% $(\epsilon|a^{0,\infty})(a|\epsilon)^{0,\infty}$
\begin{scope}[xshift=0in, yshift=0in]
- \draw [draw=none] (-1.5in,0) rectangle (6.5in,0);
+ \draw [draw=none] (-1in,0) rectangle (6.5in,0);
\end{scope}
-\begin{scope}[xshift=3.7in, yshift=-0.4in]
+\begin{scope}[xshift=4in, yshift=-0.4in]
\node (a) {{
$\begin{aligned}
&\alpha
\setlength\tabcolsep{3pt}
%\renewcommand{\arraystretch}{1.1}
-\begin{scope}[xshift=3.7in, yshift=-2.3in]
+\begin{scope}[xshift=4in, yshift=-2.3in]
\node (a) {
$\begin{aligned}
- &\begin{tabular}{c|ll}
- $traces (\alpha, \beta)$ & 0 & 1 \\
+ &\begin{tabular}{c|cc}
+ $traces (\alpha, \beta)$ & frame 0 & frame 1 \\
\hline \\[-1em]
$\rho$ & 2 & 0 \\
$\rho'$ & 1 & 0 \\
\rho'_1 &= min (\rho'_0, minh (\Xr_2 \Xr_1 \Xr_0)) = min (1,0) = 0
\end{aligned}\right.
\\[0.7em]
- &\begin{tabular}{c|ll}
- $traces (\beta, \gamma)$ & 0 & 1 \\
+ &\begin{tabular}{c|cc}
+ $traces (\beta, \gamma)$ & frame 0 & frame 1 \\
\hline \\[-1em]
$\rho$ & \!-1 & 0 \\
$\rho'$ & \!-1 & 0 \\
\rho'_1 &= min (lasth (\Xr_2), minh (\Xl_3 \Xr_2 \Xr_1 \Xr_0)) = min (2,0) = 0
\end{aligned}\right.
\\[0.7em]
- &\begin{tabular}{c|ll}
- $traces (\alpha, \gamma)$ & 0 & 1 \\
+ &\begin{tabular}{c|cc}
+ $traces (\alpha, \gamma)$ & frame 0 & frame 1 \\
\hline \\[-1em]
$\rho$ & 2 & 0 \\
$\rho'$ & 1 & 0 \\
\tikzstyle{styleA}=[draw=none
, shape=rectangle
- , rounded corners=4
+ , rounded corners=3
, level distance=0.35in
, sibling distance=0.45in
, minimum size = 0.2in
]
\tikzstyle{styleB}=[->
%, color = lightgray
- , rounded corners=3.5
+ , rounded corners=3
%, line width = 0
, dash pattern = on 1pt off 2.5pt
]
\node at (s12) {$\Xl_2 \w \Xr_1$};
\node at (s121) {$\Xl_3 \w \Xr_2$};
\draw [->, styleB] ($(s1.west)$)
- -- ($(s1.south west)$)
- -- ($(s11.north west)$)
-- ($(s11.west)$)
- -- ($(s11.south west)$)
- -- ($(s111.north west)$)
-- ($(s111.west)$)
- -- ($(s111.south west)$)
-- ($(s111.south)$)
- -- ($(s111.south east)$)
-- ($(s111.east)$)
- -- ($(s111.north east)$)
-- ($(s11.south)$)
- -- ($(s112.north west)$)
-- ($(s112.west)$)
- -- ($(s112.south west)$)
- -- ($(s1121.north west)$)
-- ($(s1121.west)$);
\draw [->, styleB] ($(s1121.east)$)
- -- ($(s1121.north east)$)
- -- ($(s112.south east)$)
-- ($(s112.east)$)
- -- ($(s112.north east)$)
- -- ($(s11.south east)$)
-- ($(s11.east)$)
- -- ($(s11.north east)$)
-- ($(s1.south)$)
- -- ($(s12.north west)$)
-- ($(s12.west)$)
- -- ($(s12.south west)$)
- -- ($(s121.north west)$)
-- ($(s121.west)$)
- -- ($(s121.south west)$)
-- ($(s121.south)$)
- -- ($(s121.south east)$)
-- ($(s121.east)$)
- -- ($(s121.north east)$)
- -- ($(s12.south east)$)
