--- /dev/null
+//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the RecursiveASTVisitor interface, which recursively
+// traverses the entire AST.
+//
+//===----------------------------------------------------------------------===//
+#ifndef LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
+#define LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H
+
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/TemplateName.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+
+// The following three macros are used for meta programming. The code
+// using them is responsible for defining macro OPERATOR().
+
+// All unary operators.
+#define UNARYOP_LIST() \
+ OPERATOR(PostInc) OPERATOR(PostDec) \
+ OPERATOR(PreInc) OPERATOR(PreDec) \
+ OPERATOR(AddrOf) OPERATOR(Deref) \
+ OPERATOR(Plus) OPERATOR(Minus) \
+ OPERATOR(Not) OPERATOR(LNot) \
+ OPERATOR(Real) OPERATOR(Imag) \
+ OPERATOR(Extension)
+
+// All binary operators (excluding compound assign operators).
+#define BINOP_LIST() \
+ OPERATOR(PtrMemD) OPERATOR(PtrMemI) \
+ OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \
+ OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \
+ OPERATOR(Shr) \
+ \
+ OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \
+ OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \
+ OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \
+ OPERATOR(LAnd) OPERATOR(LOr) \
+ \
+ OPERATOR(Assign) \
+ OPERATOR(Comma)
+
+// All compound assign operators.
+#define CAO_LIST() \
+ OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \
+ OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor)
+
+namespace clang {
+
+// A helper macro to implement short-circuiting when recursing. It
+// invokes CALL_EXPR, which must be a method call, on the derived
+// object (s.t. a user of RecursiveASTVisitor can override the method
+// in CALL_EXPR).
+#define TRY_TO(CALL_EXPR) \
+ do { if (!getDerived().CALL_EXPR) return false; } while (0)
+
+/// \brief A class that does preorder depth-first traversal on the
+/// entire Clang AST and visits each node.
+///
+/// This class performs three distinct tasks:
+/// 1. traverse the AST (i.e. go to each node);
+/// 2. at a given node, walk up the class hierarchy, starting from
+/// the node's dynamic type, until the top-most class (e.g. Stmt,
+/// Decl, or Type) is reached.
+/// 3. given a (node, class) combination, where 'class' is some base
+/// class of the dynamic type of 'node', call a user-overridable
+/// function to actually visit the node.
+///
+/// These tasks are done by three groups of methods, respectively:
+/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point
+/// for traversing an AST rooted at x. This method simply
+/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo
+/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and
+/// then recursively visits the child nodes of x.
+/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work
+/// similarly.
+/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit
+/// any child node of x. Instead, it first calls WalkUpFromBar(x)
+/// where Bar is the direct parent class of Foo (unless Foo has
+/// no parent), and then calls VisitFoo(x) (see the next list item).
+/// 3. VisitFoo(Foo *x) does task #3.
+///
+/// These three method groups are tiered (Traverse* > WalkUpFrom* >
+/// Visit*). A method (e.g. Traverse*) may call methods from the same
+/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*).
+/// It may not call methods from a higher tier.
+///
+/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar
+/// is Foo's super class) before calling VisitFoo(), the result is
+/// that the Visit*() methods for a given node are called in the
+/// top-down order (e.g. for a node of type NamedDecl, the order will
+/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()).
+///
+/// This scheme guarantees that all Visit*() calls for the same AST
+/// node are grouped together. In other words, Visit*() methods for
+/// different nodes are never interleaved.
+///
+/// Clients of this visitor should subclass the visitor (providing
+/// themselves as the template argument, using the curiously recurring
+/// template pattern) and override any of the Traverse*, WalkUpFrom*,
+/// and Visit* methods for declarations, types, statements,
+/// expressions, or other AST nodes where the visitor should customize
+/// behavior. Most users only need to override Visit*. Advanced
+/// users may override Traverse* and WalkUpFrom* to implement custom
+/// traversal strategies. Returning false from one of these overridden
+/// functions will abort the entire traversal.
+///
+/// By default, this visitor tries to visit every part of the explicit
+/// source code exactly once. The default policy towards templates
+/// is to descend into the 'pattern' class or function body, not any
+/// explicit or implicit instantiations. Explicit specializations
+/// are still visited, and the patterns of partial specializations
+/// are visited separately. This behavior can be changed by
+/// overriding shouldVisitTemplateInstantiations() in the derived class
+/// to return true, in which case all known implicit and explicit
+/// instantiations will be visited at the same time as the pattern
+/// from which they were produced.
+template<typename Derived>
+class RecursiveASTVisitor {
+public:
+ /// \brief Return a reference to the derived class.
+ Derived &getDerived() { return *static_cast<Derived*>(this); }
+
+ /// \brief Return whether this visitor should recurse into
+ /// template instantiations.
+ bool shouldVisitTemplateInstantiations() const { return false; }
+
+ /// \brief Return whether this visitor should recurse into the types of
+ /// TypeLocs.
+ bool shouldWalkTypesOfTypeLocs() const { return true; }
+
+ /// \brief Return whether \param S should be traversed using data recursion
+ /// to avoid a stack overflow with extreme cases.
+ bool shouldUseDataRecursionFor(Stmt *S) const {
+ return isa<BinaryOperator>(S) || isa<UnaryOperator>(S) ||
+ isa<CaseStmt>(S) || isa<CXXOperatorCallExpr>(S);
+ }
+
+ /// \brief Recursively visit a statement or expression, by
+ /// dispatching to Traverse*() based on the argument's dynamic type.
+ ///
+ /// \returns false if the visitation was terminated early, true
+ /// otherwise (including when the argument is NULL).
+ bool TraverseStmt(Stmt *S);
+
+ /// \brief Recursively visit a type, by dispatching to
+ /// Traverse*Type() based on the argument's getTypeClass() property.
+ ///
+ /// \returns false if the visitation was terminated early, true
+ /// otherwise (including when the argument is a Null type).
+ bool TraverseType(QualType T);
+
+ /// \brief Recursively visit a type with location, by dispatching to
+ /// Traverse*TypeLoc() based on the argument type's getTypeClass() property.
+ ///
+ /// \returns false if the visitation was terminated early, true
+ /// otherwise (including when the argument is a Null type location).
+ bool TraverseTypeLoc(TypeLoc TL);
+
+ /// \brief Recursively visit a declaration, by dispatching to
+ /// Traverse*Decl() based on the argument's dynamic type.
+ ///
+ /// \returns false if the visitation was terminated early, true
+ /// otherwise (including when the argument is NULL).
+ bool TraverseDecl(Decl *D);
+
+ /// \brief Recursively visit a C++ nested-name-specifier.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
+
+ /// \brief Recursively visit a C++ nested-name-specifier with location
+ /// information.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
+
+ /// \brief Recursively visit a name with its location information.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
+
+ /// \brief Recursively visit a template name and dispatch to the
+ /// appropriate method.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseTemplateName(TemplateName Template);
+
+ /// \brief Recursively visit a template argument and dispatch to the
+ /// appropriate method for the argument type.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ // FIXME: migrate callers to TemplateArgumentLoc instead.
+ bool TraverseTemplateArgument(const TemplateArgument &Arg);
+
+ /// \brief Recursively visit a template argument location and dispatch to the
+ /// appropriate method for the argument type.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
+
+ /// \brief Recursively visit a set of template arguments.
