Ambiguous.construct();
}
+ void setAsIdentityConversion(QualType T) {
+ setStandard();
+ Standard.setAsIdentityConversion();
+ Standard.setFromType(T);
+ Standard.setAllToTypes(T);
+ }
+
/// \brief Whether the target is really a std::initializer_list, and the
/// sequence only represents the worst element conversion.
bool isStdInitializerListElement() const {
ovl_fail_inhctor_slice,
};
+ /// A list of implicit conversion sequences for the arguments of an
+ /// OverloadCandidate.
+ typedef llvm::MutableArrayRef<ImplicitConversionSequence>
+ ConversionSequenceList;
+
/// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
struct OverloadCandidate {
/// Function - The actual function that this candidate
/// is a surrogate, but only if IsSurrogate is true.
CXXConversionDecl *Surrogate;
- /// Conversions - The conversion sequences used to convert the
- /// function arguments to the function parameters, the pointer points to a
- /// fixed size array with NumConversions elements. The memory is owned by
- /// the OverloadCandidateSet.
- ImplicitConversionSequence *Conversions;
+ /// The conversion sequences used to convert the function arguments
+ /// to the function parameters.
+ ConversionSequenceList Conversions;
/// The FixIt hints which can be used to fix the Bad candidate.
ConversionFixItGenerator Fix;
- /// NumConversions - The number of elements in the Conversions array.
- unsigned NumConversions;
-
/// Viable - True to indicate that this overload candidate is viable.
bool Viable;
/// hasAmbiguousConversion - Returns whether this overload
/// candidate requires an ambiguous conversion or not.
bool hasAmbiguousConversion() const {
- for (unsigned i = 0, e = NumConversions; i != e; ++i) {
- if (!Conversions[i].isInitialized()) return false;
- if (Conversions[i].isAmbiguous()) return true;
+ for (auto &C : Conversions) {
+ if (!C.isInitialized()) return false;
+ if (C.isAmbiguous()) return true;
}
return false;
}
SmallVector<OverloadCandidate, 16> Candidates;
llvm::SmallPtrSet<Decl *, 16> Functions;
- // Allocator for OverloadCandidate::Conversions. We store the first few
+ // Allocator for ConversionSequenceLists. We store the first few
// elements inline to avoid allocation for small sets.
llvm::BumpPtrAllocator ConversionSequenceAllocator;
size_t size() const { return Candidates.size(); }
bool empty() const { return Candidates.empty(); }
- /// \brief Add a new candidate with NumConversions conversion sequence slots
- /// to the overload set.
- OverloadCandidate &addCandidate(unsigned NumConversions = 0) {
- Candidates.push_back(OverloadCandidate());
- OverloadCandidate &C = Candidates.back();
+ /// \brief Allocate storage for conversion sequences for NumConversions
+ /// conversions.
+ ConversionSequenceList
+ allocateConversionSequences(unsigned NumConversions) {
+ ImplicitConversionSequence *Conversions;
// Assign space from the inline array if there are enough free slots
// available.
if (NumConversions + NumInlineSequences <= 16) {
ImplicitConversionSequence *I =
(ImplicitConversionSequence *)InlineSpace.buffer;
- C.Conversions = &I[NumInlineSequences];
+ Conversions = &I[NumInlineSequences];
NumInlineSequences += NumConversions;
} else {
// Otherwise get memory from the allocator.
- C.Conversions = ConversionSequenceAllocator
- .Allocate<ImplicitConversionSequence>(NumConversions);
+ Conversions =
+ ConversionSequenceAllocator.Allocate<ImplicitConversionSequence>(
+ NumConversions);
}
// Construct the new objects.
- for (unsigned i = 0; i != NumConversions; ++i)
- new (&C.Conversions[i]) ImplicitConversionSequence();
+ for (unsigned I = 0; I != NumConversions; ++I)
+ new (&Conversions[I]) ImplicitConversionSequence();
+
+ return ConversionSequenceList(Conversions, NumConversions);
+ }
+
+ /// \brief Add a new candidate with NumConversions conversion sequence slots
+ /// to the overload set.
