBitSet(const UnicodeSet &set, uint8_t index[0x800], uint32_t bits[256],
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return 0; }
+ bits[0] = 0; // no bits set
+ bits[1] = 0xffffffff; // all bits set
+ int32_t bitsLength = 2;
+ int32_t i = 0;
+ for(UChar32 c = 0; c <= 0xffff; c += 0x20, ++i) {
+ if(set.containsNone(c, c + 0x1f)) {
+ index[i] = 0;
+ } else if(set.contains(c, c + 0x1f)) {
+ index[i] = 1;
+ } else {
+ uint32_t b = 0;
+ for(int32_t j = 0; j <= 0x1f; ++j) {
+ if(set.contains(c + j)) {
+ b |= (uint32_t)1 << j;
}
- noOfContractions++;
- }
}
- else {
- // TODO (claireho): does this work? Need more tests
- // The following code is to handle the UCA pre-context rules
- // for L/l with middle dot. We share the structures for contractionCombos.
- // The format for pre-context character is
- // contractions[0]: codepoint in element->cPoints[0]
- // contractions[1]: '\0' to differentiate from a contraction
- // contractions[2]: prefix char
- if (element->prefixSize>0) {
- if(length > 1 || element->prefixSize > 1) {
- fprintf(stderr,
- "\nLine %d: Character with prefix, "
- "either too many characters or prefix too long.\n",
- (int)line);
- exit(U_INTERNAL_PROGRAM_ERROR);
- }
- if(noOfContractions>=MAX_UCA_CONTRACTIONS) {
- fprintf(stderr,
- "\nMore than %d contractions. Please increase MAX_UCA_CONTRACTIONS in genuca.cpp. "
- "Exiting...\n",
- (int)MAX_UCA_CONTRACTIONS);
- exit(U_BUFFER_OVERFLOW_ERROR);
- }
- UChar *t = &contractions[noOfContractions][0];
- t[0]=element->cPoints[0];
- t[1]=0;
- t[2]=element->prefixChars[0];
- t += 3;
- for(length = 3; length < MAX_UCA_CONTRACTION_LENGTH; ++length) {
- *t++ = 0;
+ int32_t k;
+ for(k = 2;; ++k) {
+ if(k == bitsLength) {
+ // new bit combination
+ if(bitsLength == 256) {
+ errorCode = U_BUFFER_OVERFLOW_ERROR;
+ return 0;
}
- noOfContractions++;
+ bits[bitsLength++] = b;
+ break;
+ }
+ if(bits[k] == b) {
+ // duplicate bit combination
+ break;
}
}
-
- /* we're first adding to inverse, because addAnElement will reverse the order */
- /* of code points and stuff... we don't want that to happen */
- if((element->CEs[0] >> 24) != 2) {
- // Add every element except for the special minimum-weight character U+FFFE
- // which has 02 weights.
- // If we had 02 weights in the invuca table, then tailoring primary
- // after an ignorable would try to put a weight before 02 which is not valid.
- // We could fix this in a complicated way in the from-rule-string builder,
- // but omitting this special element from invuca is simple and effective.
- addToInverse(element, status);
- }
- if(!(length > 1 && element->cPoints[0] == 0xFDD0)) {
- uprv_uca_addAnElement(t, element, status);
- }
+ index[i] = k;
}
}
+ return bitsLength;
+}
- if(UCAVersion[0] == 0 && UCAVersion[1] == 0 && UCAVersion[2] == 0 && UCAVersion[3] == 0) {
- fprintf(stderr, "UCA version not specified. Cannot create data file!\n");
- uprv_uca_closeTempTable(t);
- uprv_free(opts);
- uprv_free(myD);
- fclose(data);
- return -1;
- }
-/* {
- uint32_t trieWord = utrie_get32(t->mapping, 0xDC01, NULL);
- }*/
-
- if (beVerbose) {
- printf("\nLines read: %u\n", (int)line);
- printf("Surrogate count: %i\n", (int)surrogateCount);
- printf("Raw data breakdown:\n");
- /*printf("Compact array stage1 top: %i, stage2 top: %i\n", t->mapping->stage1Top, t->mapping->stage2Top);*/
- printf("Number of contractions: %u\n", (int)noOfContractions);
- printf("Contraction image size: %u\n", (int)t->image->contractionSize);
- printf("Expansions size: %i\n", (int)t->expansions->position);
- }
-
-
- /* produce canonical closure for table */
- /* first set up constants for implicit calculation */
- uprv_uca_initImplicitConstants(status);
- /* do the closure */
- UnicodeSet closed;
- int32_t noOfClosures = uprv_uca_canonicalClosure(t, NULL, &closed, status);
- if(noOfClosures != 0) {
- fprintf(stderr, "Warning: %i canonical closures occured!\n", (int)noOfClosures);
- UnicodeString pattern;
- std::string utf8;
- closed.toPattern(pattern, TRUE).toUTF8String(utf8);
- fprintf(stderr, "UTF-8 pattern string: %s\n", utf8.c_str());
- }
-
- /* test */
- UCATableHeader *myData = uprv_uca_assembleTable(t, status);
-
- if (beVerbose) {
- printf("Compacted data breakdown:\n");
- /*printf("Compact array stage1 top: %i, stage2 top: %i\n", t->mapping->stage1Top, t->mapping->stage2Top);*/
- printf("Number of contractions: %u\n", (int)noOfContractions);
- printf("Contraction image size: %u\n", (int)t->image->contractionSize);
- printf("Expansions size: %i\n", (int)t->expansions->position);
- }
+// TODO: Make preparseucd.py write fcd_data.h mapping code point ranges to FCD16 values,
+// use that rather than properties APIs.