+ /// This can be overridden by a subclass, but it's not expected that
+ /// will be needed -- this visitor always dispatches to another.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ // FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead.
+ bool TraverseTemplateArguments(const TemplateArgument *Args,
+ unsigned NumArgs);
+
+ /// \brief Recursively visit a constructor initializer. This
+ /// automatically dispatches to another visitor for the initializer
+ /// expression, but not for the name of the initializer, so may
+ /// be overridden for clients that need access to the name.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
+
+ /// \brief Recursively visit a lambda capture.
+ ///
+ /// \returns false if the visitation was terminated early, true otherwise.
+ bool TraverseLambdaCapture(LambdaExpr::Capture C);
+
+ // ---- Methods on Stmts ----
+
+ // Declare Traverse*() for all concrete Stmt classes.
+#define ABSTRACT_STMT(STMT)
+#define STMT(CLASS, PARENT) \
+ bool Traverse##CLASS(CLASS *S);
+#include "clang/AST/StmtNodes.inc"
+ // The above header #undefs ABSTRACT_STMT and STMT upon exit.
+
+ // Define WalkUpFrom*() and empty Visit*() for all Stmt classes.
+ bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); }
+ bool VisitStmt(Stmt *S) { return true; }
+#define STMT(CLASS, PARENT) \
+ bool WalkUpFrom##CLASS(CLASS *S) { \
+ TRY_TO(WalkUpFrom##PARENT(S)); \
+ TRY_TO(Visit##CLASS(S)); \
+ return true; \
+ } \
+ bool Visit##CLASS(CLASS *S) { return true; }
+#include "clang/AST/StmtNodes.inc"
+
+ // Define Traverse*(), WalkUpFrom*(), and Visit*() for unary
+ // operator methods. Unary operators are not classes in themselves
+ // (they're all opcodes in UnaryOperator) but do have visitors.
+#define OPERATOR(NAME) \
+ bool TraverseUnary##NAME(UnaryOperator *S) { \
+ TRY_TO(WalkUpFromUnary##NAME(S)); \
+ TRY_TO(TraverseStmt(S->getSubExpr())); \
+ return true; \
+ } \
+ bool WalkUpFromUnary##NAME(UnaryOperator *S) { \
+ TRY_TO(WalkUpFromUnaryOperator(S)); \
+ TRY_TO(VisitUnary##NAME(S)); \
+ return true; \
+ } \
+ bool VisitUnary##NAME(UnaryOperator *S) { return true; }
+
+ UNARYOP_LIST()
+#undef OPERATOR
+
+ // Define Traverse*(), WalkUpFrom*(), and Visit*() for binary
+ // operator methods. Binary operators are not classes in themselves
+ // (they're all opcodes in BinaryOperator) but do have visitors.
+#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \
+ bool TraverseBin##NAME(BINOP_TYPE *S) { \
+ TRY_TO(WalkUpFromBin##NAME(S)); \
+ TRY_TO(TraverseStmt(S->getLHS())); \
+ TRY_TO(TraverseStmt(S->getRHS())); \
+ return true; \
+ } \
+ bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \
+ TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \
+ TRY_TO(VisitBin##NAME(S)); \
+ return true; \
+ } \
+ bool VisitBin##NAME(BINOP_TYPE *S) { return true; }
+
+#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator)
+ BINOP_LIST()
+#undef OPERATOR
+
+ // Define Traverse*(), WalkUpFrom*(), and Visit*() for compound
+ // assignment methods. Compound assignment operators are not
+ // classes in themselves (they're all opcodes in
+ // CompoundAssignOperator) but do have visitors.
+#define OPERATOR(NAME) \
+ GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator)
+
+ CAO_LIST()
+#undef OPERATOR
+#undef GENERAL_BINOP_FALLBACK
+
+ // ---- Methods on Types ----
+ // FIXME: revamp to take TypeLoc's rather than Types.
+
+ // Declare Traverse*() for all concrete Type classes.
+#define ABSTRACT_TYPE(CLASS, BASE)
+#define TYPE(CLASS, BASE) \
+ bool Traverse##CLASS##Type(CLASS##Type *T);
+#include "clang/AST/TypeNodes.def"
+ // The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
+
+ // Define WalkUpFrom*() and empty Visit*() for all Type classes.
+ bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); }
+ bool VisitType(Type *T) { return true; }
+#define TYPE(CLASS, BASE) \
+ bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \
+ TRY_TO(WalkUpFrom##BASE(T)); \
+ TRY_TO(Visit##CLASS##Type(T)); \
+ return true; \
+ } \
+ bool Visit##CLASS##Type(CLASS##Type *T) { return true; }
+#include "clang/AST/TypeNodes.def"
+
+ // ---- Methods on TypeLocs ----
+ // FIXME: this currently just calls the matching Type methods
+
+ // Declare Traverse*() for all concrete Type classes.
+#define ABSTRACT_TYPELOC(CLASS, BASE)
+#define TYPELOC(CLASS, BASE) \
+ bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL);
+#include "clang/AST/TypeLocNodes.def"
+ // The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
+
+ // Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes.
+ bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); }
+ bool VisitTypeLoc(TypeLoc TL) { return true; }
+
+ // QualifiedTypeLoc and UnqualTypeLoc are not declared in
+ // TypeNodes.def and thus need to be handled specially.
+ bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) {
+ return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
+ }
+ bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; }
+ bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) {
+ return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
+ }
+ bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
+
+ // Note that BASE includes trailing 'Type' which CLASS doesn't.
+#define TYPE(CLASS, BASE) \
+ bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
+ TRY_TO(WalkUpFrom##BASE##Loc(TL)); \
+ TRY_TO(Visit##CLASS##TypeLoc(TL)); \
+ return true; \
+ } \
+ bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; }
+#include "clang/AST/TypeNodes.def"
+
+ // ---- Methods on Decls ----
+
+ // Declare Traverse*() for all concrete Decl classes.
+#define ABSTRACT_DECL(DECL)
+#define DECL(CLASS, BASE) \
+ bool Traverse##CLASS##Decl(CLASS##Decl *D);
+#include "clang/AST/DeclNodes.inc"
+ // The above header #undefs ABSTRACT_DECL and DECL upon exit.
+
+ // Define WalkUpFrom*() and empty Visit*() for all Decl classes.
+ bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); }
+ bool VisitDecl(Decl *D) { return true; }
+#define DECL(CLASS, BASE) \
+ bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \
+ TRY_TO(WalkUpFrom##BASE(D)); \
+ TRY_TO(Visit##CLASS##Decl(D)); \
+ return true; \
+ } \
+ bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; }
+#include "clang/AST/DeclNodes.inc"
+
+private:
+ // These are helper methods used by more than one Traverse* method.
+ bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
+ bool TraverseClassInstantiations(ClassTemplateDecl* D, Decl *Pattern);
+ bool TraverseFunctionInstantiations(FunctionTemplateDecl* D) ;
+ bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL,
+ unsigned Count);
+ bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL);
+ bool TraverseRecordHelper(RecordDecl *D);
+ bool TraverseCXXRecordHelper(CXXRecordDecl *D);
+ bool TraverseDeclaratorHelper(DeclaratorDecl *D);
+ bool TraverseDeclContextHelper(DeclContext *DC);
+ bool TraverseFunctionHelper(FunctionDecl *D);
+ bool TraverseVarHelper(VarDecl *D);
+
+ bool Walk(Stmt *S);
+
+ struct EnqueueJob {
+ Stmt *S;
+ Stmt::child_iterator StmtIt;
+
+ EnqueueJob(Stmt *S) : S(S), StmtIt() {
+ if (Expr *E = dyn_cast_or_null<Expr>(S))
+ S = E->IgnoreParens();
+ }
+ };
+ bool dataTraverse(Stmt *S);
+};
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::dataTraverse(Stmt *S) {
+
+ SmallVector<EnqueueJob, 16> Queue;
+ Queue.push_back(S);
+
+ while (!Queue.empty()) {
+ EnqueueJob &job = Queue.back();
+ Stmt *CurrS = job.S;
+ if (!CurrS) {
+ Queue.pop_back();
+ continue;
+ }
+
+ if (getDerived().shouldUseDataRecursionFor(CurrS)) {
+ if (job.StmtIt == Stmt::child_iterator()) {
+ if (!Walk(CurrS)) return false;
+ job.StmtIt = CurrS->child_begin();
+ } else {
+ ++job.StmtIt;
+ }
+
+ if (job.StmtIt != CurrS->child_end())
+ Queue.push_back(*job.StmtIt);
+ else
+ Queue.pop_back();
+ continue;
+ }
+
+ Queue.pop_back();
+ TRY_TO(TraverseStmt(CurrS));
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::Walk(Stmt *S) {
+
+#define DISPATCH_WALK(NAME, CLASS, VAR) \
+ return getDerived().WalkUpFrom##NAME(static_cast<CLASS*>(VAR));
+
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
+ switch (BinOp->getOpcode()) {
+#define OPERATOR(NAME) \
+ case BO_##NAME: DISPATCH_WALK(Bin##NAME, BinaryOperator, S);
+
+ BINOP_LIST()
+#undef OPERATOR
+
+#define OPERATOR(NAME) \
+ case BO_##NAME##Assign: \
+ DISPATCH_WALK(Bin##NAME##Assign, CompoundAssignOperator, S);
+
+ CAO_LIST()
+#undef OPERATOR
+ }
+ } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
+ switch (UnOp->getOpcode()) {
+#define OPERATOR(NAME) \
+ case UO_##NAME: DISPATCH_WALK(Unary##NAME, UnaryOperator, S);
+
+ UNARYOP_LIST()
+#undef OPERATOR
+ }
+ }
+
+ // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
+ switch (S->getStmtClass()) {
+ case Stmt::NoStmtClass: break;
+#define ABSTRACT_STMT(STMT)
+#define STMT(CLASS, PARENT) \
+ case Stmt::CLASS##Class: DISPATCH_WALK(CLASS, CLASS, S);
+#include "clang/AST/StmtNodes.inc"
+ }
+
+#undef DISPATCH_WALK
+
+ return true;
+}
+
+#define DISPATCH(NAME, CLASS, VAR) \
+ return getDerived().Traverse##NAME(static_cast<CLASS*>(VAR))
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) {
+ if (!S)
+ return true;
+
+ if (getDerived().shouldUseDataRecursionFor(S))
+ return dataTraverse(S);
+
+ // If we have a binary expr, dispatch to the subcode of the binop. A smart
+ // optimizer (e.g. LLVM) will fold this comparison into the switch stmt
+ // below.
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
+ switch (BinOp->getOpcode()) {
+#define OPERATOR(NAME) \
+ case BO_##NAME: DISPATCH(Bin##NAME, BinaryOperator, S);
+
+ BINOP_LIST()
+#undef OPERATOR
+#undef BINOP_LIST
+
+#define OPERATOR(NAME) \
+ case BO_##NAME##Assign: \
+ DISPATCH(Bin##NAME##Assign, CompoundAssignOperator, S);
+
+ CAO_LIST()
+#undef OPERATOR
+#undef CAO_LIST
+ }
+ } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
+ switch (UnOp->getOpcode()) {
+#define OPERATOR(NAME) \
+ case UO_##NAME: DISPATCH(Unary##NAME, UnaryOperator, S);
+
+ UNARYOP_LIST()
+#undef OPERATOR
+#undef UNARYOP_LIST
+ }
+ }
+
+ // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
+ switch (S->getStmtClass()) {
+ case Stmt::NoStmtClass: break;
+#define ABSTRACT_STMT(STMT)
+#define STMT(CLASS, PARENT) \
+ case Stmt::CLASS##Class: DISPATCH(CLASS, CLASS, S);
+#include "clang/AST/StmtNodes.inc"
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) {
+ if (T.isNull())
+ return true;
+
+ switch (T->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, BASE)
+#define TYPE(CLASS, BASE) \
+ case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \
+ const_cast<Type*>(T.getTypePtr()));
+#include "clang/AST/TypeNodes.def"
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) {
+ if (TL.isNull())
+ return true;
+
+ switch (TL.getTypeLocClass()) {
+#define ABSTRACT_TYPELOC(CLASS, BASE)
+#define TYPELOC(CLASS, BASE) \
+ case TypeLoc::CLASS: \
+ return getDerived().Traverse##CLASS##TypeLoc(*cast<CLASS##TypeLoc>(&TL));
+#include "clang/AST/TypeLocNodes.def"
+ }
+
+ return true;
+}
+
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) {
+ if (!D)
+ return true;
+
+ // As a syntax visitor, we want to ignore declarations for
+ // implicitly-defined declarations (ones not typed explicitly by the
+ // user).
+ if (D->isImplicit())
+ return true;
+
+ switch (D->getKind()) {
+#define ABSTRACT_DECL(DECL)
+#define DECL(CLASS, BASE) \
+ case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D);
+#include "clang/AST/DeclNodes.inc"
+ }
+
+ return true;
+}
+
+#undef DISPATCH
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier(
+ NestedNameSpecifier *NNS) {
+ if (!NNS)
+ return true;
+
+ if (NNS->getPrefix())
+ TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ return true;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ TRY_TO(TraverseType(QualType(NNS->getAsType(), 0)));
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc(
+ NestedNameSpecifierLoc NNS) {
+ if (!NNS)
+ return true;
+
+ if (NestedNameSpecifierLoc Prefix = NNS.getPrefix())
+ TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
+
+ switch (NNS.getNestedNameSpecifier()->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ return true;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ TRY_TO(TraverseTypeLoc(NNS.getTypeLoc()));
+ break;
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo(
+ DeclarationNameInfo NameInfo) {
+ switch (NameInfo.getName().getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
+ TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc()));
+
+ break;
+
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXOperatorName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXUsingDirective:
+ break;
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) {
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
+ TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier()));
+ else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier()));
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument(
+ const TemplateArgument &Arg) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ return true;
+
+ case TemplateArgument::Type:
+ return getDerived().TraverseType(Arg.getAsType());
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ return getDerived().TraverseTemplateName(
+ Arg.getAsTemplateOrTemplatePattern());
+
+ case TemplateArgument::Expression:
+ return getDerived().TraverseStmt(Arg.getAsExpr());
+
+ case TemplateArgument::Pack:
+ return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
+ Arg.pack_size());
+ }
+
+ return true;
+}
+
+// FIXME: no template name location?
+// FIXME: no source locations for a template argument pack?
