for more details.
my $alpha_asm="alphacpuid.o:bn_asm.o alpha-mont.o:::::sha1-alpha.o:::::::ghash-alpha.o:void";
my $mips32_asm=":bn-mips.o::aes_cbc.o aes-mips.o:::sha1-mips.o sha256-mips.o:::::::";
my $mips64_asm=":bn-mips.o mips-mont.o::aes_cbc.o aes-mips.o:::sha1-mips.o sha256-mips.o sha512-mips.o:::::::";
-my $s390x_asm="s390xcap.o s390xcpuid.o:bn-s390x.o s390x-mont.o::aes_ctr.o aes-s390x.o:::sha1-s390x.o sha256-s390x.o sha512-s390x.o::rc4-s390x.o:::::ghash-s390x.o:void";
+my $s390x_asm="s390xcap.o s390xcpuid.o:bn-s390x.o s390x-mont.o::aes_ctr.o aes-s390x.o:::sha1-s390x.o sha256-s390x.o sha512-s390x.o::rc4-s390x.o:::::ghash-s390x.o";
my $armv4_asm=":bn_asm.o armv4-mont.o::aes_cbc.o aes-armv4.o:::sha1-armv4-large.o sha256-armv4.o sha512-armv4.o:::::::ghash-armv4.o:void";
my $parisc11_asm="pariscid.o:bn_asm.o parisc-mont.o::aes_core.o aes_cbc.o aes-parisc.o:::sha1-parisc.o sha256-parisc.o sha512-parisc.o::rc4-parisc.o:::::ghash-parisc.o:32";
my $parisc20_asm="pariscid.o:pa-risc2W.o parisc-mont.o::aes_core.o aes_cbc.o aes-parisc.o:::sha1-parisc.o sha256-parisc.o sha512-parisc.o::rc4-parisc.o:::::ghash-parisc.o:64";
"linux-ia64-ecc","ecc:-DL_ENDIAN -DTERMIO -O2 -Wall -no_cpprt::-D_REENTRANT::-ldl:SIXTY_FOUR_BIT_LONG RC4_CHUNK DES_INT:${ia64_asm}:dlfcn:linux-shared:-fPIC::.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR)",
"linux-ia64-icc","icc:-DL_ENDIAN -DTERMIO -O2 -Wall -no_cpprt::-D_REENTRANT::-ldl:SIXTY_FOUR_BIT_LONG RC4_CHUNK DES_RISC1 DES_INT:${ia64_asm}:dlfcn:linux-shared:-fPIC::.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR)",
"linux-x86_64", "gcc:-m64 -DL_ENDIAN -DTERMIO -O3 -Wall::-D_REENTRANT::-ldl:SIXTY_FOUR_BIT_LONG RC4_CHUNK DES_INT DES_UNROLL:${x86_64_asm}:elf:dlfcn:linux-shared:-fPIC:-m64:.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR):::64",
-"linux-s390x", "gcc:-m64 -DB_ENDIAN -DTERMIO -O3 -Wall::-D_REENTRANT::-ldl:SIXTY_FOUR_BIT_LONG RC4_CHAR RC4_CHUNK DES_INT DES_UNROLL:${s390x_asm}:dlfcn:linux-shared:-fPIC:-m64:.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR):::64",
+"linux64-s390x", "gcc:-m64 -DB_ENDIAN -DTERMIO -O3 -Wall::-D_REENTRANT::-ldl:SIXTY_FOUR_BIT_LONG RC4_CHAR RC4_CHUNK DES_INT DES_UNROLL:${s390x_asm}:64:dlfcn:linux-shared:-fPIC:-m64:.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR):::64",
+#### So called "highgprs" target for z/Architecture CPUs
+# "Highgprs" is kernel feature first implemented in Linux 2.6.32, see
+# /proc/cpuinfo. The idea is to preserve most significant bits of
+# general purpose registers not only upon 32-bit process context
+# switch, but even on asynchronous signal delivery to such process.
+# This makes it possible to deploy 64-bit instructions even in legacy
+# application context and achieve better [or should we say adequate]
+# performance. The build is binary compatible with linux-generic32,
+# and the idea is to be able to install the resulting libcrypto.so
+# alongside generic one, e.g. as /lib/highgprs/libcrypto.so.x.y, for
+# ldconfig and run-time linker to autodiscover. Unfortunately it
+# doesn't work just yet, because of couple of bugs in glibc
+# sysdep/s390/dl-procinfo.c affecting ldconfig and ld.so.1...