+// Then consider moving related logic for the unsafeBwdSet back from the loader into this builder.
- if(U_FAILURE(*status)) {
- fprintf(stderr, "Error creating table: %s\n", u_errorName(*status));
- uprv_uca_closeTempTable(t);
- uprv_free(opts);
- uprv_free(myD);
- fclose(data);
- return -1;
+/**
+ * Builds data for the FCD check fast path.
+ * For details see the CollationFCD class comments.
+ */
+static void
+buildAndWriteFCDData(const char *path, UErrorCode &errorCode) {
+ UnicodeSet lcccSet(UNICODE_STRING_SIMPLE("[[:^lccc=0:][\\udc00-\\udfff]]"), errorCode);
+ UnicodeSet tcccSet(UNICODE_STRING_SIMPLE("[:^tccc=0:]"), errorCode);
+ if(U_FAILURE(errorCode)) { return; }
+ setLeadSurrogatesForAssociatedSupplementary(tcccSet, tcccSet);
+ // The following supp(lccc)->lead(tccc) should be unnecessary
+ // after the previous supp(tccc)->lead(tccc)
+ // because there should not be any characters with lccc!=0 and tccc=0.
+ // It is safe and harmless.
+ setLeadSurrogatesForAssociatedSupplementary(tcccSet, lcccSet);
+ setLeadSurrogatesForAssociatedSupplementary(lcccSet, lcccSet);
+ uint8_t lcccIndex[0x800], tcccIndex[0x800];
+ uint32_t lcccBits[256], tcccBits[256];
+ int32_t lcccBitsLength = makeBMPFoldedBitSet(lcccSet, lcccIndex, lcccBits, errorCode);
+ int32_t tcccBitsLength = makeBMPFoldedBitSet(tcccSet, tcccIndex, tcccBits, errorCode);
+ printf("@@@ lcccBitsLength=%d -> %d bytes\n", lcccBitsLength, 0x800 + lcccBitsLength * 4);
+ printf("@@@ tcccBitsLength=%d -> %d bytes\n", tcccBitsLength, 0x800 + tcccBitsLength * 4);
+
+ if(U_FAILURE(errorCode)) { return; }
+
+ FILE *f=usrc_create(path, "collationfcd.cpp",
+ "icu/tools/unicode/c/genuca/genuca.cpp");
+ if(f==NULL) {
+ errorCode=U_FILE_ACCESS_ERROR;
+ return;
}
+ fputs("#include \"unicode/utypes.h\"\n\n", f);
+ fputs("#if !UCONFIG_NO_COLLATION\n\n", f);
+ fputs("#include \"collationfcd.h\"\n\n", f);
+ fputs("U_NAMESPACE_BEGIN\n\n", f);
+ usrc_writeArray(f,
+ "const uint8_t CollationFCD::lcccIndex[%ld]={\n",
+ lcccIndex, 8, 0x800,
+ "\n};\n\n");
+ usrc_writeArray(f,
+ "const uint32_t CollationFCD::lcccBits[%ld]={\n",
+ lcccBits, 32, lcccBitsLength,
+ "\n};\n\n");
+ usrc_writeArray(f,
+ "const uint8_t CollationFCD::tcccIndex[%ld]={\n",
+ tcccIndex, 8, 0x800,
+ "\n};\n\n");
+ usrc_writeArray(f,
+ "const uint32_t CollationFCD::tcccBits[%ld]={\n",
+ tcccBits, 32, tcccBitsLength,
+ "\n};\n\n");
+ fputs("U_NAMESPACE_END\n\n", f);
+ fputs("#endif // !UCONFIG_NO_COLLATION\n", f);
+ fclose(f);
+}
- /* populate the version info struct with version info*/
- myData->version[0] = UCOL_BUILDER_VERSION;
- myData->version[1] = UCAVersion[0];
- myData->version[2] = UCAVersion[1];