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc(
+ const TemplateArgumentLoc &ArgLoc) {
+ const TemplateArgument &Arg = ArgLoc.getArgument();
+
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ return true;
+
+ case TemplateArgument::Type: {
+ // FIXME: how can TSI ever be NULL?
+ if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo())
+ return getDerived().TraverseTypeLoc(TSI->getTypeLoc());
+ else
+ return getDerived().TraverseType(Arg.getAsType());
+ }
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ if (ArgLoc.getTemplateQualifierLoc())
+ TRY_TO(getDerived().TraverseNestedNameSpecifierLoc(
+ ArgLoc.getTemplateQualifierLoc()));
+ return getDerived().TraverseTemplateName(
+ Arg.getAsTemplateOrTemplatePattern());
+
+ case TemplateArgument::Expression:
+ return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
+
+ case TemplateArgument::Pack:
+ return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
+ Arg.pack_size());
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments(
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ TRY_TO(TraverseTemplateArgument(Args[I]));
+ }
+
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer(
+ CXXCtorInitializer *Init) {
+ if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo())
+ TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
+
+ if (Init->isWritten())
+ TRY_TO(TraverseStmt(Init->getInit()));
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr::Capture C){
+ return true;
+}
+
+// ----------------- Type traversal -----------------
+
+// This macro makes available a variable T, the passed-in type.
+#define DEF_TRAVERSE_TYPE(TYPE, CODE) \
+ template<typename Derived> \
+ bool RecursiveASTVisitor<Derived>::Traverse##TYPE (TYPE *T) { \
+ TRY_TO(WalkUpFrom##TYPE (T)); \
+ { CODE; } \
+ return true; \
+ }
+
+DEF_TRAVERSE_TYPE(BuiltinType, { })
+
+DEF_TRAVERSE_TYPE(ComplexType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPE(PointerType, {
+ TRY_TO(TraverseType(T->getPointeeType()));
+ })
+
+DEF_TRAVERSE_TYPE(BlockPointerType, {
+ TRY_TO(TraverseType(T->getPointeeType()));
+ })
+
+DEF_TRAVERSE_TYPE(LValueReferenceType, {
+ TRY_TO(TraverseType(T->getPointeeType()));
+ })
+
+DEF_TRAVERSE_TYPE(RValueReferenceType, {
+ TRY_TO(TraverseType(T->getPointeeType()));
+ })
+
+DEF_TRAVERSE_TYPE(MemberPointerType, {
+ TRY_TO(TraverseType(QualType(T->getClass(), 0)));
+ TRY_TO(TraverseType(T->getPointeeType()));
+ })
+
+DEF_TRAVERSE_TYPE(ConstantArrayType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPE(IncompleteArrayType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPE(VariableArrayType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ TRY_TO(TraverseStmt(T->getSizeExpr()));
+ })
+
+DEF_TRAVERSE_TYPE(DependentSizedArrayType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ if (T->getSizeExpr())
+ TRY_TO(TraverseStmt(T->getSizeExpr()));
+ })
+
+DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, {
+ if (T->getSizeExpr())
+ TRY_TO(TraverseStmt(T->getSizeExpr()));
+ TRY_TO(TraverseType(T->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPE(VectorType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPE(ExtVectorType, {
+ TRY_TO(TraverseType(T->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPE(FunctionNoProtoType, {
+ TRY_TO(TraverseType(T->getResultType()));
+ })
+
+DEF_TRAVERSE_TYPE(FunctionProtoType, {
+ TRY_TO(TraverseType(T->getResultType()));
+
+ for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
+ AEnd = T->arg_type_end();
+ A != AEnd; ++A) {
+ TRY_TO(TraverseType(*A));
+ }
+
+ for (FunctionProtoType::exception_iterator E = T->exception_begin(),
+ EEnd = T->exception_end();
+ E != EEnd; ++E) {
+ TRY_TO(TraverseType(*E));
+ }
+ })
+
+DEF_TRAVERSE_TYPE(UnresolvedUsingType, { })
+DEF_TRAVERSE_TYPE(TypedefType, { })
+
+DEF_TRAVERSE_TYPE(TypeOfExprType, {
+ TRY_TO(TraverseStmt(T->getUnderlyingExpr()));
+ })
+
+DEF_TRAVERSE_TYPE(TypeOfType, {
+ TRY_TO(TraverseType(T->getUnderlyingType()));
+ })
+
+DEF_TRAVERSE_TYPE(DecltypeType, {
+ TRY_TO(TraverseStmt(T->getUnderlyingExpr()));
+ })
+
+DEF_TRAVERSE_TYPE(UnaryTransformType, {
+ TRY_TO(TraverseType(T->getBaseType()));
+ TRY_TO(TraverseType(T->getUnderlyingType()));
+ })
+
+DEF_TRAVERSE_TYPE(AutoType, {
+ TRY_TO(TraverseType(T->getDeducedType()));
+ })
+
+DEF_TRAVERSE_TYPE(RecordType, { })
+DEF_TRAVERSE_TYPE(EnumType, { })
+DEF_TRAVERSE_TYPE(TemplateTypeParmType, { })
+DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { })
+DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { })
+
+DEF_TRAVERSE_TYPE(TemplateSpecializationType, {
+ TRY_TO(TraverseTemplateName(T->getTemplateName()));
+ TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
+ })
+
+DEF_TRAVERSE_TYPE(InjectedClassNameType, { })
+
+DEF_TRAVERSE_TYPE(AttributedType, {
+ TRY_TO(TraverseType(T->getModifiedType()));
+ })
+
+DEF_TRAVERSE_TYPE(ParenType, {
+ TRY_TO(TraverseType(T->getInnerType()));
+ })
+
+DEF_TRAVERSE_TYPE(ElaboratedType, {
+ if (T->getQualifier()) {
+ TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
+ }
+ TRY_TO(TraverseType(T->getNamedType()));
+ })
+
+DEF_TRAVERSE_TYPE(DependentNameType, {
+ TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
+ })
+
+DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, {
+ TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
+ TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
+ })
+
+DEF_TRAVERSE_TYPE(PackExpansionType, {
+ TRY_TO(TraverseType(T->getPattern()));
+ })
+
+DEF_TRAVERSE_TYPE(ObjCInterfaceType, { })
+
+DEF_TRAVERSE_TYPE(ObjCObjectType, {
+ // We have to watch out here because an ObjCInterfaceType's base
+ // type is itself.
+ if (T->getBaseType().getTypePtr() != T)
+ TRY_TO(TraverseType(T->getBaseType()));
+ })
+
+DEF_TRAVERSE_TYPE(ObjCObjectPointerType, {
+ TRY_TO(TraverseType(T->getPointeeType()));
+ })
+
+DEF_TRAVERSE_TYPE(AtomicType, {
+ TRY_TO(TraverseType(T->getValueType()));
+ })
+
+#undef DEF_TRAVERSE_TYPE
+
+// ----------------- TypeLoc traversal -----------------
+
+// This macro makes available a variable TL, the passed-in TypeLoc.
+// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc,
+// in addition to WalkUpFrom* for the TypeLoc itself, such that existing
+// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods
+// continue to work.
+#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \
+ template<typename Derived> \
+ bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \
+ if (getDerived().shouldWalkTypesOfTypeLocs()) \
+ TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE*>(TL.getTypePtr()))); \
+ TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \
+ { CODE; } \
+ return true; \
+ }
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(
+ QualifiedTypeLoc TL) {
+ // Move this over to the 'main' typeloc tree. Note that this is a
+ // move -- we pretend that we were really looking at the unqualified
+ // typeloc all along -- rather than a recursion, so we don't follow
+ // the normal CRTP plan of going through
+ // getDerived().TraverseTypeLoc. If we did, we'd be traversing
+ // twice for the same type (once as a QualifiedTypeLoc version of
+ // the type, once as an UnqualifiedTypeLoc version of the type),
+ // which in effect means we'd call VisitTypeLoc twice with the
+ // 'same' type. This solves that problem, at the cost of never
+ // seeing the qualified version of the type (unless the client
+ // subclasses TraverseQualifiedTypeLoc themselves). It's not a
+ // perfect solution. A perfect solution probably requires making
+ // QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a
+ // wrapper around Type* -- rather than being its own class in the
+ // type hierarchy.
+ return TraverseTypeLoc(TL.getUnqualifiedLoc());
+}
+
+DEF_TRAVERSE_TYPELOC(BuiltinType, { })
+
+// FIXME: ComplexTypeLoc is unfinished
+DEF_TRAVERSE_TYPELOC(ComplexType, {
+ TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPELOC(PointerType, {
+ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(BlockPointerType, {
+ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(LValueReferenceType, {
+ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(RValueReferenceType, {
+ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
+ })
+
+// FIXME: location of base class?
+// We traverse this in the type case as well, but how is it not reached through
+// the pointee type?
+DEF_TRAVERSE_TYPELOC(MemberPointerType, {
+ TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0)));
+ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
+ })
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) {
+ // This isn't available for ArrayType, but is for the ArrayTypeLoc.
+ TRY_TO(TraverseStmt(TL.getSizeExpr()));
+ return true;
+}
+
+DEF_TRAVERSE_TYPELOC(ConstantArrayType, {
+ TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
+ return TraverseArrayTypeLocHelper(TL);
+ })
+
+DEF_TRAVERSE_TYPELOC(IncompleteArrayType, {
+ TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
+ return TraverseArrayTypeLocHelper(TL);
+ })
+
+DEF_TRAVERSE_TYPELOC(VariableArrayType, {
+ TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
+ return TraverseArrayTypeLocHelper(TL);
+ })
+
+DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, {
+ TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
+ return TraverseArrayTypeLocHelper(TL);
+ })
+
+// FIXME: order? why not size expr first?
+// FIXME: base VectorTypeLoc is unfinished
+DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, {
+ if (TL.getTypePtr()->getSizeExpr())
+ TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
+ TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
+ })
+
+// FIXME: VectorTypeLoc is unfinished
+DEF_TRAVERSE_TYPELOC(VectorType, {
+ TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
+ })
+
+// FIXME: size and attributes
+// FIXME: base VectorTypeLoc is unfinished
+DEF_TRAVERSE_TYPELOC(ExtVectorType, {
+ TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
+ })
+
+DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, {
+ TRY_TO(TraverseTypeLoc(TL.getResultLoc()));
+ })
+
+// FIXME: location of exception specifications (attributes?)
+DEF_TRAVERSE_TYPELOC(FunctionProtoType, {
+ TRY_TO(TraverseTypeLoc(TL.getResultLoc()));
+
+ const FunctionProtoType *T = TL.getTypePtr();
+
+ for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
+ if (TL.getArg(I)) {
+ TRY_TO(TraverseDecl(TL.getArg(I)));
+ } else if (I < T->getNumArgs()) {
+ TRY_TO(TraverseType(T->getArgType(I)));
+ }
+ }
+
+ for (FunctionProtoType::exception_iterator E = T->exception_begin(),
+ EEnd = T->exception_end();
+ E != EEnd; ++E) {
+ TRY_TO(TraverseType(*E));
+ }
+ })
+
+DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { })
+DEF_TRAVERSE_TYPELOC(TypedefType, { })
+
+DEF_TRAVERSE_TYPELOC(TypeOfExprType, {
+ TRY_TO(TraverseStmt(TL.getUnderlyingExpr()));
+ })
+
+DEF_TRAVERSE_TYPELOC(TypeOfType, {
+ TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
+ })
+
+// FIXME: location of underlying expr
+DEF_TRAVERSE_TYPELOC(DecltypeType, {
+ TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr()));
+ })
+
+DEF_TRAVERSE_TYPELOC(UnaryTransformType, {
+ TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(AutoType, {
+ TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
+ })
+
+DEF_TRAVERSE_TYPELOC(RecordType, { })
+DEF_TRAVERSE_TYPELOC(EnumType, { })
+DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { })
+DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { })
+DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { })
+
+// FIXME: use the loc for the template name?
+DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, {
+ TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
+ for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
+ TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
+ }
+ })
+
+DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { })
+
+DEF_TRAVERSE_TYPELOC(ParenType, {
+ TRY_TO(TraverseTypeLoc(TL.getInnerLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(AttributedType, {
+ TRY_TO(TraverseTypeLoc(TL.getModifiedLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(ElaboratedType, {
+ if (TL.getQualifierLoc()) {
+ TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
+ }
+ TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(DependentNameType, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, {
+ if (TL.getQualifierLoc()) {
+ TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
+ }
+
+ for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
+ TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
+ }
+ })
+
+DEF_TRAVERSE_TYPELOC(PackExpansionType, {
+ TRY_TO(TraverseTypeLoc(TL.getPatternLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { })
+
+DEF_TRAVERSE_TYPELOC(ObjCObjectType, {
+ // We have to watch out here because an ObjCInterfaceType's base
+ // type is itself.
+ if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr())
+ TRY_TO(TraverseTypeLoc(TL.getBaseLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, {
+ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
+ })
+
+DEF_TRAVERSE_TYPELOC(AtomicType, {
+ TRY_TO(TraverseTypeLoc(TL.getValueLoc()));
+ })
+
+#undef DEF_TRAVERSE_TYPELOC
+
+// ----------------- Decl traversal -----------------
+//
+// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing
+// the children that come from the DeclContext associated with it.
+// Therefore each Traverse* only needs to worry about children other
+// than those.
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) {
+ if (!DC)
+ return true;
+
+ for (DeclContext::decl_iterator Child = DC->decls_begin(),
+ ChildEnd = DC->decls_end();
+ Child != ChildEnd; ++Child) {
+ // BlockDecls are traversed through BlockExprs.
+ if (!isa<BlockDecl>(*Child))
+ TRY_TO(TraverseDecl(*Child));
+ }
+
+ return true;
+}
+
+// This macro makes available a variable D, the passed-in decl.
+#define DEF_TRAVERSE_DECL(DECL, CODE) \
+template<typename Derived> \
+bool RecursiveASTVisitor<Derived>::Traverse##DECL (DECL *D) { \
+ TRY_TO(WalkUpFrom##DECL (D)); \
+ { CODE; } \
+ TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \
+ return true; \
+}
+
+DEF_TRAVERSE_DECL(AccessSpecDecl, { })
+
+DEF_TRAVERSE_DECL(BlockDecl, {
+ TRY_TO(TraverseTypeLoc(D->getSignatureAsWritten()->getTypeLoc()));
+ TRY_TO(TraverseStmt(D->getBody()));
+ // This return statement makes sure the traversal of nodes in
+ // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
+ // is skipped - don't remove it.
