bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 &&
"Unexpected value type");
// Out of range logical bit shifts are guaranteed to be zero.
// Out of range arithmetic bit shifts splat the sign bit.
- APInt ShiftVal = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
+ APInt ShiftVal = cast<ConstantSDNode>(N1)->getAPIntValue();
if (ShiftVal.zextOrTrunc(8).uge(NumBitsPerElt)) {
if (LogicalShift)
return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
+ // fold (VSRLI (VSRAI X, Y), 31) -> (VSRLI X, 31).
+ // This VSRLI only looks at the sign bit, which is unmodified by VSRAI.
+ // TODO - support other sra opcodes as needed.
+ if (Opcode == X86ISD::VSRLI && (ShiftVal + 1) == NumBitsPerElt &&
+ N0.getOpcode() == X86ISD::VSRAI)
+ return DAG.getNode(X86ISD::VSRLI, SDLoc(N), VT, N0.getOperand(0), N1);
+
// We can decode 'whole byte' logical bit shifts as shuffles.
if (LogicalShift && (ShiftVal.getZExtValue() % 8) == 0) {
SDValue Op(N, 0);
define <8 x i16> @ashr_mask1_v8i16(<8 x i16> %a0) {
; CHECK-LABEL: ashr_mask1_v8i16:
; CHECK: # BB#0:
-; CHECK-NEXT: psraw $15, %xmm0
; CHECK-NEXT: psrlw $15, %xmm0
; CHECK-NEXT: retq
%1 = ashr <8 x i16> %a0, <i16 15, i16 15, i16 15, i16 15, i16 15, i16 15, i16 15, i16 15>