supported by this module.
-This module defines the following functions and objects:
+This module defines the following functions:
.. function:: active_count()
count is equal to the length of the list returned by :func:`.enumerate`.
-.. function:: Condition()
- :noindex:
-
- A factory function that returns a new condition variable object. A condition
- variable allows one or more threads to wait until they are notified by another
- thread.
-
- See :ref:`condition-objects`.
-
-
.. function:: current_thread()
Return the current :class:`Thread` object, corresponding to the caller's thread
and threads that have not yet been started.
-.. function:: Event()
- :noindex:
-
- A factory function that returns a new event object. An event manages a flag
- that can be set to true with the :meth:`~Event.set` method and reset to false
- with the :meth:`clear` method. The :meth:`wait` method blocks until the flag
- is true.
-
- See :ref:`event-objects`.
-
-
-.. class:: local
-
- A class that represents thread-local data. Thread-local data are data whose
- values are thread specific. To manage thread-local data, just create an
- instance of :class:`local` (or a subclass) and store attributes on it::
-
- mydata = threading.local()
- mydata.x = 1
-
- The instance's values will be different for separate threads.
-
- For more details and extensive examples, see the documentation string of the
- :mod:`_threading_local` module.
-
-
-.. function:: Lock()
-
- A factory function that returns a new primitive lock object. Once a thread has
- acquired it, subsequent attempts to acquire it block, until it is released; any
- thread may release it.
-
- See :ref:`lock-objects`.
-
-
-.. function:: RLock()
-
- A factory function that returns a new reentrant lock object. A reentrant lock
- must be released by the thread that acquired it. Once a thread has acquired a
- reentrant lock, the same thread may acquire it again without blocking; the
- thread must release it once for each time it has acquired it.
-
- See :ref:`rlock-objects`.
-
-
-.. function:: Semaphore(value=1)
- :noindex:
-
- A factory function that returns a new semaphore object. A semaphore manages a
- counter representing the number of :meth:`release` calls minus the number of
- :meth:`acquire` calls, plus an initial value. The :meth:`acquire` method blocks
- if necessary until it can return without making the counter negative. If not
- given, *value* defaults to 1.
-
- See :ref:`semaphore-objects`.
-
-
-.. function:: BoundedSemaphore(value=1)
-
- A factory function that returns a new bounded semaphore object. A bounded
- semaphore checks to make sure its current value doesn't exceed its initial
- value. If it does, :exc:`ValueError` is raised. In most situations semaphores
- are used to guard resources with limited capacity. If the semaphore is released
- too many times it's a sign of a bug. If not given, *value* defaults to 1.
-
-
-.. class:: Thread
-
- A class that represents a thread of control. This class can be safely
- subclassed in a limited fashion.
-
- See :ref:`thread-objects`.
-
-
-.. class:: Timer
- :noindex:
-
- A thread that executes a function after a specified interval has passed.
-
- See :ref:`timer-objects`.
-
-
.. function:: settrace(func)
.. index:: single: trace function
.. versionadded:: 3.2
-Detailed interfaces for the objects are documented below.
+This module defines a number of classes, which are detailed in the sections
+below.
The design of this module is loosely based on Java's threading model. However,
where Java makes locks and condition variables basic behavior of every object,
All of the methods described below are executed atomically.
+Thread-Local Data
+-----------------
+
+Thread-local data is data whose values are thread specific. To manage
+thread-local data, just create an instance of :class:`local` (or a
+subclass) and store attributes on it::
+
+ mydata = threading.local()
+ mydata.x = 1
+
+The instance's values will be different for separate threads.
+
+
+.. class:: local()
+
+ A class that represents thread-local data.
+
+ For more details and extensive examples, see the documentation string of the
+ :mod:`_threading_local` module.
+
+
.. _thread-objects:
Thread Objects
--------------
-This class represents an activity that is run in a separate thread of control.
-There are two ways to specify the activity: by passing a callable object to the
-constructor, or by overriding the :meth:`~Thread.run` method in a subclass.
-No other methods (except for the constructor) should be overridden in a
-subclass. In other words, *only* override the :meth:`~Thread.__init__`
-and :meth:`~Thread.run` methods of this class.
+The :class:`Thread` class represents an activity that is run in a separate
+thread of control. There are two ways to specify the activity: by passing a
+callable object to the constructor, or by overriding the :meth:`~Thread.run`
+method in a subclass. No other methods (except for the constructor) should be
+overridden in a subclass. In other words, *only* override the
+:meth:`~Thread.__init__` and :meth:`~Thread.run` methods of this class.
Once a thread object is created, its activity must be started by calling the
thread's :meth:`~Thread.start` method. This invokes the :meth:`~Thread.run`
All methods are executed atomically.
-.. method:: Lock.acquire(blocking=True, timeout=-1)
+.. class:: Lock()
- Acquire a lock, blocking or non-blocking.
