]> granicus.if.org Git - postgresql/commitdiff
Add support for hyperbolic functions, as well as log10().
authorTom Lane <tgl@sss.pgh.pa.us>
Tue, 12 Mar 2019 19:55:09 +0000 (15:55 -0400)
committerTom Lane <tgl@sss.pgh.pa.us>
Tue, 12 Mar 2019 19:55:09 +0000 (15:55 -0400)
The SQL:2016 standard adds support for the hyperbolic functions
sinh(), cosh(), and tanh().  POSIX has long required libm to
provide those functions as well as their inverses asinh(),
acosh(), atanh().  Hence, let's just expose the libm functions
to the SQL level.  As with the trig functions, we only implement
versions for float8, not numeric.

For the moment, we'll assume that all platforms actually do have
these functions; if experience teaches otherwise, some autoconf
effort may be needed.

SQL:2016 also adds support for base-10 logarithm, but with the
function name log10(), whereas the name we've long used is log().
Add aliases named log10() for the float8 and numeric versions.

Lætitia Avrot

Discussion: https://postgr.es/m/CAB_COdguG22LO=rnxDQ2DW1uzv8aQoUzyDQNJjrR4k00XSgm5w@mail.gmail.com

doc/src/sgml/func.sgml
src/backend/utils/adt/float.c
src/include/catalog/catversion.h
src/include/catalog/pg_proc.dat
src/test/regress/expected/float8.out
src/test/regress/sql/float8.sql

index afd1c433b4d136a0b07190179acf4de6b25a75c8..ca3aedc33066c2d290c7f7fc70985a4a65a417a2 100644 (file)
        <entry><literal>2</literal></entry>
       </row>
 
+      <row>
+       <entry>
+        <indexterm>
+         <primary>log10</primary>
+        </indexterm>
+        <literal><function>log10(<type>dp</type> or <type>numeric</type>)</function></literal>
+       </entry>
+       <entry>(same as input)</entry>
+       <entry>base 10 logarithm</entry>
+       <entry><literal>log10(100.0)</literal></entry>
+       <entry><literal>2</literal></entry>
+      </row>
+
       <row>
        <entry><literal><function>log(<parameter>b</parameter> <type>numeric</type>,
         <parameter>x</parameter> <type>numeric</type>)</function></literal></entry>
   </para>
 
   <para>
-   Finally, <xref linkend="functions-math-trig-table"/> shows the
-   available trigonometric functions.  All trigonometric functions
+   <xref linkend="functions-math-trig-table"/> shows the
+   available trigonometric functions.  All these functions
    take arguments and return values of type <type>double
    precision</type>.  Each of the trigonometric functions comes in
    two variants, one that measures angles in radians and one that
    </para>
   </note>
 