+"linux32-s390x", "gcc:-m31 -Wa,-mzarch -DB_ENDIAN -DTERMIO -O3 -Wall::-D_REENTRANT::-ldl:BN_LLONG RC4_CHAR RC4_CHUNK DES_INT DES_UNROLL:s390xcap.o s390xcpuid.o:bn_asm.o s390x-mont.o::aes_ctr.o aes-s390x.o:::sha1-s390x.o sha256-s390x.o sha512-s390x.o::rc4-s390x.o:::::ghash-s390x.o:31:dlfcn:linux-shared:-fPIC:-m31:.so.\$(SHLIB_MAJOR).\$(SHLIB_MINOR):::/highgprs",
#### SPARC Linux setups
# Ray Miller <ray.miller@computing-services.oxford.ac.uk> has patiently
# assisted with debugging of following two configs.
sh*-*-linux2) OUT="linux-generic32"; options="$options -DL_ENDIAN" ;;
m68k*-*-linux2) OUT="linux-generic32"; options="$options -DB_ENDIAN" ;;
s390-*-linux2) OUT="linux-generic32"; options="$options -DB_ENDIAN" ;;
- s390x-*-linux2) OUT="linux-s390x" ;;
+ s390x-*-linux2)
+ # To be uncommented when glibc bug is fixed, see Configure...
+ #if egrep -e '^features.* highgprs' /proc/cpuinfo >/dev/null ; then
+ # echo "WARNING! If you wish to build \"highgprs\" 32-bit library, then you"
+ # echo " have to invoke './Configure linux32-s390x' *manually*."
+ # if [ "$TEST" = "false" -a -t -1 ]; then
+ # echo " You have about 5 seconds to press Ctrl-C to abort."
+ # (trap "stty `stty -g`" 2 0; stty -icanon min 0 time 50; read waste) <&1
+ # fi
+ #fi
+ OUT="linux64-s390x"
+ ;;
x86_64-*-linux?) OUT="linux-x86_64" ;;
*86-*-linux2) OUT="linux-elf"
if [ "$GCCVER" -gt 28 ]; then
# maximum, but *on average* it would be as much as ~98%. Meaning that
# worst case is unlike, it's like hitting ravine on plateau.
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. On z990 it was measured to perform
+# 2x better than code generated by gcc 4.3.
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$ra="%r14";
$sp="%r15";
+$stdframe=16*$SIZE_T+4*8;
+
sub _data_word()
{ my $i;
while(defined($i=shift)) { $code.=sprintf".long\t0x%08x,0x%08x\n",$i,$i; }
.Lesoft:
___
$code.=<<___;
- stmg %r3,$ra,24($sp)
+ stm${g} %r3,$ra,3*$SIZE_T($sp)
llgf $s0,0($inp)
llgf $s1,4($inp)
larl $tbl,AES_Te
bras $ra,_s390x_AES_encrypt
- lg $out,24($sp)
+ l${g} $out,3*$SIZE_T($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
- lmg %r6,$ra,48($sp)
+ lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_encrypt,.-AES_encrypt
.type _s390x_AES_encrypt,\@function
.align 16
_s390x_AES_encrypt:
- stg $ra,152($sp)
+ st${g} $ra,`$stdframe-$SIZE_T`($sp)
x $s0,0($key)
x $s1,4($key)
x $s2,8($key)
or $s2,$i3
or $s3,$t3
- lg $ra,152($sp)
+ l${g} $ra,`$stdframe-$SIZE_T`($sp)
xr $s0,$t0
xr $s1,$t2
x $s2,24($key)
.Ldsoft:
___
$code.=<<___;
- stmg %r3,$ra,24($sp)
+ stm${g} %r3,$ra,3*$SIZE_T($sp)
llgf $s0,0($inp)
llgf $s1,4($inp)
larl $tbl,AES_Td
bras $ra,_s390x_AES_decrypt
- lg $out,24($sp)
+ l${g} $out,3*$SIZE_T($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
st $s3,12($out)
- lmg %r6,$ra,48($sp)
+ lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_decrypt,.-AES_decrypt
.type _s390x_AES_decrypt,\@function
.align 16
_s390x_AES_decrypt:
- stg $ra,152($sp)
+ st${g} $ra,`$stdframe-$SIZE_T`($sp)
x $s0,0($key)
x $s1,4($key)
x $s2,8($key)
nr $i1,$mask
nr $i2,$mask
- lg $ra,152($sp)
+ l${g} $ra,`$stdframe-$SIZE_T`($sp)
or $s1,$t1
l $t0,16($key)
l $t1,20($key)
.align 16
AES_set_encrypt_key:
lghi $t0,0
- clgr $inp,$t0
+ cl${g}r $inp,$t0
je .Lminus1
- clgr $key,$t0
+ cl${g}r $key,$t0
je .Lminus1
lghi $t0,128
$code.=<<___;
.align 16
.Lekey_internal:
- stmg %r6,%r13,48($sp) # all non-volatile regs
+ stm${g} %r6,%r13,6*$SIZE_T($sp) # all non-volatile regs
larl $tbl,AES_Te+2048
la $t3,4($t3) # i++
brct $rounds,.L128_loop
lghi %r2,0
- lmg %r6,%r13,48($sp)
+ lm${g} %r6,%r13,6*$SIZE_T($sp)
br $ra
.align 16
st $s3,36($key)
brct $rounds,.L192_continue
lghi %r2,0
- lmg %r6,%r13,48($sp)
+ lm${g} %r6,%r13,6*$SIZE_T($sp)
br $ra
.align 16
st $s3,44($key)
brct $rounds,.L256_continue
lghi %r2,0
- lmg %r6,%r13,48($sp)
+ lm${g} %r6,%r13,6*$SIZE_T($sp)
br $ra
.align 16
.type AES_set_decrypt_key,\@function
.align 16
AES_set_decrypt_key:
- stg $key,32($sp) # I rely on AES_set_encrypt_key to
- stg $ra,112($sp) # save non-volatile registers!