-- ($(s12.east)$)
- -- ($(s12.north east)$)
- -- ($(s1.south east)$)
-- ($(s1.east)$);
\end{scope}
\node at (t12) {$\Xl_2 \w \Xr_1$};
\node at (t121) {$\Xl_3 \w \Xr_2$};
\draw [->, styleB] ($(t1.west)$)
- -- ($(t1.south west)$)
- -- ($(t11.north west)$)
-- ($(t11.west)$)
- -- ($(t11.south west)$)
- -- ($(t111.north west)$)
-- ($(t111.west)$)
- -- ($(t111.south west)$)
-- ($(t111.south)$)
- -- ($(t111.south east)$)
-- ($(t111.east)$)
- -- ($(t111.north east)$)
-- ($(t11.south)$)
- -- ($(t112.north west)$)
-- ($(t112.west)$)
- -- ($(t112.south west)$)
- -- ($(t1121.north west)$)
-- ($(t1121.west)$)
- -- ($(t1121.south west)$)
-- ($(t1121.south)$)
- -- ($(t1121.south east)$)
-- ($(t1121.east)$)
- -- ($(t1121.north east)$)
- -- ($(t112.south east)$)
-- ($(t112.east)$)
- -- ($(t112.north east)$)
- -- ($(t11.south east)$)
-- ($(t11.east)$)
- -- ($(t11.north east)$)
-- ($(t1.south)$)
- -- ($(t12.north west)$)
-- ($(t12.west)$)
- -- ($(t12.south west)$)
- -- ($(t121.north west)$)
-- ($(t121.west)$)
- -- ($(t121.south west)$)
- -- ($(t1211.north west)$)
-- ($(t1211.west)$);
\draw [->, styleB]
($(t1211.east)$)
-- ($(t121.south)$)
- -- ($(t1212.north west)$)
-- ($(t1212.west)$)
- -- ($(t1212.south west)$)
-- ($(t1212.south)$)
- -- ($(t1212.south east)$)
-- ($(t1212.east)$)
- -- ($(t1212.north east)$)
- -- ($(t121.south east)$)
-- ($(t121.east)$)
- -- ($(t121.north east)$)
- -- ($(t12.south east)$)
-- ($(t12.east)$)
- -- ($(t12.north east)$)
- -- ($(t1.south east)$)
-- ($(t1.east)$);
\end{scope}
\node at (t122) {$\Xl_3 \w \Xr_2$};
\draw [->, styleB]
($(t1.west)$)
- -- ($(t1.south west)$)
- -- ($(t11.north west)$)
-- ($(t11.west)$)
- -- ($(t11.south west)$)
- -- ($(t111.north west)$)
-- ($(t111.west)$)
- -- ($(t111.south west)$)
-- ($(t111.south)$)
- -- ($(t111.south east)$)
-- ($(t111.east)$)
- -- ($(t111.north east)$)
-- ($(t11.south)$)
- -- ($(t112.north west)$)
-- ($(t112.west)$)
- -- ($(t112.south west)$)
-- ($(t112.south)$)
- -- ($(t112.south east)$)
-- ($(t112.east)$)
- -- ($(t112.north east)$)
- -- ($(t11.south east)$)
-- ($(t11.east)$)
- -- ($(t11.north east)$)
-- ($(t1.south)$)
- -- ($(t12.north west)$)
-- ($(t12.west)$)
- -- ($(t12.south west)$)
- -- ($(t121.north west)$)
-- ($(t121.west)$)
- -- ($(t121.south west)$)
- -- ($(t1211.north west)$)
-- ($(t1211.west)$);
\draw [->, styleB]
($(t1211.east)$)
-- ($(t121.south)$)
- -- ($(t1212.north west)$)
-- ($(t1212.west)$)
- -- ($(t1212.south west)$)
-- ($(t1212.south)$)
- -- ($(t1212.south east)$)
-- ($(t1212.east)$)
- -- ($(t1212.north east)$)
- -- ($(t121.south east)$)
-- ($(t121.east)$)