+ The class implementing primitive lock objects. Once a thread has acquired a
+ lock, subsequent attempts to acquire it block, until it is released; any
+ thread may release it.
- When invoked with the *blocking* argument set to ``True`` (the default),
- block until the lock is unlocked, then set it to locked and return ``True``.
+ .. versionchanged:: 3.3
+ Changed from a factory function to a class.
- When invoked with the *blocking* argument set to ``False``, do not block.
- If a call with *blocking* set to ``True`` would block, return ``False``
- immediately; otherwise, set the lock to locked and return ``True``.
- When invoked with the floating-point *timeout* argument set to a positive
- value, block for at most the number of seconds specified by *timeout*
- and as long as the lock cannot be acquired. A negative *timeout* argument
- specifies an unbounded wait. It is forbidden to specify a *timeout*
- when *blocking* is false.
+ .. method:: acquire(blocking=True, timeout=-1)
- The return value is ``True`` if the lock is acquired successfully,
- ``False`` if not (for example if the *timeout* expired).
+ Acquire a lock, blocking or non-blocking.
- .. versionchanged:: 3.2
- The *timeout* parameter is new.
+ When invoked with the *blocking* argument set to ``True`` (the default),
+ block until the lock is unlocked, then set it to locked and return ``True``.
- .. versionchanged:: 3.2
- Lock acquires can now be interrupted by signals on POSIX.
+ When invoked with the *blocking* argument set to ``False``, do not block.
+ If a call with *blocking* set to ``True`` would block, return ``False``
+ immediately; otherwise, set the lock to locked and return ``True``.
+ When invoked with the floating-point *timeout* argument set to a positive
+ value, block for at most the number of seconds specified by *timeout*
+ and as long as the lock cannot be acquired. A negative *timeout* argument
+ specifies an unbounded wait. It is forbidden to specify a *timeout*
+ when *blocking* is false.
-.. method:: Lock.release()
+ The return value is ``True`` if the lock is acquired successfully,
+ ``False`` if not (for example if the *timeout* expired).
- Release a lock. This can be called from any thread, not only the thread
- which has acquired the lock.
+ .. versionchanged:: 3.2
+ The *timeout* parameter is new.
- When the lock is locked, reset it to unlocked, and return. If any other threads
- are blocked waiting for the lock to become unlocked, allow exactly one of them
- to proceed.
+ .. versionchanged:: 3.2
+ Lock acquires can now be interrupted by signals on POSIX.
+
+
+ .. method:: release()
+
+ Release a lock. This can be called from any thread, not only the thread
+ which has acquired the lock.
+
+ When the lock is locked, reset it to unlocked, and return. If any other threads
+ are blocked waiting for the lock to become unlocked, allow exactly one of them
+ to proceed.
- When invoked on an unlocked lock, a :exc:`RuntimeError` is raised.
+ When invoked on an unlocked lock, a :exc:`RuntimeError` is raised.
- There is no return value.
+ There is no return value.
.. _rlock-objects:
Reentrant locks also support the :ref:`context manager protocol <with-locks>`.
-.. method:: RLock.acquire(blocking=True, timeout=-1)
+.. class:: RLock()
- Acquire a lock, blocking or non-blocking.
+ This class implements reentrant lock objects. A reentrant lock must be
+ released by the thread that acquired it. Once a thread has acquired a
+ reentrant lock, the same thread may acquire it again without blocking; the
+ thread must release it once for each time it has acquired it.
- When invoked without arguments: if this thread already owns the lock, increment
- the recursion level by one, and return immediately. Otherwise, if another
- thread owns the lock, block until the lock is unlocked. Once the lock is
- unlocked (not owned by any thread), then grab ownership, set the recursion level
- to one, and return. If more than one thread is blocked waiting until the lock
- is unlocked, only one at a time will be able to grab ownership of the lock.
- There is no return value in this case.
+ Note that ``RLock`` is actually a factory function which returns an instance
+ of the most efficient version of the concrete RLock class that is supported
+ by the platform.
- When invoked with the *blocking* argument set to true, do the same thing as when
- called without arguments, and return true.
- When invoked with the *blocking* argument set to false, do not block. If a call
- without an argument would block, return false immediately; otherwise, do the
- same thing as when called without arguments, and return true.
+ .. method:: acquire(blocking=True, timeout=-1)
- When invoked with the floating-point *timeout* argument set to a positive
- value, block for at most the number of seconds specified by *timeout*
- and as long as the lock cannot be acquired. Return true if the lock has
- been acquired, false if the timeout has elapsed.
+ Acquire a lock, blocking or non-blocking.
- .. versionchanged:: 3.2
- The *timeout* parameter is new.
+ When invoked without arguments: if this thread already owns the lock, increment
+ the recursion level by one, and return immediately. Otherwise, if another
+ thread owns the lock, block until the lock is unlocked. Once the lock is
+ unlocked (not owned by any thread), then grab ownership, set the recursion level
+ to one, and return. If more than one thread is blocked waiting until the lock
+ is unlocked, only one at a time will be able to grab ownership of the lock.