+  <para>
+   <xref linkend="functions-math-hyp-table"/> shows the
+   available hyperbolic functions.  All these functions
+   take arguments and return values of type <type>double
+   precision</type>.
+  </para>
+
+  <table id="functions-math-hyp-table">
+    <title>Hyperbolic Functions</title>
+
+    <tgroup cols="4">
+     <thead>
+      <row>
+       <entry>Function</entry>
+       <entry>Description</entry>
+       <entry>Example</entry>
+       <entry>Result</entry>
+      </row>
+     </thead>
+     <tbody>
+      <row>
+       <entry>
+        <indexterm>
+         <primary>sinh</primary>
+        </indexterm>
+        <literal><function>sinh(<replaceable>x</replaceable>)</function></literal>
+       </entry>
+       <entry>hyperbolic sine</entry>
+       <entry><literal>sinh(0)</literal></entry>
+       <entry><literal>0</literal></entry>
+      </row>
+      <row>
+       <entry>
+        <indexterm>
+         <primary>cosh</primary>
+        </indexterm>
+        <literal><function>cosh(<replaceable>x</replaceable>)</function></literal>
+       </entry>
+       <entry>hyperbolic cosine</entry>
+       <entry><literal>cosh(0)</literal></entry>
+       <entry><literal>1</literal></entry>
+      </row>
+      <row>
+       <entry>
+        <indexterm>
+         <primary>tanh</primary>
+        </indexterm>
+        <literal><function>tanh(<replaceable>x</replaceable>)</function></literal>
+       </entry>
+       <entry>hyperbolic tangent</entry>
+       <entry><literal>tanh(0)</literal></entry>
+       <entry><literal>0</literal></entry>
+      </row>
+      <row>
+       <entry>
+        <indexterm>
+         <primary>asinh</primary>
+        </indexterm>
+        <literal><function>asinh(<replaceable>x</replaceable>)</function></literal>
+       </entry>
+       <entry>inverse hyperbolic sine</entry>
+       <entry><literal>asinh(0)</literal></entry>
+       <entry><literal>0</literal></entry>
+      </row>
+      <row>
+       <entry>
+        <indexterm>
+         <primary>acosh</primary>
+        </indexterm>
+        <literal><function>acosh(<replaceable>x</replaceable>)</function></literal>
+       </entry>
+       <entry>inverse hyperbolic cosine</entry>
+       <entry><literal>acosh(1)</literal></entry>
+       <entry><literal>0</literal></entry>
+      </row>
+      <row>
+       <entry>
+        <indexterm>
+         <primary>atanh</primary>
+        </indexterm>
+        <literal><function>atanh(<replaceable>x</replaceable>)</function></literal>
+       </entry>
+       <entry>inverse hyperbolic tangent</entry>
+       <entry><literal>atanh(0)</literal></entry>
+       <entry><literal>0</literal></entry>
+      </row>
+     </tbody>
+    </tgroup>
+   </table>
+
   </sect1>
 
 
index 37c202d21cac71db8ed26fd312280bd053f8cdba..8e16d755b042d03030f61c7d2d377c7c229cf7c2 100644 (file)
@@ -230,9 +230,9 @@ float4in(PG_FUNCTION_ARGS)
                         * detect whether it's a "real" out-of-range condition by checking
                         * to see if the result is zero or huge.
                         *
-                        * Use isinf() rather than HUGE_VALF on VS2013 because it generates
-                        * a spurious overflow warning for -HUGE_VALF. Also use isinf() if
-                        * HUGE_VALF is missing.
+                        * Use isinf() rather than HUGE_VALF on VS2013 because it
+                        * generates a spurious overflow warning for -HUGE_VALF.  Also use
+                        * isinf() if HUGE_VALF is missing.
                         */
                        if (val == 0.0 ||
 #if !defined(HUGE_VALF) || (defined(_MSC_VER) && (_MSC_VER < 1900))
@@ -2426,6 +2426,160 @@ radians(PG_FUNCTION_ARGS)
 }
 