+ OverloadCandidate &addCandidate(unsigned NumConversions = 0,
+ ConversionSequenceList Conversions = None) {
+ assert((Conversions.empty() || Conversions.size() == NumConversions) &&
+ "preallocated conversion sequence has wrong length");
- C.NumConversions = NumConversions;
+ Candidates.push_back(OverloadCandidate());
+ OverloadCandidate &C = Candidates.back();
+ C.Conversions = Conversions.empty()
+ ? allocateConversionSequences(NumConversions)
+ : Conversions;
return C;
}
class FunctionProtoType;
class FunctionTemplateDecl;
class ImplicitConversionSequence;
+ typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
class InitListExpr;
class InitializationKind;
class InitializationSequence;
void AddOverloadCandidate(FunctionDecl *Function,
DeclAccessPair FoundDecl,
ArrayRef<Expr *> Args,
- OverloadCandidateSet& CandidateSet,
+ OverloadCandidateSet &CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false,
- bool AllowExplicit = false);
+ bool AllowExplicit = false,
+ ConversionSequenceList EarlyConversions = None);
void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
- bool PartialOverloading = false);
+ bool PartialOverloading = false,
+ ConversionSequenceList EarlyConversions = None);
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
+ bool CheckNonDependentConversions(FunctionTemplateDecl *FunctionTemplate,
+ ArrayRef<QualType> ParamTypes,
+ ArrayRef<Expr *> Args,
+ OverloadCandidateSet &CandidateSet,
+ ConversionSequenceList &Conversions,
+ bool SuppressUserConversions,
+ CXXRecordDecl *ActingContext = nullptr,
+ QualType ObjectType = QualType(),
+ Expr::Classification
+ ObjectClassification = {});
void AddConversionCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
/// \brief The explicitly-specified template arguments were not valid
/// template arguments for the given template.
TDK_InvalidExplicitArguments,
+ /// \brief Checking non-dependent argument conversions failed.
+ TDK_NonDependentConversionFailure,
/// \brief Deduction failed; that's all we know.
TDK_MiscellaneousDeductionFailure,
/// \brief CUDA Target attributes do not match.
QualType OriginalArgType;
};
- TemplateDeductionResult
- FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
- SmallVectorImpl<DeducedTemplateArgument> &Deduced,
- unsigned NumExplicitlySpecified,
- FunctionDecl *&Specialization,
- sema::TemplateDeductionInfo &Info,
- SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
- bool PartialOverloading = false);
+ TemplateDeductionResult FinishTemplateArgumentDeduction(
+ FunctionTemplateDecl *FunctionTemplate,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
+ sema::TemplateDeductionInfo &Info,
+ SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
+ bool PartialOverloading = false,
+ llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
- TemplateDeductionResult
- DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- ArrayRef<Expr *> Args,
- FunctionDecl *&Specialization,
- sema::TemplateDeductionInfo &Info,
- bool PartialOverloading = false);
+ TemplateDeductionResult DeduceTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
+ FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
+ bool PartialOverloading,
+ llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
Result.Result = static_cast<unsigned>(TDK);
Result.HasDiagnostic = false;
switch (TDK) {
- case Sema::TDK_Success:
case Sema::TDK_Invalid:
case Sema::TDK_InstantiationDepth:
case Sema::TDK_TooManyArguments:
Result.HasDiagnostic = true;
}
break;
+
+ case Sema::TDK_Success:
+ case Sema::TDK_NonDependentConversionFailure:
+ llvm_unreachable("not a deduction failure");
}
return Result;
case Sema::TDK_TooFewArguments:
case Sema::TDK_InvalidExplicitArguments:
case Sema::TDK_CUDATargetMismatch:
+ case Sema::TDK_NonDependentConversionFailure:
break;
case Sema::TDK_Inconsistent:
case Sema::TDK_DeducedMismatchNested:
case Sema::TDK_NonDeducedMismatch:
case Sema::TDK_CUDATargetMismatch:
+ case Sema::TDK_NonDependentConversionFailure:
return TemplateParameter();
case Sema::TDK_Incomplete:
case Sema::TDK_Underqualified:
case Sema::TDK_NonDeducedMismatch:
case Sema::TDK_CUDATargetMismatch:
+ case Sema::TDK_NonDependentConversionFailure:
return nullptr;
case Sema::TDK_DeducedMismatch:
case Sema::TDK_InvalidExplicitArguments:
case Sema::TDK_SubstitutionFailure:
case Sema::TDK_CUDATargetMismatch:
+ case Sema::TDK_NonDependentConversionFailure:
return nullptr;
case Sema::TDK_Inconsistent:
case Sema::TDK_InvalidExplicitArguments:
case Sema::TDK_SubstitutionFailure:
case Sema::TDK_CUDATargetMismatch:
+ case Sema::TDK_NonDependentConversionFailure:
return nullptr;
case Sema::TDK_Inconsistent:
void OverloadCandidateSet::destroyCandidates() {
for (iterator i = begin(), e = end(); i != e; ++i) {
- for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
- i->Conversions[ii].~ImplicitConversionSequence();
+ for (auto &C : i->Conversions)
+ C.~ImplicitConversionSequence();
if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
i->DeductionFailure.Destroy();
}
OverloadCandidateSet &CandidateSet,
bool SuppressUserConversions,
bool PartialOverloading,
- bool AllowExplicit) {
+ bool AllowExplicit,
+ ConversionSequenceList EarlyConversions) {
const FunctionProtoType *Proto
= dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
assert(Proto && "Functions without a prototype cannot be overloaded");
AddMethodCandidate(Method, FoundDecl, Method->getParent(),
QualType(), Expr::Classification::makeSimpleLValue(),
Args, CandidateSet, SuppressUserConversions,
- PartialOverloading);
+ PartialOverloading, EarlyConversions);
return;
}
// We treat a constructor like a non-member function, since its object
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
// Add this candidate
- OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
+ OverloadCandidate &Candidate =
+ CandidateSet.addCandidate(Args.size(), EarlyConversions);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = Function;
Candidate.Viable = true;
// Determine the implicit conversion sequences for each of the
// arguments.