- -- ($(t121.north east)$)
-- ($(t12.south)$)
- -- ($(t122.north west)$)
-- ($(t122.west)$)
- -- ($(t122.south west)$)
- -- ($(t1221.north west)$)
-- ($(t1221.west)$)
- -- ($(t1221.south west)$)
-- ($(t1221.south)$)
- -- ($(t1221.south east)$)
-- ($(t1221.east)$)
- -- ($(t1221.north east)$)
-- ($(t122.south)$)
- -- ($(t1222.north west)$)
-- ($(t1222.west)$)
- -- ($(t1222.south west)$)
-- ($(t1222.south)$)
- -- ($(t1222.south east)$)
-- ($(t1222.east)$)
- -- ($(t1222.north east)$)
- -- ($(t122.south east)$)
-- ($(t122.east)$)
- -- ($(t122.north east)$)
- -- ($(t12.south east)$)
-- ($(t12.east)$)
- -- ($(t12.north east)$)
- -- ($(t1.south east)$)
-- ($(t1.east)$);
\end{scope}
}
--- /dev/null
+
+\documentclass[tikz,border=10pt]{standalone}
+
+
+\RequirePackage{luatex85}
+\usepackage[utf8]{inputenc}
+\usepackage{amsmath, amssymb, amsfonts, accents}
+\usetikzlibrary{graphdrawing, graphs, arrows, shapes, automata, calc}
+\usegdlibrary{trees, layered}
+\usepackage{stix}
+
+
+%\newcommand{\Xund}{\rule{.4em}{.4pt}}
+%\newcommand{\IRE}{I\!RE}
+
+\newcommand{\Xund}{\rule{.4em}{.4pt}}
+\newcommand{\Xl}{\langle}
+\newcommand{\Xr}{\rangle}
+\newcommand{\Xm}{\langle\!\rangle}
+
+
+\begin{document}
+
+\begin{tikzpicture}[>=stealth]
+
+\tikzstyle{every node}=[draw=none, shape=rectangle]
+
+
+\tikzstyle{styleA}=[draw=none
+ , shape=rectangle
+ , minimum size = 0.2in
+ , level distance=0.35in
+ , sibling distance=0.5in
+ , inner sep = 0pt
+ , outer sep = 0pt
+ ]
+\tikzstyle{styleB}=[->, rounded corners=3, dash pattern = on 1pt off 2.5pt]
+\newcommand\w{\hspace{2em}}
+
+\small {
+\begin{scope}[xshift=0in, yshift=0in]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.4in]
+
+ \begin{scope}[xshift=0in, yshift=0in]
+ \node[xshift=0in, yshift=-1.25in, draw=none] {$s = T^1 (T^2 (\varnothing^0, T^0 (a^0, a^0)))$};
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${T}^{2}$" -- {
+ s111/"${\varnothing}^{0}$",
+ s112/"${T}^{0}$" -- {
+ s1121/"${a}^{0}$",
+ s1122/"${a}^{0}$"
+ }
+ }
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$)
+ -- ($(s111.west)$)
+ -- ($(s111.south)$)
+ -- ($(s111.east)$)
+ -- ($(s11.south)$)
+ -- ($(s112.west)$)
+ -- ($(s1121.west)$);
+ \draw [styleB]
+ ($(s1121.east)$)
+ -- ($(s112.south)$)
+ -- ($(s1122.west)$);
+ \draw [styleB]
+ ($(s1122.east)$)
+ -- ($(s112.east)$)
+ -- ($(s11.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=1.4in, yshift=0in]
+ \node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2 (a^0, \varnothing^0))$};
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${T}^{2}$" -- {
+ s111/"${a}^{0}$",
+ s112/"${\varnothing}^{0}$"
