<table id="cube-repr-table">
<title>Cube External Representations</title>
<tgroup cols="2">
+ <thead>
+ <row>
+ <entry>External Syntax</entry>
+ <entry>Meaning</entry>
+ </row>
+ </thead>
+
<tbody>
<row>
<entry><literal><replaceable>x</></literal></entry>
</para>
<para>
- White space is ignored, so <literal>[(<replaceable>x</>),(<replaceable>y</>)]</literal> is the same as
+ White space is ignored on input, so
+ <literal>[(<replaceable>x</>),(<replaceable>y</>)]</literal> is the same as
<literal>[ ( <replaceable>x</> ), ( <replaceable>y</> ) ]</literal>.
</para>
</sect2>
<title>Usage</title>
<para>
- <xref linkend="cube-operators"> shows the operators provided for type
- <type>cube</>.
+ <xref linkend="cube-operators-table"> shows the operators provided for
+ type <type>cube</>.
</para>
- <table id="cube-operators">
+ <table id="cube-operators-table">
<title>Cube Operators</title>
<tgroup cols="3">
<thead>
For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5)
could be found efficiently with:
<programlisting>
-SELECT c FROM test
-ORDER BY cube(array[0.5,0.5,0.5]) <-> c
-LIMIT 1;
+SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;
</programlisting>
</para>
For example, to get the first few cubes ordered by the first coordinate
(lower left corner) ascending one could use the following query:
<programlisting>
-SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;
+SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;
</programlisting>
And to get 2-D cubes ordered by the first coordinate of the upper right
corner descending:
<programlisting>
-SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;
+SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;
</programlisting>
</para>
<table id="cube-functions-table">
<title>Cube Functions</title>
- <tgroup cols="2">
+ <tgroup cols="4">
+ <thead>
+ <row>
+ <entry>Function</entry>
+ <entry>Result</entry>
+ <entry>Description</entry>
+ <entry>Example</entry>
+ </row>
+ </thead>
+
<tbody>
<row>
- <entry><literal>cube(float8) returns cube</literal></entry>
+ <entry><literal>cube(float8)</literal></entry>
+ <entry><type>cube</type></entry>
<entry>Makes a one dimensional cube with both coordinates the same.
+ </entry>
+ <entry>
<literal>cube(1) == '(1)'</literal>
</entry>
</row>
<row>
- <entry><literal>cube(float8, float8) returns cube</literal></entry>
+ <entry><literal>cube(float8, float8)</literal></entry>
+ <entry><type>cube</type></entry>
<entry>Makes a one dimensional cube.
+ </entry>
+ <entry>
<literal>cube(1,2) == '(1),(2)'</literal>
</entry>
</row>
<row>
- <entry><literal>cube(float8[]) returns cube</literal></entry>
+ <entry><literal>cube(float8[])</literal></entry>
+ <entry><type>cube</type></entry>
<entry>Makes a zero-volume cube using the coordinates
defined by the array.
+ </entry>
+ <entry>
<literal>cube(ARRAY[1,2]) == '(1,2)'</literal>
</entry>
</row>
<row>
- <entry><literal>cube(float8[], float8[]) returns cube</literal></entry>
+ <entry><literal>cube(float8[], float8[])</literal></entry>
+ <entry><type>cube</type></entry>
<entry>Makes a cube with upper right and lower left
coordinates as defined by the two arrays, which must be of the
same length.
- <literal>cube('{1,2}'::float[], '{3,4}'::float[]) == '(1,2),(3,4)'
+ </entry>
+ <entry>
+ <literal>cube(ARRAY[1,2], ARRAY[3,4]) == '(1,2),(3,4)'
</literal>
</entry>
</row>
<row>
- <entry><literal>cube(cube, float8) returns cube</literal></entry>
- <entry>Makes a new cube by adding a dimension on to an
- existing cube with the same values for both parts of the new coordinate.
- This is useful for building cubes piece by piece from calculated values.
- <literal>cube('(1)',2) == '(1,2),(1,2)'</literal>
+ <entry><literal>cube(cube, float8)</literal></entry>
+ <entry><type>cube</type></entry>
+ <entry>Makes a new cube by adding a dimension on to an existing cube,
+ with the same values for both endpoints of the new coordinate. This
+ is useful for building cubes piece by piece from calculated values.
+ </entry>
+ <entry>
+ <literal>cube('(1,2),(3,4)'::cube, 5) == '(1,2,5),(3,4,5)'</literal>
</entry>
</row>
<row>
- <entry><literal>cube(cube, float8, float8) returns cube</literal></entry>
- <entry>Makes a new cube by adding a dimension on to an
- existing cube. This is useful for building cubes piece by piece from
- calculated values. <literal>cube('(1,2)',3,4) == '(1,3),(2,4)'</literal>
+ <entry><literal>cube(cube, float8, float8)</literal></entry>
+ <entry><type>cube</type></entry>
+ <entry>Makes a new cube by adding a dimension on to an existing
+ cube. This is useful for building cubes piece by piece from calculated
+ values.
+ </entry>
+ <entry>
+ <literal>cube('(1,2),(3,4)'::cube, 5, 6) == '(1,2,5),(3,4,6)'</literal>
</entry>
</row>
<row>
- <entry><literal>cube_dim(cube) returns int</literal></entry>
- <entry>Returns the number of dimensions of the cube
+ <entry><literal>cube_dim(cube)</literal></entry>
+ <entry><type>integer</type></entry>
+ <entry>Returns the number of dimensions of the cube.