+ There is no return value in this case.
+ When invoked with the *blocking* argument set to true, do the same thing as when
+ called without arguments, and return true.
-.. method:: RLock.release()
+ When invoked with the *blocking* argument set to false, do not block. If a call
+ without an argument would block, return false immediately; otherwise, do the
+ same thing as when called without arguments, and return true.
- Release a lock, decrementing the recursion level. If after the decrement it is
- zero, reset the lock to unlocked (not owned by any thread), and if any other
- threads are blocked waiting for the lock to become unlocked, allow exactly one
- of them to proceed. If after the decrement the recursion level is still
- nonzero, the lock remains locked and owned by the calling thread.
+ When invoked with the floating-point *timeout* argument set to a positive
+ value, block for at most the number of seconds specified by *timeout*
+ and as long as the lock cannot be acquired. Return true if the lock has
+ been acquired, false if the timeout has elapsed.
- Only call this method when the calling thread owns the lock. A
- :exc:`RuntimeError` is raised if this method is called when the lock is
- unlocked.
+ .. versionchanged:: 3.2
+ The *timeout* parameter is new.
- There is no return value.
+
+ .. method:: release()
+
+ Release a lock, decrementing the recursion level. If after the decrement it is
+ zero, reset the lock to unlocked (not owned by any thread), and if any other
+ threads are blocked waiting for the lock to become unlocked, allow exactly one
+ of them to proceed. If after the decrement the recursion level is still
+ nonzero, the lock remains locked and owned by the calling thread.
+
+ Only call this method when the calling thread owns the lock. A
+ :exc:`RuntimeError` is raised if this method is called when the lock is
+ unlocked.
+
+ There is no return value.
.. _condition-objects:
the thread that called :meth:`~Condition.notify` or :meth:`~Condition.notify_all`
finally relinquishes ownership of the lock.
-
-Usage
-^^^^^
-
The typical programming style using condition variables uses the lock to
synchronize access to some shared state; threads that are interested in a
particular change of state call :meth:`~Condition.wait` repeatedly until they
item to the buffer only needs to wake up one consumer thread.
-Interface
-^^^^^^^^^
-
.. class:: Condition(lock=None)
+ This class implements condition variable objects. A condition variable
+ allows one or more threads to wait until they are notified by another thread.
+
If the *lock* argument is given and not ``None``, it must be a :class:`Lock`
or :class:`RLock` object, and it is used as the underlying lock. Otherwise,
a new :class:`RLock` object is created and used as the underlying lock.
+ .. versionchanged:: 3.3
+ changed from a factory function to a class.
+
.. method:: acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on
.. class:: Semaphore(value=1)
+ This class implements semaphore objects. A semaphore manages a counter
+ representing the number of :meth:`release` calls minus the number of
+ :meth:`acquire` calls, plus an initial value. The :meth:`acquire` method
+ blocks if necessary until it can return without making the counter negative.
+ If not given, *value* defaults to 1.
+
The optional argument gives the initial *value* for the internal counter; it
defaults to ``1``. If the *value* given is less than 0, :exc:`ValueError` is
raised.
+ .. versionchanged:: 3.3
+ changed from a factory function to a class.
+
.. method:: acquire(blocking=True, timeout=None)
Acquire a semaphore.
than zero again, wake up that thread.
+.. class:: BoundedSemaphore(value=1)
+
+ Class implementing bounded semaphore objects. A bounded semaphore checks to
+ make sure its current value doesn't exceed its initial value. If it does,
+ :exc:`ValueError` is raised. In most situations semaphores are used to guard
+ resources with limited capacity. If the semaphore is released too many times
+ it's a sign of a bug. If not given, *value* defaults to 1.
+
+ .. versionchanged:: 3.3
+ changed from a factory function to a class.
+
+
.. _semaphore-examples:
:class:`Semaphore` Example
main thread would initialize the semaphore::
maxconnections = 5
- ...
+ # ...
pool_sema = BoundedSemaphore(value=maxconnections)
Once spawned, worker threads call the semaphore's acquire and release methods
with pool_sema:
conn = connectdb()
try:
- ... use connection ...
+ # ... use connection ...
finally:
conn.close()
.. class:: Event()
- The internal flag is initially false.
+ Class implementing event objects. An event manages a flag that can be set to
+ true with the :meth:`~Event.set` method and reset to false with the
+ :meth:`clear` method. The :meth:`wait` method blocks until the flag is true.
+ The flag is initially false.
+
+ .. versionchanged:: 3.3
+ changed from a factory function to a class.
.. method:: is_set()
Create a timer that will run *function* with arguments *args* and keyword
arguments *kwargs*, after *interval* seconds have passed.
+ .. versionchanged:: 3.3
+ changed from a factory function to a class.
+
.. method:: cancel()
Stop the timer, and cancel the execution of the timer's action. This will