+ return true;
+ })
+
+DEF_TRAVERSE_DECL(FileScopeAsmDecl, {
+ TRY_TO(TraverseStmt(D->getAsmString()));
+ })
+
+DEF_TRAVERSE_DECL(ImportDecl, { })
+
+DEF_TRAVERSE_DECL(FriendDecl, {
+ // Friend is either decl or a type.
+ if (D->getFriendType())
+ TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
+ else
+ TRY_TO(TraverseDecl(D->getFriendDecl()));
+ })
+
+DEF_TRAVERSE_DECL(FriendTemplateDecl, {
+ if (D->getFriendType())
+ TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
+ else
+ TRY_TO(TraverseDecl(D->getFriendDecl()));
+ for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) {
+ TemplateParameterList *TPL = D->getTemplateParameterList(I);
+ for (TemplateParameterList::iterator ITPL = TPL->begin(),
+ ETPL = TPL->end();
+ ITPL != ETPL; ++ITPL) {
+ TRY_TO(TraverseDecl(*ITPL));
+ }
+ }
+ })
+
+DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, {
+ TRY_TO(TraverseDecl(D->getSpecialization()));
+ })
+
+DEF_TRAVERSE_DECL(LinkageSpecDecl, { })
+
+DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {
+ // FIXME: implement this
+ })
+
+DEF_TRAVERSE_DECL(StaticAssertDecl, {
+ TRY_TO(TraverseStmt(D->getAssertExpr()));
+ TRY_TO(TraverseStmt(D->getMessage()));
+ })
+
+DEF_TRAVERSE_DECL(TranslationUnitDecl, {
+ // Code in an unnamed namespace shows up automatically in
+ // decls_begin()/decls_end(). Thus we don't need to recurse on
+ // D->getAnonymousNamespace().
+ })
+
+DEF_TRAVERSE_DECL(NamespaceAliasDecl, {
+ // We shouldn't traverse an aliased namespace, since it will be
+ // defined (and, therefore, traversed) somewhere else.
+ //
+ // This return statement makes sure the traversal of nodes in
+ // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro)
+ // is skipped - don't remove it.
+ return true;
+ })
+
+DEF_TRAVERSE_DECL(LabelDecl, {
+ // There is no code in a LabelDecl.
+})
+
+
+DEF_TRAVERSE_DECL(NamespaceDecl, {
+ // Code in an unnamed namespace shows up automatically in
+ // decls_begin()/decls_end(). Thus we don't need to recurse on
+ // D->getAnonymousNamespace().
+ })
+
+DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(ObjCCategoryDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(ObjCImplementationDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(ObjCInterfaceDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(ObjCProtocolDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(ObjCMethodDecl, {
+ if (D->getResultTypeSourceInfo()) {
+ TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc()));
+ }
+ for (ObjCMethodDecl::param_iterator
+ I = D->param_begin(), E = D->param_end(); I != E; ++I) {
+ TRY_TO(TraverseDecl(*I));
+ }
+ if (D->isThisDeclarationADefinition()) {
+ TRY_TO(TraverseStmt(D->getBody()));
+ }
+ return true;
+ })
+
+DEF_TRAVERSE_DECL(ObjCPropertyDecl, {
+ // FIXME: implement
+ })
+
+DEF_TRAVERSE_DECL(UsingDecl, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
+ })
+
+DEF_TRAVERSE_DECL(UsingDirectiveDecl, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ })
+
+DEF_TRAVERSE_DECL(UsingShadowDecl, { })
+
+// A helper method for TemplateDecl's children.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper(
+ TemplateParameterList *TPL) {
+ if (TPL) {
+ for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
+ I != E; ++I) {
+ TRY_TO(TraverseDecl(*I));
+ }
+ }
+ return true;
+}
+
+// A helper method for traversing the implicit instantiations of a
+// class.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations(
+ ClassTemplateDecl* D, Decl *Pattern) {
+ assert(isa<ClassTemplateDecl>(Pattern) ||
+ isa<ClassTemplatePartialSpecializationDecl>(Pattern));
+
+ ClassTemplateDecl::spec_iterator end = D->spec_end();
+ for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) {
+ ClassTemplateSpecializationDecl* SD = *it;
+
+ switch (SD->getSpecializationKind()) {
+ // Visit the implicit instantiations with the requested pattern.
+ case TSK_ImplicitInstantiation: {
+ llvm::PointerUnion<ClassTemplateDecl *,
+ ClassTemplatePartialSpecializationDecl *> U
+ = SD->getInstantiatedFrom();
+
+ bool ShouldVisit;
+ if (U.is<ClassTemplateDecl*>())
+ ShouldVisit = (U.get<ClassTemplateDecl*>() == Pattern);
+ else
+ ShouldVisit
+ = (U.get<ClassTemplatePartialSpecializationDecl*>() == Pattern);
+
+ if (ShouldVisit)
+ TRY_TO(TraverseDecl(SD));
+ break;
+ }
+
+ // We don't need to do anything on an explicit instantiation
+ // or explicit specialization because there will be an explicit
+ // node for it elsewhere.
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ case TSK_ExplicitSpecialization:
+ break;
+
+ // We don't need to do anything for an uninstantiated
+ // specialization.
+ case TSK_Undeclared:
+ break;
+ }
+ }
+
+ return true;
+}
+
+DEF_TRAVERSE_DECL(ClassTemplateDecl, {
+ CXXRecordDecl* TempDecl = D->getTemplatedDecl();
+ TRY_TO(TraverseDecl(TempDecl));
+ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
+
+ // By default, we do not traverse the instantiations of
+ // class templates since they do not appear in the user code. The
+ // following code optionally traverses them.
+ if (getDerived().shouldVisitTemplateInstantiations()) {
+ // If this is the definition of the primary template, visit
+ // instantiations which were formed from this pattern.
+ if (D->isThisDeclarationADefinition())
+ TRY_TO(TraverseClassInstantiations(D, D));
+ }
+
+ // Note that getInstantiatedFromMemberTemplate() is just a link
+ // from a template instantiation back to the template from which
+ // it was instantiated, and thus should not be traversed.
+ })
+
+// A helper method for traversing the instantiations of a
+// function while skipping its specializations.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations(
+ FunctionTemplateDecl* D) {
+ FunctionTemplateDecl::spec_iterator end = D->spec_end();
+ for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end;
+ ++it) {
+ FunctionDecl* FD = *it;
+ switch (FD->getTemplateSpecializationKind()) {
+ case TSK_ImplicitInstantiation:
+ // We don't know what kind of FunctionDecl this is.
+ TRY_TO(TraverseDecl(FD));
+ break;
+
+ // No need to visit explicit instantiations, we'll find the node
+ // eventually.
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ break;
+
+ case TSK_Undeclared: // Declaration of the template definition.
+ case TSK_ExplicitSpecialization:
+ break;
+ }
+ }
+
+ return true;
+}
+
+DEF_TRAVERSE_DECL(FunctionTemplateDecl, {
+ TRY_TO(TraverseDecl(D->getTemplatedDecl()));
+ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
+
+ // By default, we do not traverse the instantiations of
+ // function templates since they do not apprear in the user code. The
+ // following code optionally traverses them.