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
- if (ArgIdx < NumParams) {
+ if (Candidate.Conversions[ArgIdx].isInitialized()) {
+ // We already formed a conversion sequence for this parameter during
+ // template argument deduction.
+ } else if (ArgIdx < NumParams) {
// (C++ 13.3.2p3): for F to be a viable function, there shall
// exist for each argument an implicit conversion sequence
// (13.3.3.1) that converts that argument to the corresponding
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool SuppressUserConversions,
- bool PartialOverloading) {
+ bool PartialOverloading,
+ ConversionSequenceList EarlyConversions) {
const FunctionProtoType *Proto
= dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
assert(Proto && "Methods without a prototype cannot be overloaded");
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
// Add this candidate
- OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
+ OverloadCandidate &Candidate =
+ CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = Method;
Candidate.IsSurrogate = false;
// Determine the implicit conversion sequences for each of the
// arguments.
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
- if (ArgIdx < NumParams) {
+ if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
+ // We already formed a conversion sequence for this parameter during
+ // template argument deduction.
+ } else if (ArgIdx < NumParams) {
// (C++ 13.3.2p3): for F to be a viable function, there shall
// exist for each argument an implicit conversion sequence
// (13.3.3.1) that converts that argument to the corresponding
// functions.
TemplateDeductionInfo Info(CandidateSet.getLocation());
FunctionDecl *Specialization = nullptr;
- if (TemplateDeductionResult Result
- = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
- Specialization, Info, PartialOverloading)) {
- OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ ConversionSequenceList Conversions;
+ if (TemplateDeductionResult Result = DeduceTemplateArguments(
+ MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
+ PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
+ return CheckNonDependentConversions(
+ MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
+ SuppressUserConversions, ActingContext, ObjectType,
+ ObjectClassification);
+ })) {
+ OverloadCandidate &Candidate =
+ CandidateSet.addCandidate(Conversions.size(), Conversions);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = MethodTmpl->getTemplatedDecl();
Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_deduction;
Candidate.IsSurrogate = false;
Candidate.IgnoreObjectArgument = false;
Candidate.ExplicitCallArguments = Args.size();
- Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
- Info);
+ if (Result == TDK_NonDependentConversionFailure)
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ else {
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ }
return;
}
"Specialization is not a member function?");
AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
ActingContext, ObjectType, ObjectClassification, Args,
- CandidateSet, SuppressUserConversions, PartialOverloading);
+ CandidateSet, SuppressUserConversions, PartialOverloading,
+ Conversions);
}
/// \brief Add a C++ function template specialization as a candidate
// functions.
TemplateDeductionInfo Info(CandidateSet.getLocation());
FunctionDecl *Specialization = nullptr;
- if (TemplateDeductionResult Result
- = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
- Specialization, Info, PartialOverloading)) {
- OverloadCandidate &Candidate = CandidateSet.addCandidate();
+ ConversionSequenceList Conversions;
+ if (TemplateDeductionResult Result = DeduceTemplateArguments(
+ FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
+ PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
+ return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
+ Args, CandidateSet, Conversions,
+ SuppressUserConversions);
+ })) {
+ OverloadCandidate &Candidate =
+ CandidateSet.addCandidate(Conversions.size(), Conversions);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = FunctionTemplate->getTemplatedDecl();
Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_deduction;
Candidate.IsSurrogate = false;
Candidate.IgnoreObjectArgument = false;
Candidate.ExplicitCallArguments = Args.size();
- Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
- Info);
+ if (Result == TDK_NonDependentConversionFailure)
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ else {
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ }
return;
}
// deduction as a candidate.