+ st${g} $key,4*$SIZE_T($sp) # I rely on AES_set_encrypt_key to
+ st${g} $ra,14*$SIZE_T($sp) # save non-volatile registers!
bras $ra,AES_set_encrypt_key
- lg $key,32($sp)
- lg $ra,112($sp)
+ l${g} $key,4*$SIZE_T($sp)
+ l${g} $ra,14*$SIZE_T($sp)
ltgr %r2,%r2
bnzr $ra
___
.align 16
.Ldkey_internal:
- stg $key,32($sp)
- stg $ra,40($sp)
+ st${g} $key,4*$SIZE_T($sp)
+ st${g} $ra,14*$SIZE_T($sp)
bras $ra,.Lekey_internal
- lg $key,32($sp)
- lg $ra,40($sp)
+ l${g} $key,4*$SIZE_T($sp)
+ l${g} $ra,14*$SIZE_T($sp)
___
$code.=<<___;
la $key,4($key)
brct $rounds,.Lmix
- lmg %r6,%r13,48($sp)# as was saved by AES_set_encrypt_key!
+ lm${g} %r6,%r13,6*$SIZE_T($sp)# as was saved by AES_set_encrypt_key!
lghi %r2,0
br $ra
.size AES_set_decrypt_key,.-AES_set_decrypt_key
l %r0,240($key) # load kmc code
lghi $key,15 # res=len%16, len-=res;
ngr $key,$len
- slgr $len,$key
+ sl${g}r $len,$key
la %r1,16($sp) # parameter block - ivec || key
jz .Lkmc_truncated
.long 0xb92f0042 # kmc %r4,%r2
tmll %r0,0x80
jnz .Lkmc_truncated_dec
lghi %r1,0
- stg %r1,128($sp)
- stg %r1,136($sp)
+ stg %r1,16*$SIZE_T($sp)
+ stg %r1,16*$SIZE_T+8($sp)
bras %r1,1f
- mvc 128(1,$sp),0($inp)
+ mvc 16*$SIZE_T(1,$sp),0($inp)
1: ex $key,0(%r1)
la %r1,16($sp) # restore parameter block
- la $inp,128($sp)
+ la $inp,16*$SIZE_T($sp)
lghi $len,16
.long 0xb92f0042 # kmc %r4,%r2
j .Lkmc_done
.align 16
.Lkmc_truncated_dec:
- stg $out,64($sp)
- la $out,128($sp)
+ st${g} $out,4*$SIZE_T($sp)
+ la $out,16*$SIZE_T($sp)
lghi $len,16
.long 0xb92f0042 # kmc %r4,%r2
- lg $out,64($sp)
+ l${g} $out,4*$SIZE_T($sp)
bras %r1,2f
- mvc 0(1,$out),128($sp)
+ mvc 0(1,$out),16*$SIZE_T($sp)
2: ex $key,0(%r1)
j .Lkmc_done
.align 16
.Lcbc_software:
___
$code.=<<___;
- stmg $key,$ra,40($sp)
+ stm${g} $key,$ra,5*$SIZE_T($sp)
lhi %r0,0
- cl %r0,164($sp)
+ cl %r0,`$stdframe+$SIZE_T-4`($sp)
je .Lcbc_decrypt
larl $tbl,AES_Te
llgf $s3,12($ivp)
lghi $t0,16
- slgr $len,$t0
+ sl${g}r $len,$t0
brc 4,.Lcbc_enc_tail # if borrow
.Lcbc_enc_loop:
- stmg $inp,$out,16($sp)
+ stm${g} $inp,$out,2*$SIZE_T($sp)
x $s0,0($inp)
x $s1,4($inp)
x $s2,8($inp)
bras $ra,_s390x_AES_encrypt
- lmg $inp,$key,16($sp)
+ lm${g} $inp,$key,2*$SIZE_T($sp)
st $s0,0($out)
st $s1,4($out)
st $s2,8($out)
la $inp,16($inp)
la $out,16($out)
lghi $t0,16
- ltgr $len,$len
+ lt${g}r $len,$len
jz .Lcbc_enc_done
- slgr $len,$t0
+ sl${g}r $len,$t0
brc 4,.Lcbc_enc_tail # if borrow
j .Lcbc_enc_loop
.align 16
.Lcbc_enc_done:
- lg $ivp,48($sp)
+ l${g} $ivp,6*$SIZE_T($sp)
st $s0,0($ivp)
st $s1,4($ivp)
st $s2,8($ivp)
st $s3,12($ivp)
- lmg %r7,$ra,56($sp)
+ lm${g} %r7,$ra,7*$SIZE_T($sp)
br $ra
.align 16
.Lcbc_enc_tail:
aghi $len,15
lghi $t0,0
- stg $t0,128($sp)
- stg $t0,136($sp)
+ stg $t0,16*$SIZE_T($sp)
+ stg $t0,16*$SIZE_T+8($sp)
bras $t1,3f
- mvc 128(1,$sp),0($inp)
+ mvc 16*$SIZE_T(1,$sp),0($inp)
3: ex $len,0($t1)
lghi $len,0
- la $inp,128($sp)
+ la $inp,16*$SIZE_T($sp)
j .Lcbc_enc_loop
.align 16
lg $t0,0($ivp)
lg $t1,8($ivp)
- stmg $t0,$t1,128($sp)
+ stmg $t0,$t1,16*$SIZE_T($sp)
.Lcbc_dec_loop:
- stmg $inp,$out,16($sp)
+ stm${g} $inp,$out,2*$SIZE_T($sp)
llgf $s0,0($inp)
llgf $s1,4($inp)
llgf $s2,8($inp)
bras $ra,_s390x_AES_decrypt
- lmg $inp,$key,16($sp)
+ lm${g} $inp,$key,2*$SIZE_T($sp)
sllg $s0,$s0,32
sllg $s2,$s2,32
lr $s0,$s1
lg $t0,0($inp)
lg $t1,8($inp)
- xg $s0,128($sp)
- xg $s2,136($sp)
+ xg $s0,16*$SIZE_T($sp)
+ xg $s2,16*$SIZE_T+8($sp)
lghi $s1,16
- slgr $len,$s1
+ sl${g}r $len,$s1
brc 4,.Lcbc_dec_tail # if borrow
brc 2,.Lcbc_dec_done # if zero
stg $s0,0($out)
stg $s2,8($out)
- stmg $t0,$t1,128($sp)
+ stmg $t0,$t1,16*$SIZE_T($sp)
la $inp,16($inp)
la $out,16($out)
stg $s0,0($out)
stg $s2,8($out)
.Lcbc_dec_exit:
- lmg $ivp,$ra,48($sp)
+ lm${g} %r6,$ra,6*$SIZE_T($sp)
stmg $t0,$t1,0($ivp)
br $ra
.align 16
.Lcbc_dec_tail:
aghi $len,15
- stg $s0,128($sp)
- stg $s2,136($sp)
+ stg $s0,16*$SIZE_T($sp)
+ stg $s2,16*$SIZE_T+8($sp)
bras $s1,4f
- mvc 0(1,$out),128($sp)
+ mvc 0(1,$out),16*$SIZE_T($sp)
4: ex $len,0($s1)
j .Lcbc_dec_exit
.size AES_cbc_encrypt,.-AES_cbc_encrypt
.type AES_ctr32_encrypt,\@function
.align 16
AES_ctr32_encrypt:
+ llgfr $len,$len # safe in ctr32 subroutine even in 64-bit case
___
$code.=<<___ if (!$softonly);
l %r0,240($key)
clr %r0,%r1
jl .Lctr32_software
- stmg %r6,$s3,48($sp)
+ stm${g} %r6,$s3,6*$SIZE_T($sp)
slgr $out,$inp
la %r1,0($key) # %r1 is permanent copy of $key
la $sp,1024($s0) # alloca
srlg $fp,$fp,4 # convert bytes to blocks, minimum 16
- stg $s2,0($sp) # back-chain
- stg $fp,8($sp)
+ st${g} $s2,0($sp) # back-chain
+ st${g} $fp,$SIZE_T($sp)
slgr $len,$fp
brc 1,.Lctr32_hw_loop # not zero, no borrow
algr $fp,$len # input is shorter than allocated buffer
lghi $len,0
- stg $fp,8($sp)
+ st${g} $fp,$SIZE_T($sp)
.Lctr32_hw_loop:
la $s2,16($sp)
lghi $len,0
brc 4+1,.Lctr32_hw_loop # not zero
- lg $s0,0($sp)
- lg $s1,8($sp)
+ l${g} $s0,0($sp)
+ l${g} $s1,$SIZE_T($sp)
la $s2,16($sp)
.Lctr32_hw_zap:
stg $s0,0($s2)
brct $s1,.Lctr32_hw_zap
la $sp,0($s0)
- lmg %r6,$s3,48($sp)
+ lm${g} %r6,$s3,6*$SIZE_T($sp)
br $ra
.align 16
.Lctr32_software:
___
$code.=<<___;
- stmg $key,$ra,40($sp)
- slgr $out,$inp
+ stm${g} $key,$ra,5*$SIZE_T($sp)
+ sl${g}r $out,$inp
larl $tbl,AES_Te
llgf $t1,12($ivp)
.Lctr32_loop:
- stmg $inp,$len,16($sp)
+ stm${g} $inp,$len,2*$SIZE_T($sp)
llgf $s0,0($ivp)
llgf $s1,4($ivp)
llgf $s2,8($ivp)
lgr $s3,$t1
- st $t1,128($sp)
+ st $t1,16*$SIZE_T($sp)
lgr %r4,$key
bras $ra,_s390x_AES_encrypt
- lmg $inp,$ivp,16($sp)
- llgf $t1,128($sp)
+ lm${g} $inp,$ivp,2*$SIZE_T($sp)
+ llgf $t1,16*$SIZE_T($sp)
x $s0,0($inp)
x $s1,4($inp)
x $s2,8($inp)
ahi $t1,1 # 32-bit increment
brct $len,.Lctr32_loop
- lmg %r6,$ra,48($sp)
+ lm${g} %r6,$ra,6*$SIZE_T($sp)
br $ra
.size AES_ctr32_encrypt,.-AES_ctr32_encrypt
___
# Reschedule to minimize/avoid Address Generation Interlock hazard,
# make inner loops counter-based.
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
+# is achieved by swapping words after 64-bit loads, follow _dswap-s.
+# On z990 it was measured to perform 2.6-2.2 times better, less for
+# longer keys...
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
+$stdframe=16*$SIZE_T+4*8;
+
$mn0="%r0";
$num="%r1";
.globl bn_mul_mont
.type bn_mul_mont,\@function
bn_mul_mont:
- lgf $num,164($sp) # pull $num
- sla $num,3 # $num to enumerate bytes
+ lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num
+ sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes
la $bp,0($num,$bp)
- stg %r2,16($sp)
+ st${g} %r2,2*$SIZE_T($sp)
cghi $num,16 #
lghi %r2,0 #
blr %r14 # if($num<16) return 0;
+___
+$code.=<<___ if ($flavour =~ /3[12]/);
+ tmll $num,4
+ bnzr %r14 # if ($num&1) return 0;
+___
+$code.=<<___ if ($flavour !~ /3[12]/);
cghi $num,128 #
bhr %r14 # if($num>128) return 0;
+___
+$code.=<<___;
+ stm${g} %r3,%r15,3*$SIZE_T($sp)
- stmg %r3,%r15,24($sp)
-
- lghi $rp,-160-8 # leave room for carry bit
+ lghi $rp,-$stdframe-8 # leave room for carry bit
lcgr $j,$num # -$num
lgr %r0,$sp
la $rp,0($rp,$sp)
la $sp,0($j,$rp) # alloca
- stg %r0,0($sp) # back chain
+ st${g} %r0,0($sp) # back chain
sra $num,3 # restore $num
la $bp,0($j,$bp) # restore $bp
ahi $num,-1 # adjust $num for inner loop
lg $n0,0($n0) # pull n0
+ _dswap $n0
lg $bi,0($bp)
+ _dswap $bi
lg $alo,0($ap)
+ _dswap $alo
mlgr $ahi,$bi # ap[0]*bp[0]
lgr $AHI,$ahi
msgr $mn0,$n0
lg $nlo,0($np) #
+ _dswap $nlo
mlgr $nhi,$mn0 # np[0]*m1
algr $nlo,$alo # +="tp[0]"
lghi $NHI,0
.align 16
.L1st:
lg $alo,0($j,$ap)
+ _dswap $alo
mlgr $ahi,$bi # ap[j]*bp[0]
algr $alo,$AHI
lghi $AHI,0
alcgr $AHI,$ahi
lg $nlo,0($j,$np)
+ _dswap $nlo
mlgr $nhi,$mn0 # np[j]*m1
algr $nlo,$NHI
lghi $NHI,0
algr $nlo,$alo
alcgr $NHI,$nhi
- stg $nlo,160-8($j,$sp) # tp[j-1]=
+ stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
la $j,8($j) # j++
brct $count,.L1st
algr $NHI,$AHI
lghi $AHI,0
alcgr $AHI,$AHI # upmost overflow bit
- stg $NHI,160-8($j,$sp)
- stg $AHI,160($j,$sp)
+ stg $NHI,$stdframe-8($j,$sp)
+ stg $AHI,$stdframe($j,$sp)
la $bp,8($bp) # bp++
.Louter:
lg $bi,0($bp) # bp[i]
+ _dswap $bi
lg $alo,0($ap)
+ _dswap $alo
mlgr $ahi,$bi # ap[0]*bp[i]
- alg $alo,160($sp) # +=tp[0]
+ alg $alo,$stdframe($sp) # +=tp[0]
lghi $AHI,0
alcgr $AHI,$ahi
msgr $mn0,$n0 # tp[0]*n0
lg $nlo,0($np) # np[0]
+ _dswap $nlo
mlgr $nhi,$mn0 # np[0]*m1
algr $nlo,$alo # +="tp[0]"
lghi $NHI,0
.align 16
.Linner:
lg $alo,0($j,$ap)
+ _dswap $alo
mlgr $ahi,$bi # ap[j]*bp[i]
algr $alo,$AHI
lghi $AHI,0
alcgr $ahi,$AHI
- alg $alo,160($j,$sp)# +=tp[j]
+ alg $alo,$stdframe($j,$sp)# +=tp[j]
alcgr $AHI,$ahi
lg $nlo,0($j,$np)
+ _dswap $nlo
mlgr $nhi,$mn0 # np[j]*m1
