#include <freertos/heap_regions.h>
-#include "heap_alloc_caps.h"
+#include "esp_heap_alloc_caps.h"
#include "spiram.h"
#include "esp_log.h"
Each tag contains NO_PRIOS entries; later entries are only taken if earlier ones can't fulfill the memory request.
*/
static const uint32_t tagDesc[][NO_PRIOS]={
- { MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT, 0 }, //Tag 0: Plain ole D-port RAM
- { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, //Tag 1: Plain ole D-port RAM which has an alias on the I-port
- { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT, 0, 0 }, //Tag 2: IRAM
- { MALLOC_CAP_PID2, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //Tag 3-8: PID 2-7 IRAM
- { MALLOC_CAP_PID3, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID4, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID5, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID6, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID7, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID2, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //Tag 9-14: PID 2-7 DRAM
- { MALLOC_CAP_PID3, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID4, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID5, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID6, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_PID7, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
- { MALLOC_CAP_SPISRAM, 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, //Tag 15: SPI SRAM data
- { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID } //End
+ { MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT, 0 }, //Tag 0: Plain ole D-port RAM
+ { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, //Tag 1: Plain ole D-port RAM which has an alias on the I-port
+ { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT, 0, 0 }, //Tag 2: IRAM
+ { MALLOC_CAP_PID2, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //Tag 3-8: PID 2-7 IRAM
+ { MALLOC_CAP_PID3, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID4, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID5, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID6, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID7, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID2, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //Tag 9-14: PID 2-7 DRAM
+ { MALLOC_CAP_PID3, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID4, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID5, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID6, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_PID7, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, //
+ { MALLOC_CAP_SPISRAM, 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, //Tag 15: SPI SRAM data
+ { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID } //End
};
/*
This array is *NOT* const because it gets modified depending on what pools are/aren't available.
*/
static HeapRegionTagged_t regions[]={
- { (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
- { (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
- { (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- can be used for BT
- { (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- can be used for BT
- { (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
- { (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
- { (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
- { (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
- { (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
- { (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
- { (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
- { (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
- { (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
- { (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
- { (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
- { (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
- { (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
- { (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
- { (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
- { (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
- { (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
- { (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
- { (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
- { (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
- { (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
- { (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
- { (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
- { (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
- { (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
- { (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
- { (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
- { (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
- { (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
- { (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
- { (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
- { (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
- { (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
- { (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
- { (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
- { (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
- { (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
- { (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
- { (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
- { (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
- { NULL, 0, 0, 0} //end
+ { (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
+ { (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
+ { (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- can be used for BT
+ { (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- can be used for BT
+ { (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
+ { (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
+ { (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
+ { (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
+ { (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
+ { (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
+ { (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
+ { (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
+ { (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
+ { (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
+ { (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
+ { (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
+ { (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
+ { (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
+ { (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
+ { (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
+ { (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
+ { (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
+ { (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
+ { (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
+ { (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
+ { (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
+ { (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
+ { (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
+ { (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
+ { (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
+ { (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
+ { (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
+ { (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
+ { (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
+ { (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
+ { (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
+ { (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
+ { (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
+ { (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
+ { (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
+ { (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
+ { (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
+ { (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
+ { (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
+ { NULL, 0, 0, 0} //end
};
//Modify regions array to disable the given range of memory.
static void disable_mem_region(void *from, void *to) {
- int i;
- //Align from and to on word boundaries
- from=(void*)((uint32_t)from&~3);
- to=(void*)(((uint32_t)to+3)&~3);
- for (i=0; regions[i].xSizeInBytes!=0; i++) {
- void *regStart=regions[i].pucStartAddress;
- void *regEnd=regions[i].pucStartAddress+regions[i].xSizeInBytes;
- if (regStart>=from && regEnd<=to) {
- //Entire region falls in the range. Disable entirely.
- regions[i].xTag=-1;
- } else if (regStart>=from && regEnd>to && regStart<to) {
- //Start of the region falls in the range. Modify address/len.