+ },
+ s12/"${T}^{2}$" -- {
+ s121/"${a}^{0}$",
+ s122/"${\varnothing}^{0}$"
+ }
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\Xl_2 \w \Xr_1$};
+ \node at (s12) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$)
+ -- ($(s111.west)$);
+ \draw [styleB]
+ ($(s111.east)$)
+ -- ($(s11.south)$)
+ -- ($(s112.west)$)
+ -- ($(s112.south)$)
+ -- ($(s112.east)$)
+ -- ($(s11.east)$)
+ -- ($(s1.south)$)
+ -- ($(s12.west)$)
+ -- ($(s121.west)$);
+ \draw [styleB]
+ ($(s121.east)$)
+ -- ($(s12.south)$)
+ -- ($(s122.west)$)
+ -- ($(s122.south)$)
+ -- ($(s122.east)$)
+ -- ($(s12.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=4in, yshift=-0.65in]
+ \node (a) {{
+ $\begin{aligned}
+ &\begin{aligned}
+ \alpha = \Phi_0(s) &=
+ \overbracket {\Xl_1 \Xl_2 }
+ a
+ \overbracket {\vphantom{\Xm}}
+ a
+ \overbracket { \Xr_1 \Xr_0 }
+ \\[-0.5em]
+ \beta = \Phi_0(t) &=
+ \overbracket {\Xl_1 \Xl_2 }
+ a
+ \overbracket { \Xr_1 \Xl_2 }
+ a
+ \overbracket { \Xr_1 \Xr_0 }
+ \end{aligned}
+ \\
+ &traces (\alpha, \beta) =
+ \left[\begin{aligned}
+ \rho_0 &= -1 \\[-0.4em]
+ \rho'_0 &= -1 \\[-0.4em]
+ \rho_1 &= min (lasth(\Xl_1 \Xl_2), minh (\epsilon)) = min (2, \infty) = 2 \\[-0.4em]
+ \rho'_1 &= min (lasth(\Xl_1 \Xl_2), minh (\Xr_1 \Xl_2)) = min (2, 1) = 1 \\[-0.4em]
+ \rho_2 &= min (\rho_1, minh (\Xr_1 \Xr_0)) = min (2, 0) = 0 \\[-0.4em]
+ \rho'_2 &= min (\rho'_1, minh (\Xr_1 \Xr_0)) = min (1, 0) = 0
+ \end{aligned}\right.
+ \end{aligned}$
+ }};
+ \end{scope}
+\end{scope}
+}
+\node (x1)
+ [ xshift=2.5in
+ , yshift=-1.5in
+ , draw=none
+ ] {(a) -- Rule 1: longest precedence.
+ The case of RE $(a|aa)^{0,\infty}$
+ and string $aa$. };
+\node (x2)
+ [ below of = x1
+ , yshift=0.25in
+ , draw=none
+ ] {Order on IPTs: $s <_1 t$ because
+ $\|s\|^{Sub}_1 = 2 > 1 = \|t\|^{Sub}_1$ and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 1$
+ .};
+\node
+ [ below of = x2
+ , yshift=0.25in
+ , draw=none
+ ] {Order on PEs: $\alpha < \beta$ because
+ $\rho_1 > \rho'_1 \;\wedge\; \rho_2 = \rho'_2 \;\Rightarrow\; \alpha \sqsubset \beta$
+ .};
+
+
+\small{
+\begin{scope}[xshift=0in, yshift=-2.2in]
+ \tikzstyle{every node}=[styleA]
+
+ \begin{scope}[xshift=0in, yshift=0in]
+ \node[xshift=0in, yshift=-0.6in, draw=none] {$s = T^1 (a^2, \varnothing^3)$};
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${a}^{2}$",
+ s12/"${\varnothing}^{3}$"
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\Xl_2 \w \Xr_1$};
+ \node at (s12) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$);
+ \draw [styleB]
+ ($(s11.east)$)
+ -- ($(s1.south)$)
+ -- ($(s12.west)$)
+ -- ($(s12.south)$)
