/// because for floating point vectors we have a generalized SHUFPS lowering
/// strategy that handles everything that doesn't *exactly* match an unpack,
/// making this clever lowering unnecessary.
-static SDValue lowerVectorShuffleAsPermuteAndUnpack(const SDLoc &DL, MVT VT,
- SDValue V1, SDValue V2,
- ArrayRef<int> Mask,
- SelectionDAG &DAG) {
+static SDValue lowerVectorShuffleAsPermuteAndUnpack(
+ const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(!VT.isFloatingPoint() &&
"This routine only supports integer vectors.");
assert(VT.is128BitVector() &&
if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize))
return Unpack;
+ // If we have PSHUFB, and we're shuffling with a zero vector then we're
+ // better off not doing VECTOR_SHUFFLE(UNPCK()) as we lose track of those
+ // zero elements.
+ if (Subtarget.hasSSSE3() && (ISD::isBuildVectorAllZeros(V1.getNode()) ||
+ ISD::isBuildVectorAllZeros(V2.getNode())))
+ return SDValue();
+
// If none of the unpack-rooted lowerings worked (or were profitable) try an
// initial unpack.
if (NumLoInputs == 0 || NumHiInputs == 0) {
// Try to lower by permuting the inputs into an unpack instruction.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
- DL, MVT::v4i32, V1, V2, Mask, DAG))
+ DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
return Unpack;
}
return BitBlend;
// Try to lower by permuting the inputs into an unpack instruction.
- if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
- V2, Mask, DAG))
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
+ DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
return Unpack;
// If we can't directly blend but can use PSHUFB, that will be better as it
// shuffles will both be pshufb, in which case we shouldn't bother with
// this.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
- DL, MVT::v16i8, V1, V2, Mask, DAG))
+ DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return Unpack;
// If we have VBMI we can use one VPERM instead of multiple PSHUFBs.
;
; SSSE3-LABEL: shuffle_v8i16_9zzzuuuu:
; SSSE3: # %bb.0:
-; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[6,7]
+; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3],zero,zero,zero,zero,zero,zero,xmm0[u,u,u,u,u,u,u,u]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_9zzzuuuu:
; SSE41: # %bb.0:
-; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[6,7]
+; SSE41-NEXT: psrld $16, %xmm0
+; SSE41-NEXT: pmovzxwq {{.*#+}} xmm0 = xmm0[0],zero,zero,zero,xmm0[1],zero,zero,zero
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_9zzzuuuu:
; AVX: # %bb.0:
-; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[2,3],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[6,7]
+; AVX-NEXT: vpsrld $16, %xmm0, %xmm0
+; AVX-NEXT: vpmovzxwq {{.*#+}} xmm0 = xmm0[0],zero,zero,zero,xmm0[1],zero,zero,zero
; AVX-NEXT: retq
%r = shufflevector <8 x i16> zeroinitializer, <8 x i16> %x, <8 x i32> <i32 9, i32 1, i32 2, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %r