const APInt *C3;
if (match(Shift->getOperand(1), m_APInt(C3))) {
bool CanFold = false;
- if (ShiftOpcode == Instruction::AShr) {
- // There may be some constraints that make this possible, but nothing
- // simple has been discovered yet.
- CanFold = false;
- } else if (ShiftOpcode == Instruction::Shl) {
+ if (ShiftOpcode == Instruction::Shl) {
// For a left shift, we can fold if the comparison is not signed. We can
// also fold a signed comparison if the mask value and comparison value
// are not negative. These constraints may not be obvious, but we can
// prove that they are correct using an SMT solver.
if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative()))
CanFold = true;
- } else if (ShiftOpcode == Instruction::LShr) {
+ } else {
+ bool IsAshr = ShiftOpcode == Instruction::AShr;
// For a logical right shift, we can fold if the comparison is not signed.
// We can also fold a signed comparison if the shifted mask value and the
// shifted comparison value are not negative. These constraints may not be
// obvious, but we can prove that they are correct using an SMT solver.
- if (!Cmp.isSigned() ||
- (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
- CanFold = true;
+ // For an arithmetic shift right we can do the same, if we ensure
+ // the And doesn't use any bits being shifted in. Normally these would
+ // be turned into lshr by SimplifyDemandedBits, but not if there is an
+ // additional user.
+ if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) {
+ if (!Cmp.isSigned() ||
+ (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative()))
+ CanFold = true;
+ }
}
if (CanFold) {
ret i1 %and3
}
+; Variation of the above with an ashr
+define i1 @icmp_and_ashr_multiuse(i32 %X) {
+; CHECK-LABEL: @icmp_and_ashr_multiuse(
+; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 240
+; CHECK-NEXT: [[AND2:%.*]] = and i32 [[X]], 496
+; CHECK-NEXT: [[TOBOOL:%.*]] = icmp ne i32 [[AND]], 224
+; CHECK-NEXT: [[TOBOOL2:%.*]] = icmp ne i32 [[AND2]], 432
+; CHECK-NEXT: [[AND3:%.*]] = and i1 [[TOBOOL]], [[TOBOOL2]]
+; CHECK-NEXT: ret i1 [[AND3]]
+;
+ %shr = ashr i32 %X, 4
+ %and = and i32 %shr, 15
+ %and2 = and i32 %shr, 31 ; second use of the shift
+ %tobool = icmp ne i32 %and, 14
+ %tobool2 = icmp ne i32 %and2, 27
+ %and3 = and i1 %tobool, %tobool2
+ ret i1 %and3
+}
+
+define i1 @icmp_lshr_and_overshift(i8 %X) {
+; CHECK-LABEL: @icmp_lshr_and_overshift(
+; CHECK-NEXT: [[TOBOOL:%.*]] = icmp ugt i8 [[X:%.*]], 31
+; CHECK-NEXT: ret i1 [[TOBOOL]]
+;
+ %shr = lshr i8 %X, 5
+ %and = and i8 %shr, 15
+ %tobool = icmp ne i8 %and, 0
+ ret i1 %tobool
+}
+
+; We shouldn't simplify this because the and uses bits that are shifted in.
+define i1 @icmp_ashr_and_overshift(i8 %X) {
+; CHECK-LABEL: @icmp_ashr_and_overshift(
+; CHECK-NEXT: [[SHR:%.*]] = ashr i8 [[X:%.*]], 5
+; CHECK-NEXT: [[AND:%.*]] = and i8 [[SHR]], 15
+; CHECK-NEXT: [[TOBOOL:%.*]] = icmp ne i8 [[AND]], 0
+; CHECK-NEXT: ret i1 [[TOBOOL]]
+;
+ %shr = ashr i8 %X, 5
+ %and = and i8 %shr, 15
+ %tobool = icmp ne i8 %and, 0
+ ret i1 %tobool
+}
+
; PR16244
define i1 @test71(i8* %x) {
; CHECK-LABEL: @test71(