algr $nlo,$NHI
lghi $NHI,0
algr $nlo,$alo # +="tp[j]"
alcgr $NHI,$nhi
- stg $nlo,160-8($j,$sp) # tp[j-1]=
+ stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
la $j,8($j) # j++
brct $count,.Linner
algr $NHI,$AHI
lghi $AHI,0
alcgr $AHI,$AHI
- alg $NHI,160($j,$sp)# accumulate previous upmost overflow bit
+ alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
lghi $ahi,0
alcgr $AHI,$ahi # new upmost overflow bit
- stg $NHI,160-8($j,$sp)
- stg $AHI,160($j,$sp)
+ stg $NHI,$stdframe-8($j,$sp)
+ stg $AHI,$stdframe($j,$sp)
la $bp,8($bp) # bp++
- clg $bp,160+8+32($j,$sp) # compare to &bp[num]
+ cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num]
jne .Louter
- lg $rp,160+8+16($j,$sp) # reincarnate rp
- la $ap,160($sp)
+ l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp
+ la $ap,$stdframe($sp)
ahi $num,1 # restore $num, incidentally clears "borrow"
la $j,0(%r0)
lr $count,$num
.Lsub: lg $alo,0($j,$ap)
- slbg $alo,0($j,$np)
+ lg $nlo,0($j,$np)
+ _dswap $nlo
+ slbgr $alo,$nlo
stg $alo,0($j,$rp)
la $j,8($j)
brct $count,.Lsub
la $j,0(%r0)
lgr $count,$num
-.Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh
- stg $j,160($j,$sp) # zap tp
+.Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh
+ _dswap $alo
+ stg $j,$stdframe($j,$sp) # zap tp
stg $alo,0($j,$rp)
la $j,8($j)
brct $count,.Lcopy
- la %r1,160+8+48($j,$sp)
- lmg %r6,%r15,0(%r1)
+ la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
+ lm${g} %r6,%r15,0(%r1)
lghi %r2,1 # signal "processed"
br %r14
.size bn_mul_mont,.-bn_mul_mont
.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___
-print $code;
+foreach (split("\n",$code)) {
+ s/\`([^\`]*)\`/eval $1/ge;
+ s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
+ print $_,"\n";
+}
close STDOUT;
# and the result should be close to 12. In the lack of instruction-
# level profiling data it's impossible to tell why...
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. On z990 it was measured to perform
+# 2.8x better than 32-bit code generated by gcc 4.3.
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
.Lsoft_gmult:
___
$code.=<<___;
- stmg %r6,%r14,48($sp)
+ stm${g} %r6,%r14,6*$SIZE_T($sp)
aghi $Xi,-1
lghi $len,1
.align 32
.Lsoft_ghash:
___
+$cdoe.=<<___ if ($flavour =~ /3[12]/);
+ llgfr $len,$len
+___
$code.=<<___;
- stmg %r6,%r14,48($sp)
+ stm${g} %r6,%r14,6*$SIZE_T($sp)
aghi $Xi,-1
srlg $len,$len,4
xgr $Zhi,$tmp
stg $Zlo,8+1($Xi)
stg $Zhi,0+1($Xi)
- lmg %r6,%r14,48($sp)
+ lm${g} %r6,%r14,6*$SIZE_T($sp)
br %r14
.type gcm_ghash_4bit,\@function
.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
# "cluster" Address Generation Interlocks, so that one pipeline stall
# resolves several dependencies.
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. On z990 it was measured to perform
+# 50% better than code generated by gcc 4.3.