+ -- ($(s12.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=1.4in, yshift=0in]
+ \node[xshift=0in, yshift=-0.6in, draw=none] {$t = T^1 (\varnothing^2, a^3)$};
+ \graph [tree layout, grow=down, fresh nodes] {
+ t1/"${T}^{1}$" -- {
+ t11/"${\varnothing}^{2}$",
+ t12/"${a}^{3}$"
+ }
+ };
+ \node at (t1) {$\Xl_1 \w \Xr_0$};
+ \node at (t11) {$\Xl_2 \w \Xr_1$};
+ \node at (t12) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(t1.west)$)
+ -- ($(t11.west)$)
+ -- ($(t11.south)$)
+ -- ($(t11.east)$)
+ -- ($(t1.south)$)
+ -- ($(t12.west)$);
+ \draw [styleB]
+ ($(t12.east)$)
+ -- ($(t1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=4in, yshift=-0.4in]
+ \node (a) {{
+ $\begin{aligned}
+ &\begin{aligned}
+ \alpha = \Phi_0(s) &=
+ \overbracket {\Xl_1 \Xl_2 }
+ a
+ \overbracket { \Xr_1 \Xm_1 \Xr_0 }
+ \\[-0.5em]
+ \beta = \Phi_0(t) &=
+ \overbracket {\Xl_1 \Xm_1 \Xl_2 }
+ a
+ \overbracket { \Xr_1 \Xr_0 }
+ \end{aligned}
+ \\
+ &traces (\alpha, \beta) =
+ \left[\begin{aligned}
+ \rho_0 &= min (lasth (\Xl_1), minh (\Xl_2)) = min (1, 2) = 1 \\[-0.4em]
+ \rho'_0 &= min (lasth (\Xl_1), minh (\Xm_1 \Xl_2)) = min (1, 1) = 1 \\[-0.4em]
+ \rho_1 &= min (\rho_0, minh (\Xr_1 \Xm_1 \Xr_0)) = min (1, 0) = 0 \\[-0.4em]
+ \rho'_1 &= min (\rho'_0, minh (\Xr_1 \Xr_0)) = min (1, 0) = 0
+ \end{aligned}\right.
+ \end{aligned}$
+ }};
+ \end{scope}
+
+\end{scope}
+}
+\node (y1)
+ [ xshift=2.5in
+ , yshift=-3.3in
+ , draw=none
+ ] {(b) -- Rule 2: leftmost precedence.
+ The case of RE $(a)|(a)$
+ and string $a$.};
+\node (y2)
+ [ below of = y1
+ , yshift=0.25in
+ , draw=none
+ ] {Order on IPTs: $s <_1 t$ because
+ $\|s\|^{Sub}_1 = 1 > -1 = \|t\|^{Sub}_1$ and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 1$
+ .};
+\node
+ [ below of = y2
+ , yshift=0.25in
+ , draw=none
+ ] {Order on PEs: $\alpha < \beta$ because
+ $\rho_i = \rho'_i \;\forall i \;\Rightarrow\; \alpha \sim \beta$
+ and
+ $first(\alpha \backslash \beta) = \Xl < \Xm = first(\beta \backslash \alpha)
+ \;\Rightarrow\;
+ \alpha \subset \beta$
+ .};
+
+
+\small{
+\begin{scope}[xshift=0in, yshift=-4in]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.4in]
+
+ \node[yshift=-0.95in, draw=none] {$s = T^1(T^2(a^0, \varnothing^0))$};
+ \begin{scope}[xshift=0in, yshift=0in]
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${T}^{2}$" -- {
+ s111/"${a}^{0}$",
+ s112/"${\varnothing}^{0}$"
+ }
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\Xl_2 \w \Xr_1$};
+ \node at (s12) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$)
+ -- ($(s111.west)$);
+ \draw [styleB]
+ ($(s111.east)$)
+ -- ($(s11.south)$)
