]> granicus.if.org Git - postgresql/commitdiff
Change patternsel() so that instead of switching from a pure
authorTom Lane <tgl@sss.pgh.pa.us>
Sun, 9 Mar 2008 00:32:09 +0000 (00:32 +0000)
committerTom Lane <tgl@sss.pgh.pa.us>
Sun, 9 Mar 2008 00:32:09 +0000 (00:32 +0000)
pattern-examination heuristic method to purely histogram-driven selectivity at
histogram size 100, we compute both estimates and use a weighted average.
The weight put on the heuristic estimate decreases linearly with histogram
size, dropping to zero for 100 or more histogram entries.
Likewise in ltreeparentsel().  After a patch by Greg Stark, though I
reorganized the logic a bit to give the caller of histogram_selectivity()
more control.

contrib/ltree/ltree_op.c
src/backend/utils/adt/selfuncs.c
src/include/utils/selfuncs.h

index be2733273fb7f7cd6953b4e2e9e749a1cee883b9..3eb854fbdc916925ce9d9e68a08e2c40814db722 100644 (file)
@@ -1,7 +1,7 @@
 /*
  * op function for ltree
  * Teodor Sigaev <teodor@stack.net>
- * $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.16 2007/02/28 22:44:38 tgl Exp $
+ * $PostgreSQL: pgsql/contrib/ltree/ltree_op.c,v 1.17 2008/03/09 00:32:09 tgl Exp $
  */
 
 #include "ltree.h"
@@ -609,6 +609,7 @@ ltreeparentsel(PG_FUNCTION_ARGS)
                double          mcvsum;
                double          mcvsel;
                double          nullfrac;
+               int                     hist_size;
 
                fmgr_info(get_opcode(operator), &contproc);
 
@@ -626,21 +627,31 @@ ltreeparentsel(PG_FUNCTION_ARGS)
                 */
                selec = histogram_selectivity(&vardata, &contproc,
                                                                          constval, varonleft,
-                                                                         100, 1);
+                                                                         10, 1, &hist_size);
                if (selec < 0)
                {
                        /* Nope, fall back on default */
                        selec = DEFAULT_PARENT_SEL;
                }
-               else
+               else if (hist_size < 100)
                {
-                       /* Yes, but don't believe extremely small or large estimates. */
-                       if (selec < 0.0001)
-                               selec = 0.0001;
-                       else if (selec > 0.9999)
-                               selec = 0.9999;
+                       /*
+                        * For histogram sizes from 10 to 100, we combine the
+                        * histogram and default selectivities, putting increasingly
+                        * more trust in the histogram for larger sizes.
+                        */
+                       double  hist_weight = hist_size / 100.0;
+
+                       selec = selec * hist_weight +
+                               DEFAULT_PARENT_SEL * (1.0 - hist_weight);
                }
 
+               /* In any case, don't believe extremely small or large estimates. */
+               if (selec < 0.0001)
+                       selec = 0.0001;
+               else if (selec > 0.9999)
+                       selec = 0.9999;
+
                if (HeapTupleIsValid(vardata.statsTuple))
                        nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
                else
index b5558687d287ee4c8389ef142d9320ab65cd1774..d3ea3c1054ed4f1e10596221fcb874e3c1cd091e 100644 (file)
@@ -15,7 +15,7 @@
  *
  *
  * IDENTIFICATION
- *       $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.244 2008/03/08 22:41:38 tgl Exp $
+ *       $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.245 2008/03/09 00:32:09 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
@@ -567,17 +567,23 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
  * or not it has anything to do with the histogram sort operator.  We are
  * essentially using the histogram just as a representative sample.  However,
  * small histograms are unlikely to be all that representative, so the caller
- * should specify a minimum histogram size to use, and fall back on some
- * other approach if this routine fails.
+ * should be prepared to fall back on some other estimation approach when the
+ * histogram is missing or very small.  It may also be prudent to combine this
+ * approach with another one when the histogram is small.
  *
- * The caller also specifies n_skip, which causes us to ignore the first and
- * last n_skip histogram elements, on the grounds that they are outliers and
- * hence not very representative.  If in doubt, min_hist_size = 100 and
- * n_skip = 1 are reasonable values.
+ * If the actual histogram size is not at least min_hist_size, we won't bother
+ * to do the calculation at all.  Also, if the n_skip parameter is > 0, we
+ * ignore the first and last n_skip histogram elements, on the grounds that
+ * they are outliers and hence not very representative.  Typical values for
+ * these parameters are 10 and 1.
  *
  * The function result is the selectivity, or -1 if there is no histogram
  * or it's smaller than min_hist_size.
  *
+ * The output parameter *hist_size receives the actual histogram size,
+ * or zero if no histogram.  Callers may use this number to decide how
+ * much faith to put in the function result.
+ *
  * Note that the result disregards both the most-common-values (if any) and
  * null entries.  The caller is expected to combine this result with
  * statistics for those portions of the column population.     It may also be
@@ -586,7 +592,8 @@ mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
 double
 histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
                                          Datum constval, bool varonleft,
-                                         int min_hist_size, int n_skip)
+                                         int min_hist_size, int n_skip,
+                                         int *hist_size)
 {
        double          result;
        Datum      *values;
@@ -603,6 +610,7 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
                                                 &values, &nvalues,
                                                 NULL, NULL))
        {
+               *hist_size = nvalues;
                if (nvalues >= min_hist_size)
                {
                        int                     nmatch = 0;
@@ -626,7 +634,10 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
                free_attstatsslot(vardata->atttype, values, nvalues, NULL, 0);
        }
        else
+       {
+               *hist_size = 0;
                result = -1;
+       }
 