assert(Specialization && "Missing function template specialization?");
AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
- SuppressUserConversions, PartialOverloading);
+ SuppressUserConversions, PartialOverloading,
+ /*AllowExplicit*/false, Conversions);
+}
+
+/// Check that implicit conversion sequences can be formed for each argument
+/// whose corresponding parameter has a non-dependent type, per DR1391's
+/// [temp.deduct.call]p10.
+bool Sema::CheckNonDependentConversions(
+ FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
+ ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
+ ConversionSequenceList &Conversions, bool SuppressUserConversions,
+ CXXRecordDecl *ActingContext, QualType ObjectType,
+ Expr::Classification ObjectClassification) {
+ // FIXME: The cases in which we allow explicit conversions for constructor
+ // arguments never consider calling a constructor template. It's not clear
+ // that is correct.
+ const bool AllowExplicit = false;
+
+ auto *FD = FunctionTemplate->getTemplatedDecl();
+ auto *Method = dyn_cast<CXXMethodDecl>(FD);
+ bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
+ unsigned ThisConversions = HasThisConversion ? 1 : 0;
+
+ Conversions =
+ CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+
+ // For a method call, check the 'this' conversion here too. DR1391 doesn't
+ // require that, but this check should never result in a hard error, and
+ // overload resolution is permitted to sidestep instantiations.
+ if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
+ !ObjectType.isNull()) {
+ Conversions[0] = TryObjectArgumentInitialization(
+ *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
+ Method, ActingContext);
+ if (Conversions[0].isBad())
+ return true;
+ }
+
+
+ for (unsigned I = 0, N = std::min<unsigned>(FD->getNumParams(), Args.size());
+ I != N; ++I) {
+ QualType ParamType = ParamTypes[I];
+ if (!ParamType->isDependentType()) {
+ Conversions[ThisConversions + I]
+ = TryCopyInitialization(*this, Args[I], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ getLangOpts().ObjCAutoRefCount,
+ AllowExplicit);
+ if (Conversions[ThisConversions + I].isBad())
+ return true;
+ }
+ }
+
+ return false;
}
/// Determine whether this is an allowable conversion from the result
// Define functions that don't require ill-formed conversions for a given
// argument to be better candidates than functions that do.
- unsigned NumArgs = Cand1.NumConversions;
- assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
+ unsigned NumArgs = Cand1.Conversions.size();
+ assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
bool HasBetterConversion = false;
for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
case ovl_fail_bad_conversion: {
unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
- for (unsigned N = Cand->NumConversions; I != N; ++I)
+ for (unsigned N = Cand->Conversions.size(); I != N; ++I)
if (Cand->Conversions[I].isBad())
return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
SourceLocation OpLoc,
OverloadCandidate *Cand) {
- assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
+ assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
std::string TypeStr("operator");
TypeStr += Opc;
TypeStr += "(";
TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
- if (Cand->NumConversions == 1) {
+ if (Cand->Conversions.size() == 1) {
TypeStr += ")";
S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
} else {
static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
OverloadCandidate *Cand) {
- unsigned NoOperands = Cand->NumConversions;
- for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
- const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
+ for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
if (ICS.isBad()) break; // all meaningless after first invalid
if (!ICS.isAmbiguous()) continue;
static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
switch ((Sema::TemplateDeductionResult)DFI.Result) {
case Sema::TDK_Success:
- llvm_unreachable("TDK_success while diagnosing bad deduction");
+ case Sema::TDK_NonDependentConversionFailure:
+ llvm_unreachable("non-deduction failure while diagnosing bad deduction");
case Sema::TDK_Invalid:
case Sema::TDK_Incomplete:
// If there's any ordering between the defined conversions...
// FIXME: this might not be transitive.
- assert(L->NumConversions == R->NumConversions);
+ assert(L->Conversions.size() == R->Conversions.size());
int leftBetter = 0;
unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
- for (unsigned E = L->NumConversions; I != E; ++I) {
+ for (unsigned E = L->Conversions.size(); I != E; ++I) {
switch (CompareImplicitConversionSequences(S, Loc,
L->Conversions[I],
R->Conversions[I])) {
}
/// CompleteNonViableCandidate - Normally, overload resolution only
-/// computes up to the first. Produces the FixIt set if possible.
