if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
+ def combinations3(iterable, r):
+ 'Pure python version from cwr()'
+ pool = tuple(iterable)
+ n = len(pool)
+ for indices in combinations_with_replacement(range(n), r):
+ if len(set(indices)) == r:
+ yield tuple(pool[i] for i in indices)
+
for n in range(7):
values = [5*x-12 for x in range(n)]
for r in range(n+2):
[e for e in values if e in c]) # comb is a subsequence of the input iterable
self.assertEqual(result, list(combinations1(values, r))) # matches first pure python version
self.assertEqual(result, list(combinations2(values, r))) # matches second pure python version
+ self.assertEqual(result, list(combinations3(values, r))) # matches second pure python version
# Test implementation detail: tuple re-use
self.assertEqual(len(set(map(id, combinations('abcde', 3)))), 1)
self.assertEqual(len(set(map(id, permutations('abcde', 3)))), 1)
self.assertNotEqual(len(set(map(id, list(permutations('abcde', 3))))), 1)
+ def test_combinatorics(self):
+ # Test relationships between product(), permutations(),
+ # combinations() and combinations_with_replacement().
+
+ s = 'ABCDE'
+ for r in range(8):
+ prod = list(product(s, repeat=r))
+ cwr = list(combinations_with_replacement(s, r))
+ perm = list(permutations(s, r))
+ comb = list(combinations(s, r))
+
+ self.assertEquals(cwr, [t for t in prod if sorted(t)==list(t)]) # cwr: prods which are sorted
+ self.assertEquals(perm, [t for t in prod if len(set(t))==r]) # perm: prods with no dups
+ self.assertEqual(comb, [t for t in perm if sorted(t)==list(t)]) # comb: perms that are sorted
+ self.assertEqual(comb, [t for t in cwr if len(set(t))==r]) # comb: cwrs without dups
+ self.assertEqual(set(comb), set(cwr) & set(perm)) # comb: both a cwr and a perm
+
def test_compress(self):
self.assertEqual(list(compress('ABCDEF', [1,0,1,0,1,1])), list('ACEF'))
self.assertEqual(list(compress('ABCDEF', [0,0,0,0,0,0])), list(''))