information will allow you to set breakpoints in Kaleidoscope
functions, print out argument variables, and call functions - all
from within the debugger!
-- `Chapter #9 <LangImpl8.html>`_: Conclusion and other useful LLVM
+- `Chapter #9 <LangImpl9.html>`_: Conclusion and other useful LLVM
tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of
pointers to info about "special topics" like adding garbage
# Determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
- def mandleconverger(real imag iters creal cimag)
+ def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters
else
- mandleconverger(real*real - imag*imag + creal,
+ mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag,
iters+1, creal, cimag);
# Return the number of iterations required for the iteration to escape
- def mandleconverge(real imag)
- mandleconverger(real, imag, 0, real, imag);
+ def mandelconverge(real imag)
+ mandelconverger(real, imag, 0, real, imag);
This "``z = z2 + c``" function is a beautiful little creature that is
the basis for computation of the `Mandelbrot
::
- # Compute and plot the mandlebrot set with the specified 2 dimensional range
+ # Compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in
- printdensity(mandleconverge(x,y)))
+ printdensity(mandelconverge(x,y)))
: putchard(10)
)
mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag);
-Given this, we can try plotting out the mandlebrot set! Lets try it out:
+Given this, we can try plotting out the mandelbrot set! Lets try it out:
::
# determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
- def mandleconverger(real imag iters creal cimag)
+ def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters
else
- mandleconverger(real*real - imag*imag + creal,
+ mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag,
iters+1, creal, cimag);
# return the number of iterations required for the iteration to escape
- def mandleconverge(real imag)
- mandleconverger(real, imag, 0, real, imag);
+ def mandelconverge(real imag)
+ mandelconverger(real, imag, 0, real, imag);
This "z = z\ :sup:`2`\ + c" function is a beautiful little creature
that is the basis for computation of the `Mandelbrot
::
- # compute and plot the mandlebrot set with the specified 2 dimensional range
+ # compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in
- printdensity(mandleconverge(x,y)))
+ printdensity(mandelconverge(x,y)))
: putchard(10)
)
mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag);
-Given this, we can try plotting out the mandlebrot set! Lets try it out:
+Given this, we can try plotting out the mandelbrot set! Lets try it out:
::