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
.type RC4,\@function
.align 64
RC4:
- stmg %r6,%r11,48($sp)
+ stm${g} %r6,%r11,6*$SIZE_T($sp)
+___
+$code.=<<___ if ($flavour =~ /3[12]/);
+ llgfr $len,$len
+___
+$code.=<<___;
llgc $XX[0],0($key)
llgc $YY,1($key)
la $XX[0],1($XX[0])
xgr $acc,$TX[1]
stg $acc,0($out)
la $out,8($out)
- brct $cnt,.Loop8
+ brctg $cnt,.Loop8
.Lshort:
lghi $acc,7
ahi $XX[0],-1
stc $XX[0],0($key)
stc $YY,1($key)
- lmg %r6,%r11,48($sp)
+ lm${g} %r6,%r11,6*$SIZE_T($sp)
br $rp
.size RC4,.-RC4
.string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>"
.type RC4_set_key,\@function
.align 64
RC4_set_key:
- stmg %r6,%r8,48($sp)
+ stm${g} %r6,%r8,6*$SIZE_T($sp)
lhi $cnt,256
la $idx,0(%r0)
sth $idx,0($key)
la $iinp,0(%r0)
j .L2ndloop
.Ldone:
- lmg %r6,%r8,48($sp)
+ lm${g} %r6,%r8,6*$SIZE_T($sp)
br $rp
.size RC4_set_key,.-RC4_set_key
.type OPENSSL_cleanse,@function
.align 16
OPENSSL_cleanse:
+#if !defined(__s390x__) && !defined(__s390x)
+ llgfr %r3,%r3
+#endif
lghi %r4,15
lghi %r0,0
clgr %r3,%r4
# instructions to favour dual-issue z10 pipeline. On z10 hardware is
# "only" ~2.3x faster than software.
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific.
+
$kimdfunc=1; # magic function code for kimd instruction
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
@X=("%r12","%r13","%r14");
$sp="%r15";
-$frame=160+16*4;
+$stdframe=16*$SIZE_T+4*8;
+$frame=$stdframe+16*4;
sub Xupdate {
my $i=shift;
$code.=<<___ if ($i==15);
- lg $prefetch,160($sp) ### Xupdate(16) warm-up
+ lg $prefetch,$stdframe($sp) ### Xupdate(16) warm-up
lr $X[0],$X[2]
___
return if ($i&1); # Xupdate is vectorized and executed every 2nd cycle
___
$code.=<<___ if ($i>=16);
xgr $X[0],$prefetch ### Xupdate($i)
- lg $prefetch,`160+4*(($i+2)%16)`($sp)
- xg $X[0],`160+4*(($i+8)%16)`($sp)
+ lg $prefetch,`$stdframe+4*(($i+2)%16)`($sp)
+ xg $X[0],`$stdframe+4*(($i+8)%16)`($sp)
xgr $X[0],$prefetch
rll $X[0],$X[0],1
rllg $X[1],$X[0],32
lr $X[2],$X[1] # feedback
___
$code.=<<___ if ($i<=70);
- stg $X[0],`160+4*($i%16)`($sp)
+ stg $X[0],`$stdframe+4*($i%16)`($sp)
___
unshift(@X,pop(@X));
}
tmhl %r0,0x4000 # check for message-security assist
jz .Lsoftware
lghi %r0,0
- la %r1,16($sp)
+ la %r1,`2*$SIZE_T`($sp)
.long 0xb93e0002 # kimd %r0,%r2
- lg %r0,16($sp)
+ lg %r0,`2*$SIZE_T`($sp)
tmhh %r0,`0x8000>>$kimdfunc`
jz .Lsoftware
lghi %r0,$kimdfunc
___
$code.=<<___;
lghi %r1,-$frame
- stg $ctx,16($sp)
- stmg %r6,%r15,48($sp)
+ st${g} $ctx,`2*$SIZE_T`($sp)
+ stm${g} %r6,%r15,`6*$SIZE_T`($sp)
lgr %r0,$sp
la $sp,0(%r1,$sp)
- stg %r0,0($sp)
+ st${g} %r0,0($sp)
larl $t0,Ktable
llgf $A,0($ctx)
for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
- lg $ctx,`$frame+16`($sp)
+ l${g} $ctx,`$frame+2*$SIZE_T`($sp)
la $inp,64($inp)
al $A,0($ctx)
al $B,4($ctx)
st $C,8($ctx)
st $D,12($ctx)
st $E,16($ctx)
- brct $len,.Lloop
+ brct${g} $len,.Lloop
- lmg %r6,%r15,`$frame+48`($sp)
+ lm${g} %r6,%r15,`$frame+6*$SIZE_T`($sp)
br %r14
.size sha1_block_data_order,.-sha1_block_data_order
.string "SHA1 block transform for s390x, CRYPTOGAMS by <appro\@openssl.org>"
# favour dual-issue z10 pipeline. Hardware SHA256/512 is ~4.7x faster
# than software.
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. On z900 SHA256 was measured to
+# perform 2.4x and SHA512 - 13x better than code generated by gcc 4.3.