- myData->version[3] = UCAVersion[2];
- /*TODO:The fractional rules version should be taken from FractionalUCA.txt*/
- // Removed this macro. Instead, we use the fields below
- //myD->version[1] = UCOL_FRACTIONAL_UCA_VERSION;
- //myD->UCAVersion = UCAVersion; // out of FractionalUCA.txt
- uprv_memcpy(myData->UCAVersion, UCAVersion, sizeof(UVersionInfo));
- u_getUnicodeVersion(myData->UCDVersion);
-
- writeOutData(myData, &consts, &leadByteConstants, contractions, noOfContractions, outputDir, copyright, status);
-
- InverseUCATableHeader *inverse = assembleInverseTable(status);
- uprv_memcpy(inverse->UCAVersion, UCAVersion, sizeof(UVersionInfo));
- writeOutInverseData(inverse, outputDir, copyright, status);
-
- uprv_uca_closeTempTable(t);
- uprv_free(myD);
- uprv_free(opts);
-
- uprv_free(myData);
- uprv_free(inverse);
-
- uprv_free(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX);
- uprv_free(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA);
- uprv_free(leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX);
- uprv_free(leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA);
-
- fclose(data);
-
- return 0;
+static void
+parseAndWriteCollationRootData(
+ const char *fracUCAPath,
+ const char *binaryDataPath,
+ const char *sourceCodePath,
+ UErrorCode &errorCode) {
+ if(U_FAILURE(errorCode)) { return; }
+ CollationBaseDataBuilder builder(errorCode);
+ builder.init(errorCode);
+ parseFractionalUCA(fracUCAPath, builder, &errorCode);
+ buildAndWriteBaseData(builder, binaryDataPath, errorCode);
+ buildAndWriteFCDData(sourceCodePath, errorCode);
}
-#endif /* #if !UCONFIG_NO_COLLATION */
+// ------------------------------------------------------------------------- ***
enum {
HELP_H,
HELP_QUESTION_MARK,
- COPYRIGHT,
- VERSION,
VERBOSE,
- ICUDATADIR
+ COPYRIGHT
};
-/* Keep these values in sync with the above enums */
static UOption options[]={
UOPTION_HELP_H,
UOPTION_HELP_QUESTION_MARK,
- UOPTION_COPYRIGHT,
- UOPTION_VERSION,
UOPTION_VERBOSE,
- UOPTION_ICUDATADIR
+ UOPTION_COPYRIGHT
};
-int main(int argc, char* argv[]) {
- uprv_memset(&UCAVersion, 0, 4);
-
+extern "C" int
+main(int argc, char* argv[]) {
U_MAIN_INIT_ARGS(argc, argv);
+
argc=u_parseArgs(argc, argv, LENGTHOF(options), options);
/* error handling, printing usage message */
"error in command line argument \"%s\"\n",
argv[-argc]);
}
- if(argc<2 || options[HELP_H].doesOccur || options[HELP_QUESTION_MARK].doesOccur) {
+ if( argc<2 ||
+ options[HELP_H].doesOccur || options[HELP_QUESTION_MARK].doesOccur
+ ) {
+ /*
+ * Broken into chunks because the C89 standard says the minimum
+ * required supported string length is 509 bytes.