+ -- ($(s112.west)$)
+ -- ($(s112.south)$)
+ -- ($(s112.east)$)
+ -- ($(s11.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \node[xshift=1.4in, yshift=-0.95in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2(\varnothing^0, \epsilon^0))$};
+ \begin{scope}[xshift=1.4in, yshift=0in]
+ \graph [tree layout, grow=down, fresh nodes] {
+ s1/"${T}^{1}$" -- {
+ s11/"${T}^{2}$" -- {
+ s111/"${a}^{0}$",
+ s112/"${\varnothing}^{0}$"
+ },
+ s12/"${T}^{2}$" -- {
+ s121/"${\varnothing}^{0}$",
+ s122/"${\epsilon}^{0}$"
+ }
+ }
+ };
+ \node at (s1) {$\Xl_1 \w \Xr_0$};
+ \node at (s11) {$\Xl_2 \w \Xr_1$};
+ \node at (s12) {$\Xl_2 \w \Xr_1$};
+ \draw [styleB]
+ ($(s1.west)$)
+ -- ($(s11.west)$)
+ -- ($(s111.west)$);
+ \draw [styleB]
+ ($(s111.east)$)
+ -- ($(s11.south)$)
+ -- ($(s112.west)$)
+ -- ($(s112.south)$)
+ -- ($(s112.east)$)
+ -- ($(s11.east)$)
+ -- ($(s1.south)$)
+ -- ($(s12.west)$)
+ -- ($(s121.west)$)
+ -- ($(s121.south)$)
+ -- ($(s121.east)$)
+ -- ($(s12.south)$)
+ -- ($(s122.west)$)
+ -- ($(s122.south)$)
+ -- ($(s122.east)$)
+ -- ($(s12.east)$)
+ -- ($(s1.east)$);
+ \end{scope}
+
+ \begin{scope}[xshift=4in, yshift=-0.45in]
+ \node (a) {{
+ $\begin{aligned}
+ &\begin{aligned}
+ \alpha = \Phi_0(s) &=
+ \overbracket {\Xl_1 \Xl_2 }
+ a
+ \overbracket { \Xr_1 \Xr_0 }
+ \\[-0.5em]
+ \beta = \Phi_0(t) &=
+ \overbracket { \Xl_1 \Xl_2 }
+ a
+ \overbracket { \Xr_1 \Xl_2 \Xr_1 \Xr_0 }
+ \end{aligned}
+ \\
+ &traces (\alpha, \beta) =
+ \left[\begin{aligned}
+ \rho_0 &= -1 \\[-0.4em]
+ \rho'_0 &= -1 \\[-0.4em]
+ \rho_1 &= min (lasth (\Xr_1), minh (\Xr_0)) = min (1, 0) = 0 \\[-0.4em]
+ \rho'_1 &= min (lasth (\Xr_1), minh (\Xl_2 \Xr_1 \Xr_0)) = min (1, 0) = 0
+ \end{aligned}\right.
+ \end{aligned}$
+ }};
+ \end{scope}
+
+\end{scope}
+}
+\node (z1)
+ [ xshift=2.5in
+ , yshift=-5.2in
+ , draw=none
+ ] {(c) -- Rule 3: absence of optional empty iterations.
+ The case of RE $(a|\epsilon)^{0,\infty}$
+ and string $a$.};
+\node (z2)
+ [ below of = z1
+ , yshift=0.25in
+ , draw=none
+ ] {Order on IPTs: $s <_1 t$ because
+ $\|s\|^{Sub}_2 = \infty > 0 = \|t\|^{Sub}_2$ and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 2$
+ .};
+\node
+ [ below of = z2
+ , yshift=0.25in
+ , draw=none
+ ] {Order on PEs: $\alpha < \beta$ because
+ $\rho_i = \rho'_i \;\forall i \;\Rightarrow\; \alpha \sim \beta$
+ and
+ $first(\alpha \backslash \beta) = \Xr < \Xl = first(\beta \backslash \alpha)
+ \;\Rightarrow\;
+ \alpha \subset \beta$
+ .};
+
+
+\end{tikzpicture}
+
+\end{document}
+
We write $traces(\alpha, \beta)$ to denote $\big( trace (\alpha, \beta), trace (\beta, \alpha) \big)$.