        return result;
 }
@@ -1117,13 +1128,16 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
                 * selectivity of the fixed prefix and remainder of pattern
                 * separately, then combine the two to get an estimate of the
                 * selectivity for the part of the column population represented by
-                * the histogram.  We then add up data for any most-common-values
-                * values; these are not in the histogram population, and we can get
-                * exact answers for them by applying the pattern operator, so there's
-                * no reason to approximate.  (If the MCVs cover a significant part of
-                * the total population, this gives us a big leg up in accuracy.)
+                * the histogram.  (For small histograms, we combine these approaches.)
+                *
+                * We then add up data for any most-common-values values; these are
+                * not in the histogram population, and we can get exact answers for
+                * them by applying the pattern operator, so there's no reason to
+                * approximate.  (If the MCVs cover a significant part of the total
+                * population, this gives us a big leg up in accuracy.)
                 */
                Selectivity selec;
+               int                     hist_size;
                FmgrInfo        opproc;
                double          nullfrac,
                                        mcv_selec,
@@ -1133,10 +1147,12 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
                fmgr_info(get_opcode(operator), &opproc);
 
                selec = histogram_selectivity(&vardata, &opproc, constval, true,
-                                                                         100, 1);
-               if (selec < 0)
+                                                                         10, 1, &hist_size);
+
+               /* If not at least 100 entries, use the heuristic method */
+               if (hist_size < 100)
                {
-                       /* Nope, so fake it with the heuristic method */
+                       Selectivity heursel;
                        Selectivity prefixsel;
                        Selectivity restsel;
 
@@ -1146,17 +1162,29 @@ patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype, bool negate)
                        else
                                prefixsel = 1.0;
                        restsel = pattern_selectivity(rest, ptype);
-                       selec = prefixsel * restsel;
-               }
-               else
-               {
-                       /* Yes, but don't believe extremely small or large estimates. */
-                       if (selec < 0.0001)
-                               selec = 0.0001;
-                       else if (selec > 0.9999)
-                               selec = 0.9999;
+                       heursel = prefixsel * restsel;
+
+                       if (selec < 0)                  /* fewer than 10 histogram entries? */
+                               selec = heursel;
+                       else
+                       {
+                               /*
+                                * For histogram sizes from 10 to 100, we combine the
+                                * histogram and heuristic selectivities, putting increasingly
+                                * more trust in the histogram for larger sizes.
+                                */
+                               double  hist_weight = hist_size / 100.0;
+
+                               selec = selec * hist_weight + heursel * (1.0 - hist_weight);
+                       }
                }
 
+               /* In any case, don't believe extremely small or large estimates. */
+               if (selec < 0.0001)
+                       selec = 0.0001;
+               else if (selec > 0.9999)
+                       selec = 0.9999;
+
                /*
                 * If we have most-common-values info, add up the fractions of the MCV
                 * entries that satisfy MCV OP PATTERN.  These fractions contribute
index 7efe32b60ea3a9d5dad6fee748d86cce1bf57654..808da5129c10dd799b60e12632ce76251658a3be 100644 (file)
@@ -8,7 +8,7 @@
  * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
  * Portions Copyright (c) 1994, Regents of the University of California
  *
- * $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.43 2008/01/01 19:45:59 momjian Exp $
+ * $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.44 2008/03/09 00:32:09 tgl Exp $
  *
  *-------------------------------------------------------------------------
  */
@@ -112,7 +112,8 @@ extern double mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
                                double *sumcommonp);
 extern double histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
                                          Datum constval, bool varonleft,
-                                         int min_hist_size, int n_skip);
+                                         int min_hist_size, int n_skip,
+                                         int *hist_size);
 
 extern Pattern_Prefix_Status pattern_fixed_prefix(Const *patt,
                                         Pattern_Type ptype,