+ */
+ fprintf(stderr,
+ "Usage: %s [-options] path/to/ICU/src/root\n"
+ "\n"
+ "Reads path/to/ICU/src/root/source/data/unidata/FractionalUCA.txt and\n"
+ "writes source and binary data files with the collation root data.\n"
+ "\n",
+ argv[0]);
fprintf(stderr,
- "usage: %s [-options] path/to/ICU/src/root\n"
- "\tRead in UCA collation text data and write out the binary collation data\n"
- "options:\n"
+ "Options:\n"
"\t-h or -? or --help this usage text\n"
- "\t-V or --version show a version message\n"
- "\t-c or --copyright include a copyright notice\n"
- "\t-v or --verbose turn on verbose output\n"
- "\t-i or --icudatadir directory for locating any needed intermediate data files,\n"
- "\t followed by path, defaults to %s\n",
- argv[0], u_getDataDirectory());
- return argc<2 ? U_ILLEGAL_ARGUMENT_ERROR : U_ZERO_ERROR;
- }
- if(options[VERSION].doesOccur) {
- printf("genuca version %hu.%hu, ICU tool to read UCA text data and create UCA data tables for collation.\n",
-#if UCONFIG_NO_COLLATION
- 0, 0
-#else
- UCA_FORMAT_VERSION_0, UCA_FORMAT_VERSION_1
-#endif
- );
- printf(U_COPYRIGHT_STRING"\n");
- exit(0);
+ "\t-v or --verbose verbose output\n"
+ "\t-c or --copyright include a copyright notice\n");
+ return argc<0 ? U_ILLEGAL_ARGUMENT_ERROR : U_ZERO_ERROR;
}
- /* get the options values */
- beVerbose = options[VERBOSE].doesOccur;
-
- const char *copyright = NULL;
- if (options[COPYRIGHT].doesOccur) {
- copyright = U_COPYRIGHT_STRING;
- }
+ beVerbose=options[VERBOSE].doesOccur;
+ withCopyright=options[COPYRIGHT].doesOccur;
- if (options[ICUDATADIR].doesOccur) {
- u_setDataDirectory(options[ICUDATADIR].value);
- }
- /* Initialize ICU */
IcuToolErrorCode errorCode("genuca");
- u_init(errorCode);
- if (errorCode.isFailure() && errorCode.get() != U_FILE_ACCESS_ERROR) {
- fprintf(stderr, "%s: can not initialize ICU. status = %s\n",
- argv[0], errorCode.errorName());
- exit(errorCode.reset());
- }
- errorCode.reset();
CharString icuSrcRoot(argv[1], errorCode);
- CharString icuSourceData(icuSrcRoot, errorCode);
- icuSourceData.appendPathPart("source", errorCode);
- icuSourceData.appendPathPart("data", errorCode);
-
- CharString srcDir(icuSourceData, errorCode);
- srcDir.appendPathPart("unidata", errorCode);
-
- CharString destDir(icuSourceData, errorCode);
- destDir.appendPathPart("in", errorCode);
- destDir.appendPathPart("coll", errorCode);
+ CharString icuSource(icuSrcRoot, errorCode);
+ icuSource.appendPathPart("source", errorCode);
- CharString ucaFile(srcDir, errorCode);
- ucaFile.appendPathPart("FractionalUCA.txt", errorCode);
+ CharString icuSourceData(icuSource, errorCode);
+ icuSourceData.appendPathPart("data", errorCode);
- if(errorCode.isFailure()) {
- fprintf(stderr, "genuca: unable to build file paths - %s\n",
- errorCode.errorName());
- return errorCode.reset();
- }
+ CharString fracUCAPath(icuSourceData, errorCode);
+ fracUCAPath.appendPathPart("unidata", errorCode);
+ fracUCAPath.appendPathPart("FractionalUCA.txt", errorCode);
-#if UCONFIG_NO_COLLATION
+ CharString sourceDataInColl(icuSourceData, errorCode);
+ sourceDataInColl.appendPathPart("in", errorCode);
+ sourceDataInColl.appendPathPart("coll", errorCode);
- UNewDataMemory *pData;
- const char *msg;
-
- msg = "genuca writes dummy " UCA_DATA_NAME "." UCA_DATA_TYPE " because of UCONFIG_NO_COLLATION, see uconfig.h";
- fprintf(stderr, "%s\n", msg);
- pData = udata_create(destDir.data(), UCA_DATA_TYPE, UCA_DATA_NAME, &dummyDataInfo,
- NULL, errorCode);
- udata_writeBlock(pData, msg, strlen(msg));
- udata_finish(pData, errorCode);
-
- msg = "genuca writes dummy " INVC_DATA_NAME "." INVC_DATA_TYPE " because of UCONFIG_NO_COLLATION, see uconfig.h";
- fprintf(stderr, "%s\n", msg);
- pData = udata_create(destDir.data(), INVC_DATA_TYPE, INVC_DATA_NAME, &dummyDataInfo,
- NULL, errorCode);
- udata_writeBlock(pData, msg, strlen(msg));
- udata_finish(pData, errorCode);
-
- return errorCode.reset();
+ CharString sourceI18n(icuSource, errorCode);
+ sourceI18n.appendPathPart("i18n", errorCode);
-#else
+ errorCode.assertSuccess();
- return write_uca_table(ucaFile.data(), destDir.data(), copyright, errorCode);
+ parseAndWriteCollationRootData(
+ fracUCAPath.data(),
+ sourceDataInColl.data(),
+ sourceI18n.data(),
+ errorCode);
-#endif
+ return errorCode;
}
-/*
- * Hey, Emacs, please set the following:
- *
- * Local Variables:
- * indent-tabs-mode: nil
- * End:
- *
- */
+#endif // UCONFIG_NO_COLLATION