+/// computes up to the first bad conversion. Produces the FixIt set if
+/// possible.
static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
ArrayRef<Expr *> Args) {
assert(!Cand->Viable);
// Use a implicit copy initialization to check conversion fixes.
Cand->Fix.setConversionChecker(TryCopyInitialization);
- // Skip forward to the first bad conversion.
- unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
- unsigned ConvCount = Cand->NumConversions;
- while (true) {
+ // Attempt to fix the bad conversion.
+ unsigned ConvCount = Cand->Conversions.size();
+ for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
+ ++ConvIdx) {
assert(ConvIdx != ConvCount && "no bad conversion in candidate");
- ConvIdx++;
- if (Cand->Conversions[ConvIdx - 1].isBad()) {
- Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
+ if (Cand->Conversions[ConvIdx].isInitialized() &&
+ Cand->Conversions[ConvIdx].isBad()) {
+ Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
break;
}
}
- if (ConvIdx == ConvCount)
- return;
-
- assert(!Cand->Conversions[ConvIdx].isInitialized() &&
- "remaining conversion is initialized?");
-
// FIXME: this should probably be preserved from the overload
// operation somehow.
bool SuppressUserConversions = false;
- const FunctionProtoType* Proto;
- unsigned ArgIdx = ConvIdx;
+ const FunctionProtoType *Proto;
+ unsigned ArgIdx = 0;
if (Cand->IsSurrogate) {
QualType ConvType
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
ConvType = ConvPtrType->getPointeeType();
Proto = ConvType->getAs<FunctionProtoType>();
- ArgIdx--;
+ ArgIdx = 1;
} else if (Cand->Function) {
Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
if (isa<CXXMethodDecl>(Cand->Function) &&
!isa<CXXConstructorDecl>(Cand->Function))
- ArgIdx--;
+ ArgIdx = 1;
} else {
// Builtin binary operator with a bad first conversion.
assert(ConvCount <= 3);
- for (; ConvIdx != ConvCount; ++ConvIdx)
- Cand->Conversions[ConvIdx]
- = TryCopyInitialization(S, Args[ConvIdx],
- Cand->BuiltinTypes.ParamTypes[ConvIdx],
- SuppressUserConversions,
- /*InOverloadResolution*/ true,
- /*AllowObjCWritebackConversion=*/
- S.getLangOpts().ObjCAutoRefCount);
+ for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
+ ConvIdx != ConvCount; ++ConvIdx) {
+ if (Cand->Conversions[ConvIdx].isInitialized())
+ continue;
+ if (Cand->BuiltinTypes.ParamTypes[ConvIdx]->isDependentType())
+ Cand->Conversions[ConvIdx].setAsIdentityConversion(
+ Args[ConvIdx]->getType());
+ else
+ Cand->Conversions[ConvIdx] = TryCopyInitialization(
+ S, Args[ConvIdx], Cand->BuiltinTypes.ParamTypes[ConvIdx],
+ SuppressUserConversions,
+ /*InOverloadResolution*/ true,
+ /*AllowObjCWritebackConversion=*/
+ S.getLangOpts().ObjCAutoRefCount);
+ // FIXME: If the conversion is bad, try to fix it.
+ }
return;
}
// Fill in the rest of the conversions.
unsigned NumParams = Proto->getNumParams();
- for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
- if (ArgIdx < NumParams) {
- Cand->Conversions[ConvIdx] = TryCopyInitialization(
- S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
- /*InOverloadResolution=*/true,
- /*AllowObjCWritebackConversion=*/
- S.getLangOpts().ObjCAutoRefCount);
- // Store the FixIt in the candidate if it exists.
- if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
- Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
- }
- else
+ for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
+ ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
+ if (Cand->Conversions[ConvIdx].isInitialized()) {
+ // Found the bad conversion.
+ } else if (ArgIdx < NumParams) {
+ if (Proto->getParamType(ArgIdx)->isDependentType())
+ Cand->Conversions[ConvIdx].setAsIdentityConversion(
+ Args[ArgIdx]->getType());
+ else {
+ Cand->Conversions[ConvIdx] =
+ TryCopyInitialization(S, Args[ArgIdx], Proto->getParamType(ArgIdx),
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true,
+ /*AllowObjCWritebackConversion=*/
+ S.getLangOpts().ObjCAutoRefCount);
+ // Store the FixIt in the candidate if it exists.
+ if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
+ Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
+ }
+ } else
Cand->Conversions[ConvIdx].setEllipsis();
}
}