\end{Xdef}
-\begin{figure}\label{fig_pe}
-\includegraphics[width=\linewidth]{img/pe.pdf}
+%\begin{figure}\label{fig_pe}
+%\includegraphics[width=\linewidth]{img/pe.pdf}
+%\caption{
+%An example of PEs for IPTs from figure \ref{fig_mark_enum} and the computation of $traces$ for each pair of PEs.\\
+%Here $\alpha \sqsubset \beta$ and $\alpha \sqsubset \gamma$, while
+%$\beta \sim \gamma$ and $\beta \subset \gamma$,
+%because $first (\beta \backslash \gamma) = \Xr < \Xl = first (\gamma \backslash \beta)$.
+%Therefore $\alpha < \beta < \gamma$.
+%}
+%\end{figure}
+
+\begin{figure}\label{fig_pe3}
+\includegraphics[width=\linewidth]{img/pe3.pdf}
\caption{
-An example of PEs for IPTs from figure \ref{fig_mark_enum} and the computation of $traces$ for each pair of PEs.\\
-Here $\alpha \sqsubset \beta$ and $\alpha \sqsubset \gamma$, while
-$\beta \sim \gamma$ and $\beta \subset \gamma$,
-because $first (\beta \backslash \gamma) = \Xr < \Xl = first (\gamma \backslash \beta)$.
-Therefore $\alpha < \beta < \gamma$.
+Examples for the three rules of POSIX comparison.
}
\end{figure}
&&\;\big|\; z \; \Xr_{h+1} \; &&\Phi_{h+1}(t_{p+1}) &&\dots &&\Phi_{h+1}(t_m) \Xr_{h}
\end{alignat*}
%
- Let $\delta_l$ be the frame containing the closing parenthesis $\Xr_{h+1}$ of $\Phi_{h+1}(t_p)$.
+ Let $l$ be an index such that the frame $\delta_l$ contains the closing parenthesis $\Xr_{h+1}$ of $\Phi_{h+1}(t_p)$.
+ It must be $l \geq j$ (equality is possible due to non-fully parenthesized expressions,
+ as in the example $(a|aa)^{0,\infty}$ shown on figure \ref{fig_pe3}).
Because $\|s_p\| > \|t_p\|$,
the closing parenthesis $\Xr_{h+1}$ of $\Phi_{h+1}(s_p)$ is not contained in $\gamma_{l}$,
and $l$-th frame is not the last one.
Therefore $minh (\gamma_l) \geq h+2$ and $minh (\delta_l) = h+1$.
Furthermore, $minh(x)$, $minh(y)$, $minh(z) \geq h + 2$,
- therefore $lasth(\beta_j) = lasth(\Xl_{h+2} \; x) \geq h+2$ and we have
- $\rho_i, \rho'_i \geq h+2$ for all frames $j \leq i < l$
- (note that it might be $\rho_i < \rho'_i$),
- and for the $l$-th frame $\rho_l \geq h+2 > h+1 = \rho'_l$.
+ therefore $lasth(\beta_j) \geq h+2$ and
+ for all frames $j \leq i < l$ (if such $i$ exist) we have $\rho_i, \rho'_i \geq h+2$
+ (note that it might be $\rho_i < \rho'_i$).
+ For the $l$-th frame $\rho_l \geq h+2 > h+1 = \rho'_l$.
For subsequent frames $\gamma_i$, $\delta_i$ such that $l < i < k$ we have
$minh(\gamma_i)$, $minh(\delta_i) \geq h + 1$,
therefore $\rho_i \geq h+1 = \rho'_i$.