+ </entry>
+ <entry>
+ <literal>cube_dim('(1,2),(3,4)') == '2'</literal>
</entry>
</row>
<row>
- <entry><literal>cube_ll_coord(cube, int) returns double </literal></entry>
- <entry>Returns the n'th coordinate value for the lower left
- corner of a cube
+ <entry><literal>cube_ll_coord(cube, integer)</literal></entry>
+ <entry><type>float8</type></entry>
+ <entry>Returns the <replaceable>n</>-th coordinate value for the lower
+ left corner of the cube.
+ </entry>
+ <entry>
+ <literal>cube_ll_coord('(1,2),(3,4)', 2) == '2'</literal>
</entry>
</row>
<row>
- <entry><literal>cube_ur_coord(cube, int) returns double
- </literal></entry>
- <entry>Returns the n'th coordinate value for the
- upper right corner of a cube
+ <entry><literal>cube_ur_coord(cube, integer)</literal></entry>
+ <entry><type>float8</type></entry>
+ <entry>Returns the <replaceable>n</>-th coordinate value for the
+ upper right corner of the cube.
+ </entry>
+ <entry>
+ <literal>cube_ur_coord('(1,2),(3,4)', 2) == '4'</literal>
</entry>
</row>
<row>
- <entry><literal>cube_is_point(cube) returns bool</literal></entry>
- <entry>Returns true if a cube is a point, that is,
+ <entry><literal>cube_is_point(cube)</literal></entry>
+ <entry><type>boolean</type></entry>
+ <entry>Returns true if the cube is a point, that is,
the two defining corners are the same.</entry>
+ <entry>
+ </entry>
</row>
<row>
- <entry><literal>cube_distance(cube, cube) returns double</literal></entry>
+ <entry><literal>cube_distance(cube, cube)</literal></entry>
+ <entry><type>float8</type></entry>
<entry>Returns the distance between two cubes. If both
cubes are points, this is the normal distance function.
</entry>
+ <entry>
+ </entry>
</row>
<row>
- <entry><literal>cube_subset(cube, int[]) returns cube
- </literal></entry>
+ <entry><literal>cube_subset(cube, integer[])</literal></entry>
+ <entry><type>cube</type></entry>
<entry>Makes a new cube from an existing cube, using a list of
- dimension indexes from an array. Can be used to find both the LL and UR
- coordinates of a single dimension, e.g.
- <literal>cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2]) = '(3),(7)'</>.
- Or can be used to drop dimensions, or reorder them as desired, e.g.
- <literal>cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]) = '(5, 3,
- 1, 1),(8, 7, 6, 6)'</>.
+ dimension indexes from an array. Can be used to extract the endpoints
+ of a single dimension, or to drop dimensions, or to reorder them as
+ desired.
+ </entry>
+ <entry>
+ <literal>cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2]) == '(3),(7)'</>
+ <literal>cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]) ==
+ '(5,3,1,1),(8,7,6,6)'</>
</entry>
</row>
<row>
- <entry><literal>cube_union(cube, cube) returns cube</literal></entry>
- <entry>Produces the union of two cubes
+ <entry><literal>cube_union(cube, cube)</literal></entry>
+ <entry><type>cube</type></entry>
+ <entry>Produces the union of two cubes.
+ </entry>
+ <entry>
</entry>
</row>
<row>
- <entry><literal>cube_inter(cube, cube) returns cube</literal></entry>
- <entry>Produces the intersection of two cubes
+ <entry><literal>cube_inter(cube, cube)</literal></entry>
+ <entry><type>cube</type></entry>
+ <entry>Produces the intersection of two cubes.
+ </entry>
+ <entry>
</entry>
</row>
<row>
- <entry><literal>cube_enlarge(cube c, double r, int n) returns cube</literal></entry>
- <entry>Increases the size of a cube by a specified radius in at least
- n dimensions. If the radius is negative the cube is shrunk instead. This
- is useful for creating bounding boxes around a point for searching for
- nearby points. All defined dimensions are changed by the radius r.
- LL coordinates are decreased by r and UR coordinates are increased by r.
- If a LL coordinate is increased to larger than the corresponding UR
- coordinate (this can only happen when r < 0) than both coordinates
- are set to their average. If n is greater than the number of defined
- dimensions and the cube is being increased (r >= 0) then 0 is used
- as the base for the extra coordinates.
+ <entry><literal>cube_enlarge(c cube, r double, n integer)</literal></entry>
+ <entry><type>cube</type></entry>
+ <entry>Increases the size of the cube by the specified
+ radius <replaceable>r</> in at least <replaceable>n</> dimensions.
+ If the radius is negative the cube is shrunk instead.
+ All defined dimensions are changed by the radius <replaceable>r</>.
+ Lower-left coordinates are decreased by <replaceable>r</> and
+ upper-right coordinates are increased by <replaceable>r</>. If a
+ lower-left coordinate is increased to more than the corresponding
+ upper-right coordinate (this can only happen when <replaceable>r</>
+ < 0) than both coordinates are set to their average.
+ If <replaceable>n</> is greater than the number of defined dimensions
+ and the cube is being enlarged (<replaceable>r</> > 0), then extra
+ dimensions are added to make <replaceable>n</> altogether;
+ 0 is used as the initial value for the extra coordinates.
+ This function is useful for creating bounding boxes around a point for
+ searching for nearby points.
+ </entry>
+ <entry>
+ <literal>cube_enlarge('(1,2),(3,4)', 0.5, 3) ==
+ '(0.5,1.5,-0.5),(3.5,4.5,0.5)'</>
</entry>
</row>
</tbody>