 
+/* ========== HYPERBOLIC FUNCTIONS ========== */
+
+
+/*
+ *             dsinh                   - returns the hyperbolic sine of arg1
+ */
+Datum
+dsinh(PG_FUNCTION_ARGS)
+{
+       float8          arg1 = PG_GETARG_FLOAT8(0);
+       float8          result;
+
+       errno = 0;
+       result = sinh(arg1);
+
+       /*
+        * if an ERANGE error occurs, it means there is an overflow.  For sinh,
+        * the result should be either -infinity or infinity, depending on the
+        * sign of arg1.
+        */
+       if (errno == ERANGE)
+       {
+               if (arg1 < 0)
+                       result = -get_float8_infinity();
+               else
+                       result = get_float8_infinity();
+       }
+
+       check_float8_val(result, true, true);
+       PG_RETURN_FLOAT8(result);
+}
+
+
+/*
+ *             dcosh                   - returns the hyperbolic cosine of arg1
+ */
+Datum
+dcosh(PG_FUNCTION_ARGS)
+{
+       float8          arg1 = PG_GETARG_FLOAT8(0);
+       float8          result;
+
+       errno = 0;
+       result = cosh(arg1);
+
+       /*
+        * if an ERANGE error occurs, it means there is an overflow.  As cosh is
+        * always positive, it always means the result is positive infinity.
+        */
+       if (errno == ERANGE)
+               result = get_float8_infinity();
+
+       check_float8_val(result, true, false);
+       PG_RETURN_FLOAT8(result);
+}
+
+/*
+ *             dtanh                   - returns the hyperbolic tangent of arg1
+ */
+Datum
+dtanh(PG_FUNCTION_ARGS)
+{
+       float8          arg1 = PG_GETARG_FLOAT8(0);
+       float8          result;
+
+       /*
+        * For tanh, we don't need an errno check because it never overflows.
+        */
+       result = tanh(arg1);
+
+       check_float8_val(result, false, true);
+       PG_RETURN_FLOAT8(result);
+}
+
+/*
+ *             dasinh                  - returns the inverse hyperbolic sine of arg1
+ */
+Datum
+dasinh(PG_FUNCTION_ARGS)
+{
+       float8          arg1 = PG_GETARG_FLOAT8(0);
+       float8          result;
+
+       /*
+        * For asinh, we don't need an errno check because it never overflows.
+        */
+       result = asinh(arg1);
+
+       check_float8_val(result, true, true);
+       PG_RETURN_FLOAT8(result);
+}
+
+/*
+ *             dacosh                  - returns the inverse hyperbolic cosine of arg1
+ */
+Datum
+dacosh(PG_FUNCTION_ARGS)
+{
+       float8          arg1 = PG_GETARG_FLOAT8(0);
+       float8          result;
+
+       /*
+        * acosh is only defined for inputs >= 1.0.  By checking this ourselves,
+        * we need not worry about checking for an EDOM error, which is a good
+        * thing because some implementations will report that for NaN. Otherwise,
+        * no error is possible.
+        */
+       if (arg1 < 1.0)
+               ereport(ERROR,
+                               (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+                                errmsg("input is out of range")));
+
+       result = acosh(arg1);
+
+       check_float8_val(result, true, true);
+       PG_RETURN_FLOAT8(result);
+}
+
+/*
+ *             datanh                  - returns the inverse hyperbolic tangent of arg1
+ */
+Datum
+datanh(PG_FUNCTION_ARGS)
+{
+       float8          arg1 = PG_GETARG_FLOAT8(0);
+       float8          result;
+
+       /*
+        * atanh is only defined for inputs between -1 and 1.  By checking this
+        * ourselves, we need not worry about checking for an EDOM error, which is
+        * a good thing because some implementations will report that for NaN.
+        */
+       if (arg1 < -1.0 || arg1 > 1.0)
+               ereport(ERROR,
+                               (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+                                errmsg("input is out of range")));
+
+       /*
+        * Also handle the infinity cases ourselves; this is helpful because old
+        * glibc versions may produce the wrong errno for this.  All other inputs
+        * cannot produce an error.
+        */
+       if (arg1 == -1.0)
+               result = -get_float8_infinity();
+       else if (arg1 == 1.0)
+               result = get_float8_infinity();
+       else
+               result = atanh(arg1);
+
+       check_float8_val(result, true, true);
+       PG_RETURN_FLOAT8(result);
+}
+
+
 /*
  *             drandom         - returns a random number
  */
index 47ad6a9a8e19cc4c7beb6aa9fe4798945b91a051..8132e28c307606b0dc6d4494c9938722620e3e5a 100644 (file)
@@ -53,6 +53,6 @@
  */
 
 /*                                                     yyyymmddN */
-#define CATALOG_VERSION_NO     201903101
+#define CATALOG_VERSION_NO     201903121
 
 #endif
index b47ac0b9926ff1cad53b5b03867532367c5b3240..c4b012cf4c13a6ce42bda8e248dde842968dabea 100644 (file)
 { oid => '1340', descr => 'base 10 logarithm',
   proname => 'log', prorettype => 'float8', proargtypes => 'float8',
   prosrc => 'dlog10' },
+{ oid => '1194', descr => 'base 10 logarithm',
+  proname => 'log10', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'dlog10' },
 { oid => '1341', descr => 'natural logarithm',
   proname => 'ln', prorettype => 'float8', proargtypes => 'float8',
   prosrc => 'dlog1' },
 { oid => '1610', descr => 'PI',
   proname => 'pi', prorettype => 'float8', proargtypes => '', prosrc => 'dpi' },
 
+{ oid => '2462', descr => 'hyperbolic sine',
+  proname => 'sinh', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'dsinh' },
+{ oid => '2463', descr => 'hyperbolic cosine',
+  proname => 'cosh', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'dcosh' },
+{ oid => '2464', descr => 'hyperbolic tangent',
+  proname => 'tanh', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'dtanh' },
+{ oid => '2465', descr => 'inverse hyperbolic sine',
+  proname => 'asinh', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'dasinh' },
+{ oid => '2466', descr => 'inverse hyperbolic cosine',
+  proname => 'acosh', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'dacosh' },
+{ oid => '2467', descr => 'inverse hyperbolic tangent',
+  proname => 'atanh', prorettype => 'float8', proargtypes => 'float8',
+  prosrc => 'datanh' },
+
 { oid => '1618',
   proname => 'interval_mul', prorettype => 'interval',
   proargtypes => 'interval float8', prosrc => 'interval_mul' },
 { oid => '1741', descr => 'base 10 logarithm',
   proname => 'log', prolang => 'sql', prorettype => 'numeric',
   proargtypes => 'numeric', prosrc => 'select pg_catalog.log(10, $1)' },
+{ oid => '1481', descr => 'base 10 logarithm',
+  proname => 'log10', prolang => 'sql', prorettype => 'numeric',
+  proargtypes => 'numeric', prosrc => 'select pg_catalog.log(10, $1)' },
 { oid => '1742', descr => 'convert float4 to numeric',
   proname => 'numeric', prorettype => 'numeric', proargtypes => 'float4',
   prosrc => 'float4_numeric' },
index c3a6f5331fea630cd8e08e11a701877ad49e427b..36b2acda739bbd42f6ec4a9dcfdc866bc6f85924 100644 (file)
@@ -454,6 +454,43 @@ SELECT '' AS five, * FROM FLOAT8_TBL;
       | -1.2345678901234e-200
 (5 rows)
 
+-- hyperbolic functions
+SELECT sinh(float8 '0');
+ sinh 
+------
+    0
+(1 row)
+
+SELECT cosh(float8 '0');
+ cosh 
+------
+    1
+(1 row)
+
+SELECT tanh(float8 '0');
+ tanh 
+------
+    0
+(1 row)
+
+SELECT asinh(float8 '0');
+ asinh 
+-------
+     0
+(1 row)
+
+SELECT acosh(float8 '1');
+ acosh 
+-------
+     0
+(1 row)
+
+SELECT atanh(float8 '0');
+ atanh 
+-------
+     0
+(1 row)
+
 RESET extra_float_digits;
 -- test for over- and underflow
 INSERT INTO FLOAT8_TBL(f1) VALUES ('10e400');
index a33321811d35c3886343ea90d73756a0af5c0394..4660cd265ebbfb785ef1a090cec58b71b551c397 100644 (file)
@@ -154,6 +154,14 @@ SELECT '' AS bad, f.f1 / '0.0' from FLOAT8_TBL f;
 
 SELECT '' AS five, * FROM FLOAT8_TBL;
 
+-- hyperbolic functions
+SELECT sinh(float8 '0');
+SELECT cosh(float8 '0');
+SELECT tanh(float8 '0');
+SELECT asinh(float8 '0');
+SELECT acosh(float8 '1');
+SELECT atanh(float8 '0');
+
 RESET extra_float_digits;
 
 -- test for over- and underflow