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
$t0="%r0";
$t1="%r1";
$ctx="%r2"; $t2="%r2";
}
$Func="sha${label}_block_data_order";
$Table="K${label}";
-$frame=160+16*$SZ;
+$stdframe=16*$SIZE_T+4*8;
+$frame=$stdframe+16*$SZ;
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
xgr $t0,$t1
$ROT $t1,$t1,`$Sigma1[2]-$Sigma1[1]`
xgr $t2,$g
- $ST $T1,`160+$SZ*($i%16)`($sp)
+ $ST $T1,`$stdframe+$SZ*($i%16)`($sp)
xgr $t0,$t1 # Sigma1(e)
- la $T1,0($T1,$h) # T1+=h
+ algr $T1,$h # T1+=h
ngr $t2,$e
lgr $t1,$a
algr $T1,$t0 # T1+=Sigma1(e)
ngr $t2,$b
algr $h,$T1 # h+=T1
ogr $t2,$t1 # Maj(a,b,c)
- la $d,0($d,$T1) # d+=T1
+ algr $d,$T1 # d+=T1
algr $h,$t2 # h+=Maj(a,b,c)
___
}
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___;
- $LD $T1,`160+$SZ*(($i+1)%16)`($sp) ### $i
- $LD $t1,`160+$SZ*(($i+14)%16)`($sp)
+ $LD $T1,`$stdframe+$SZ*(($i+1)%16)`($sp) ### $i
+ $LD $t1,`$stdframe+$SZ*(($i+14)%16)`($sp)
$ROT $t0,$T1,$sigma0[0]
$SHR $T1,$sigma0[2]
$ROT $t2,$t0,`$sigma0[1]-$sigma0[0]`
xgr $T1,$t0
$ROT $t0,$t1,$sigma1[0]
- xgr $T1,$t2 # sigma0(X[i+1])
+ xgr $T1,$t2 # sigma0(X[i+1])
$SHR $t1,$sigma1[2]
- $ADD $T1,`160+$SZ*($i%16)`($sp) # +=X[i]
+ $ADD $T1,`$stdframe+$SZ*($i%16)`($sp) # +=X[i]
xgr $t1,$t0
$ROT $t0,$t0,`$sigma1[1]-$sigma1[0]`
- $ADD $T1,`160+$SZ*(($i+9)%16)`($sp) # +=X[i+9]
+ $ADD $T1,`$stdframe+$SZ*(($i+9)%16)`($sp) # +=X[i+9]
xgr $t1,$t0 # sigma1(X[i+14])
algr $T1,$t1 # +=sigma1(X[i+14])
___
.globl $Func
.type $Func,\@function
$Func:
+ sllg $len,$len,`log(16*$SZ)/log(2)`
___
$code.=<<___ if ($kimdfunc);
larl %r1,OPENSSL_s390xcap_P
tmhl %r0,0x4000 # check for message-security assist
jz .Lsoftware
lghi %r0,0
- la %r1,16($sp)
+ la %r1,`2*$SIZE_T`($sp)
.long 0xb93e0002 # kimd %r0,%r2
- lg %r0,16($sp)
+ lg %r0,`2*$SIZE_T`($sp)
tmhh %r0,`0x8000>>$kimdfunc`
jz .Lsoftware
lghi %r0,$kimdfunc
lgr %r1,$ctx
lgr %r2,$inp
- sllg %r3,$len,`log(16*$SZ)/log(2)`
+ lgr %r3,$len
.long 0xb93e0002 # kimd %r0,%r2
brc 1,.-4 # pay attention to "partial completion"
br %r14
.Lsoftware:
___
$code.=<<___;
- sllg $len,$len,`log(16*$SZ)/log(2)`
lghi %r1,-$frame
- agr $len,$inp
- stmg $ctx,%r15,16($sp)
+ la $len,0($len,$inp)
+ stm${g} $ctx,%r15,`2*$SIZE_T`($sp)
lgr %r0,$sp
la $sp,0(%r1,$sp)
- stg %r0,0($sp)
+ st${g} %r0,0($sp)
larl $tbl,$Table
$LD $A,`0*$SZ`($ctx)
clgr $len,$t0
jne .Lrounds_16_xx
- lg $ctx,`$frame+16`($sp)
+ l${g} $ctx,`$frame+2*$SIZE_T`($sp)
la $inp,`16*$SZ`($inp)
$ADD $A,`0*$SZ`($ctx)
$ADD $B,`1*$SZ`($ctx)
$ST $F,`5*$SZ`($ctx)
$ST $G,`6*$SZ`($ctx)
$ST $H,`7*$SZ`($ctx)
- clg $inp,`$frame+32`($sp)
+ cl${g} $inp,`$frame+4*$SIZE_T`($sp)
jne .Lloop
- lmg %r6,%r15,`$frame+48`($sp)
+ lm${g} %r6,%r15,`$frame+6*$SIZE_T`($sp)
br %r14
.size $Func,.-$Func
.string "SHA${label} block transform for s390x, CRYPTOGAMS by <appro\@openssl.org>"