- int overlap=(uint8_t *)to-(uint8_t *)regStart;
- regions[i].pucStartAddress+=overlap;
- regions[i].xSizeInBytes-=overlap;
- if (regions[i].xExecAddr) regions[i].xExecAddr+=overlap;
- } else if (regStart<from && regEnd>from && regEnd<=to) {
- //End of the region falls in the range. Modify length.
- regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
- } else if (regStart<from && regEnd>to) {
- //Range punches a hole in the region! We do not support this.
- ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
- regions[i].xTag=-1; //Just disable memory region. That'll teach them!
- }
- }
+ int i;
+ //Align from and to on word boundaries
+ from=(void*)((uint32_t)from&~3);
+ to=(void*)(((uint32_t)to+3)&~3);
+ for (i=0; regions[i].xSizeInBytes!=0; i++) {
+ void *regStart=regions[i].pucStartAddress;
+ void *regEnd=regions[i].pucStartAddress+regions[i].xSizeInBytes;
+ if (regStart>=from && regEnd<=to) {
+ //Entire region falls in the range. Disable entirely.
+ regions[i].xTag=-1;
+ } else if (regStart>=from && regEnd>to && regStart<to) {
+ //Start of the region falls in the range. Modify address/len.
+ int overlap=(uint8_t *)to-(uint8_t *)regStart;
+ regions[i].pucStartAddress+=overlap;
+ regions[i].xSizeInBytes-=overlap;
+ if (regions[i].xExecAddr) regions[i].xExecAddr+=overlap;
+ } else if (regStart<from && regEnd>from && regEnd<=to) {
+ //End of the region falls in the range. Modify length.
+ regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
+ } else if (regStart<from && regEnd>to) {
+ //Range punches a hole in the region! We do not support this.
+ ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
+ regions[i].xTag=-1; //Just disable memory region. That'll teach them!
+ }
+ }
}
Same with loading of apps. Same with using SPI RAM.
*/
void heap_alloc_caps_init() {
- int i;
- //Disable the bits of memory where this code is loaded.
- disable_mem_region(&_bss_start, &_heap_start);
- disable_mem_region((void*)0x3ffae000, (void*)0x3ffb0000); //knock out ROM data region
- disable_mem_region((void*)0x40070000, (void*)0x40078000); //CPU0 cache region
- disable_mem_region((void*)0x40078000, (void*)0x40080000); //CPU1 cache region
- disable_mem_region((void*)0x40080000, (void*)0x400a0000); //pool 2-5
+ int i;
+ //Disable the bits of memory where this code is loaded.
+ disable_mem_region(&_bss_start, &_heap_start);
+ disable_mem_region((void*)0x3ffae000, (void*)0x3ffb0000); //knock out ROM data region
+ disable_mem_region((void*)0x40070000, (void*)0x40078000); //CPU0 cache region
+ disable_mem_region((void*)0x40078000, (void*)0x40080000); //CPU1 cache region
+ disable_mem_region((void*)0x40080000, (void*)0x400a0000); //pool 2-5
- // TODO: this region should be checked, since we don't need to knock out all region finally
- disable_mem_region((void*)0x3ffe0000, (void*)0x3ffe8000); //knock out ROM data region
+ // TODO: this region should be checked, since we don't need to knock out all region finally
+ disable_mem_region((void*)0x3ffe0000, (void*)0x3ffe8000); //knock out ROM data region
#if CONFIG_MEMMAP_BT
- disable_mem_region((void*)0x3ffb0000, (void*)0x3ffc0000); //knock out BT data region
+ disable_mem_region((void*)0x3ffb0000, (void*)0x3ffc0000); //knock out BT data region
#endif
#if CONFIG_MEMMAP_TRACEMEM
- disable_mem_region((void*)0x3fff8000, (void*)0x40000000); //knock out trace mem region
+ disable_mem_region((void*)0x3fff8000, (void*)0x40000000); //knock out trace mem region
#endif
#if 0
- enable_spi_sram();
+ enable_spi_sram();
#else
- disable_mem_region((void*)0x3f800000, (void*)0x3f820000); //SPI SRAM not installed
+ disable_mem_region((void*)0x3f800000, (void*)0x3f820000); //SPI SRAM not installed
#endif
- //The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
- //it's useful to coalesce adjacent regions that have the same tag.
+ //The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
+ //it's useful to coalesce adjacent regions that have the same tag.