+ if (getDerived().shouldVisitTemplateInstantiations()) {
+ // Explicit function specializations will be traversed from the
+ // context of their declaration. There is therefore no need to
+ // traverse them for here.
+ //
+ // In addition, we only traverse the function instantiations when
+ // the function template is a function template definition.
+ if (D->isThisDeclarationADefinition()) {
+ TRY_TO(TraverseFunctionInstantiations(D));
+ }
+ }
+ })
+
+DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, {
+ // D is the "T" in something like
+ // template <template <typename> class T> class container { };
+ TRY_TO(TraverseDecl(D->getTemplatedDecl()));
+ if (D->hasDefaultArgument()) {
+ TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument()));
+ }
+ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
+ })
+
+DEF_TRAVERSE_DECL(TemplateTypeParmDecl, {
+ // D is the "T" in something like "template<typename T> class vector;"
+ if (D->getTypeForDecl())
+ TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
+ if (D->hasDefaultArgument())
+ TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_DECL(TypedefDecl, {
+ TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
+ // We shouldn't traverse D->getTypeForDecl(); it's a result of
+ // declaring the typedef, not something that was written in the
+ // source.
+ })
+
+DEF_TRAVERSE_DECL(TypeAliasDecl, {
+ TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
+ // We shouldn't traverse D->getTypeForDecl(); it's a result of
+ // declaring the type alias, not something that was written in the
+ // source.
+ })
+
+DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, {
+ TRY_TO(TraverseDecl(D->getTemplatedDecl()));
+ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
+ })
+
+DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, {
+ // A dependent using declaration which was marked with 'typename'.
+ // template<class T> class A : public B<T> { using typename B<T>::foo; };
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ // We shouldn't traverse D->getTypeForDecl(); it's a result of
+ // declaring the type, not something that was written in the
+ // source.
+ })
+
+DEF_TRAVERSE_DECL(EnumDecl, {
+ if (D->getTypeForDecl())
+ TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
+
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ // The enumerators are already traversed by
+ // decls_begin()/decls_end().
+ })
+
+
+// Helper methods for RecordDecl and its children.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(
+ RecordDecl *D) {
+ // We shouldn't traverse D->getTypeForDecl(); it's a result of
+ // declaring the type, not something that was written in the source.
+
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ return true;
+}
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(
+ CXXRecordDecl *D) {
+ if (!TraverseRecordHelper(D))
+ return false;
+ if (D->hasDefinition()) {
+ for (CXXRecordDecl::base_class_iterator I = D->bases_begin(),
+ E = D->bases_end();
+ I != E; ++I) {
+ TRY_TO(TraverseTypeLoc(I->getTypeSourceInfo()->getTypeLoc()));
+ }
+ // We don't traverse the friends or the conversions, as they are
+ // already in decls_begin()/decls_end().
+ }
+ return true;
+}
+
+DEF_TRAVERSE_DECL(RecordDecl, {
+ TRY_TO(TraverseRecordHelper(D));
+ })
+
+DEF_TRAVERSE_DECL(CXXRecordDecl, {
+ TRY_TO(TraverseCXXRecordHelper(D));
+ })
+
+DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, {
+ // For implicit instantiations ("set<int> x;"), we don't want to
+ // recurse at all, since the instatiated class isn't written in
+ // the source code anywhere. (Note the instatiated *type* --
+ // set<int> -- is written, and will still get a callback of
+ // TemplateSpecializationType). For explicit instantiations
+ // ("template set<int>;"), we do need a callback, since this
+ // is the only callback that's made for this instantiation.
+ // We use getTypeAsWritten() to distinguish.
+ if (TypeSourceInfo *TSI = D->getTypeAsWritten())
+ TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
+
+ if (!getDerived().shouldVisitTemplateInstantiations() &&
+ D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
+ // Returning from here skips traversing the
+ // declaration context of the ClassTemplateSpecializationDecl
+ // (embedded in the DEF_TRAVERSE_DECL() macro)
+ // which contains the instantiated members of the class.
+ return true;
+ })
+
+template <typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper(
+ const TemplateArgumentLoc *TAL, unsigned Count) {
+ for (unsigned I = 0; I < Count; ++I) {
+ TRY_TO(TraverseTemplateArgumentLoc(TAL[I]));
+ }
+ return true;
+}
+
+DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, {
+ // The partial specialization.
+ if (TemplateParameterList *TPL = D->getTemplateParameters()) {
+ for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
+ I != E; ++I) {
+ TRY_TO(TraverseDecl(*I));
+ }
+ }
+ // The args that remains unspecialized.
+ TRY_TO(TraverseTemplateArgumentLocsHelper(
+ D->getTemplateArgsAsWritten(), D->getNumTemplateArgsAsWritten()));
+
+ // Don't need the ClassTemplatePartialSpecializationHelper, even
+ // though that's our parent class -- we already visit all the
+ // template args here.
+ TRY_TO(TraverseCXXRecordHelper(D));
+
+ // If we're visiting instantiations, visit the instantiations of
+ // this template now.
+ if (getDerived().shouldVisitTemplateInstantiations() &&
+ D->isThisDeclarationADefinition())
+ TRY_TO(TraverseClassInstantiations(D->getSpecializedTemplate(), D));
+ })
+
+DEF_TRAVERSE_DECL(EnumConstantDecl, {
+ TRY_TO(TraverseStmt(D->getInitExpr()));
+ })
+
+DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, {
+ // Like UnresolvedUsingTypenameDecl, but without the 'typename':
+ // template <class T> Class A : public Base<T> { using Base<T>::foo; };
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
+ })
+
+DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) {
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ if (D->getTypeSourceInfo())
+ TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
+ else
+ TRY_TO(TraverseType(D->getType()));
+ return true;
+}
+
+DEF_TRAVERSE_DECL(FieldDecl, {
+ TRY_TO(TraverseDeclaratorHelper(D));
+ if (D->isBitField())
+ TRY_TO(TraverseStmt(D->getBitWidth()));
+ else if (D->hasInClassInitializer())
+ TRY_TO(TraverseStmt(D->getInClassInitializer()));
+ })
+
+DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, {
+ TRY_TO(TraverseDeclaratorHelper(D));
+ if (D->isBitField())
+ TRY_TO(TraverseStmt(D->getBitWidth()));
+ // FIXME: implement the rest.
+ })
+
+DEF_TRAVERSE_DECL(ObjCIvarDecl, {
+ TRY_TO(TraverseDeclaratorHelper(D));
+ if (D->isBitField())
+ TRY_TO(TraverseStmt(D->getBitWidth()));
+ // FIXME: implement the rest.
+ })
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) {
+ TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
+
+ // If we're an explicit template specialization, iterate over the
+ // template args that were explicitly specified. If we were doing
+ // this in typing order, we'd do it between the return type and
+ // the function args, but both are handled by the FunctionTypeLoc
+ // above, so we have to choose one side. I've decided to do before.
+ if (const FunctionTemplateSpecializationInfo *FTSI =
+ D->getTemplateSpecializationInfo()) {
+ if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared &&
+ FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
+ // A specialization might not have explicit template arguments if it has
+ // a templated return type and concrete arguments.