- for (i=1; regions[i].xSizeInBytes!=0; i++) {
- if (regions[i].pucStartAddress == (regions[i-1].pucStartAddress + regions[i-1].xSizeInBytes) &&
- regions[i].xTag == regions[i-1].xTag ) {
- regions[i-1].xTag=-1;
- regions[i].pucStartAddress=regions[i-1].pucStartAddress;
- regions[i].xSizeInBytes+=regions[i-1].xSizeInBytes;
- }
- }
+ for (i=1; regions[i].xSizeInBytes!=0; i++) {
+ if (regions[i].pucStartAddress == (regions[i-1].pucStartAddress + regions[i-1].xSizeInBytes) &&
+ regions[i].xTag == regions[i-1].xTag ) {
+ regions[i-1].xTag=-1;
+ regions[i].pucStartAddress=regions[i-1].pucStartAddress;
+ regions[i].xSizeInBytes+=regions[i-1].xSizeInBytes;
+ }
+ }
- ESP_EARLY_LOGI(TAG, "Initializing heap allocator:");
- for (i=0; regions[i].xSizeInBytes!=0; i++) {
- if (regions[i].xTag != -1) {
- ESP_EARLY_LOGI(TAG, "Region %02d: %08X len %08X tag %d", i,
- (int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xTag);
- }
- }
- //Initialize the malloc implementation.
- vPortDefineHeapRegionsTagged( regions );
+ ESP_EARLY_LOGI(TAG, "Initializing heap allocator:");
+ for (i=0; regions[i].xSizeInBytes!=0; i++) {
+ if (regions[i].xTag != -1) {
+ ESP_EARLY_LOGI(TAG, "Region %02d: %08X len %08X tag %d", i,
+ (int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xTag);
+ }
+ }
+ //Initialize the malloc implementation.
+ vPortDefineHeapRegionsTagged( regions );
}
/*
*/
void *pvPortMalloc( size_t xWantedSize )
{
- return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
+ return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
}
/*
*/
void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps )
{
- int prio;
- int tag, j;
- void *ret=NULL;
- uint32_t remCaps;
- for (prio=0; prio<NO_PRIOS; prio++) {
- //Iterate over tag descriptors for this priority
- for (tag=0; tagDesc[tag][prio]!=MALLOC_CAP_INVALID; tag++) {
- if ((tagDesc[tag][prio]&caps)!=0) {
- //Tag has at least one of the caps requested. If caps has other bits set that this prio
- //doesn't cover, see if they're available in other prios.
- remCaps=caps&(~tagDesc[tag][prio]); //Remaining caps to be fulfilled
- j=prio+1;
- while (remCaps!=0 && j<NO_PRIOS) {
- remCaps=remCaps&(~tagDesc[tag][j]);
- j++;
- }
- if (remCaps==0) {
- //This tag can satisfy all the requested capabilities. See if we can grab some memory using it.
- ret=pvPortMallocTagged(xWantedSize, tag);
- if (ret!=NULL) return ret;
- }
- }
- }
- }
- //Nothing usable found.
- return NULL;
+ int prio;
+ int tag, j;
+ void *ret=NULL;
+ uint32_t remCaps;
+ for (prio=0; prio<NO_PRIOS; prio++) {
+ //Iterate over tag descriptors for this priority
+ for (tag=0; tagDesc[tag][prio]!=MALLOC_CAP_INVALID; tag++) {
+ if ((tagDesc[tag][prio]&caps)!=0) {
+ //Tag has at least one of the caps requested. If caps has other bits set that this prio
+ //doesn't cover, see if they're available in other prios.
+ remCaps=caps&(~tagDesc[tag][prio]); //Remaining caps to be fulfilled
+ j=prio+1;
+ while (remCaps!=0 && j<NO_PRIOS) {
+ remCaps=remCaps&(~tagDesc[tag][j]);
+ j++;
+ }
+ if (remCaps==0) {
+ //This tag can satisfy all the requested capabilities. See if we can grab some memory using it.
+ ret=pvPortMallocTagged(xWantedSize, tag);
+ if (ret!=NULL) return ret;
+ }
+ }
+ }
+ }
+ //Nothing usable found.
+ return NULL;
}