+ if (const ASTTemplateArgumentListInfo *TALI =
+ FTSI->TemplateArgumentsAsWritten) {
+ TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(),
+ TALI->NumTemplateArgs));
+ }
+ }
+ }
+
+ // Visit the function type itself, which can be either
+ // FunctionNoProtoType or FunctionProtoType, or a typedef. This
+ // also covers the return type and the function parameters,
+ // including exception specifications.
+ TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
+
+ if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
+ // Constructor initializers.
+ for (CXXConstructorDecl::init_iterator I = Ctor->init_begin(),
+ E = Ctor->init_end();
+ I != E; ++I) {
+ TRY_TO(TraverseConstructorInitializer(*I));
+ }
+ }
+
+ if (D->isThisDeclarationADefinition()) {
+ TRY_TO(TraverseStmt(D->getBody())); // Function body.
+ }
+ return true;
+}
+
+DEF_TRAVERSE_DECL(FunctionDecl, {
+ // We skip decls_begin/decls_end, which are already covered by
+ // TraverseFunctionHelper().
+ return TraverseFunctionHelper(D);
+ })
+
+DEF_TRAVERSE_DECL(CXXMethodDecl, {
+ // We skip decls_begin/decls_end, which are already covered by
+ // TraverseFunctionHelper().
+ return TraverseFunctionHelper(D);
+ })
+
+DEF_TRAVERSE_DECL(CXXConstructorDecl, {
+ // We skip decls_begin/decls_end, which are already covered by
+ // TraverseFunctionHelper().
+ return TraverseFunctionHelper(D);
+ })
+
+// CXXConversionDecl is the declaration of a type conversion operator.
+// It's not a cast expression.
+DEF_TRAVERSE_DECL(CXXConversionDecl, {
+ // We skip decls_begin/decls_end, which are already covered by
+ // TraverseFunctionHelper().
+ return TraverseFunctionHelper(D);
+ })
+
+DEF_TRAVERSE_DECL(CXXDestructorDecl, {
+ // We skip decls_begin/decls_end, which are already covered by
+ // TraverseFunctionHelper().
+ return TraverseFunctionHelper(D);
+ })
+
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) {
+ TRY_TO(TraverseDeclaratorHelper(D));
+ // Default params are taken care of when we traverse the ParmVarDecl.
+ if (!isa<ParmVarDecl>(D))
+ TRY_TO(TraverseStmt(D->getInit()));
+ return true;
+}
+
+DEF_TRAVERSE_DECL(VarDecl, {
+ TRY_TO(TraverseVarHelper(D));
+ })
+
+DEF_TRAVERSE_DECL(ImplicitParamDecl, {
+ TRY_TO(TraverseVarHelper(D));
+ })
+
+DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, {
+ // A non-type template parameter, e.g. "S" in template<int S> class Foo ...
+ TRY_TO(TraverseDeclaratorHelper(D));
+ TRY_TO(TraverseStmt(D->getDefaultArgument()));
+ })
+
+DEF_TRAVERSE_DECL(ParmVarDecl, {
+ TRY_TO(TraverseVarHelper(D));
+
+ if (D->hasDefaultArg() &&
+ D->hasUninstantiatedDefaultArg() &&
+ !D->hasUnparsedDefaultArg())
+ TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
+
+ if (D->hasDefaultArg() &&
+ !D->hasUninstantiatedDefaultArg() &&
+ !D->hasUnparsedDefaultArg())
+ TRY_TO(TraverseStmt(D->getDefaultArg()));
+ })
+
+#undef DEF_TRAVERSE_DECL
+
+// ----------------- Stmt traversal -----------------
+//
+// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating
+// over the children defined in children() (every stmt defines these,
+// though sometimes the range is empty). Each individual Traverse*
+// method only needs to worry about children other than those. To see
+// what children() does for a given class, see, e.g.,
+// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
+
+// This macro makes available a variable S, the passed-in stmt.
+#define DEF_TRAVERSE_STMT(STMT, CODE) \
+template<typename Derived> \
+bool RecursiveASTVisitor<Derived>::Traverse##STMT (STMT *S) { \
+ TRY_TO(WalkUpFrom##STMT(S)); \
+ { CODE; } \
+ for (Stmt::child_range range = S->children(); range; ++range) { \
+ TRY_TO(TraverseStmt(*range)); \
+ } \
+ return true; \
+}
+
+DEF_TRAVERSE_STMT(AsmStmt, {
+ TRY_TO(TraverseStmt(S->getAsmString()));
+ for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) {
+ TRY_TO(TraverseStmt(S->getInputConstraintLiteral(I)));
+ }
+ for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) {
+ TRY_TO(TraverseStmt(S->getOutputConstraintLiteral(I)));
+ }
+ for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) {
+ TRY_TO(TraverseStmt(S->getClobber(I)));
+ }
+ // children() iterates over inputExpr and outputExpr.
+ })
+
+DEF_TRAVERSE_STMT(CXXCatchStmt, {
+ TRY_TO(TraverseDecl(S->getExceptionDecl()));
+ // children() iterates over the handler block.
+ })
+
+DEF_TRAVERSE_STMT(DeclStmt, {
+ for (DeclStmt::decl_iterator I = S->decl_begin(), E = S->decl_end();
+ I != E; ++I) {
+ TRY_TO(TraverseDecl(*I));
+ }
+ // Suppress the default iteration over children() by
+ // returning. Here's why: A DeclStmt looks like 'type var [=
+ // initializer]'. The decls above already traverse over the
+ // initializers, so we don't have to do it again (which
+ // children() would do).
+ return true;
+ })
+
+
+// These non-expr stmts (most of them), do not need any action except
+// iterating over the children.
+DEF_TRAVERSE_STMT(BreakStmt, { })
+DEF_TRAVERSE_STMT(CXXTryStmt, { })
+DEF_TRAVERSE_STMT(CaseStmt, { })
+DEF_TRAVERSE_STMT(CompoundStmt, { })
+DEF_TRAVERSE_STMT(ContinueStmt, { })
+DEF_TRAVERSE_STMT(DefaultStmt, { })
+DEF_TRAVERSE_STMT(DoStmt, { })
+DEF_TRAVERSE_STMT(ForStmt, { })
+DEF_TRAVERSE_STMT(GotoStmt, { })
+DEF_TRAVERSE_STMT(IfStmt, { })
+DEF_TRAVERSE_STMT(IndirectGotoStmt, { })
+DEF_TRAVERSE_STMT(LabelStmt, { })
+DEF_TRAVERSE_STMT(AttributedStmt, { })
+DEF_TRAVERSE_STMT(NullStmt, { })
+DEF_TRAVERSE_STMT(ObjCAtCatchStmt, { })
+DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, { })
+DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, { })
+DEF_TRAVERSE_STMT(ObjCAtThrowStmt, { })
+DEF_TRAVERSE_STMT(ObjCAtTryStmt, { })
+DEF_TRAVERSE_STMT(ObjCForCollectionStmt, { })
+DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, { })
+DEF_TRAVERSE_STMT(CXXForRangeStmt, { })
+DEF_TRAVERSE_STMT(MSDependentExistsStmt, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
+})
+DEF_TRAVERSE_STMT(ReturnStmt, { })
+DEF_TRAVERSE_STMT(SwitchStmt, { })
+DEF_TRAVERSE_STMT(WhileStmt, { })
+
+
+DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
+ if (S->hasExplicitTemplateArgs()) {
+ TRY_TO(TraverseTemplateArgumentLocsHelper(
+ S->getTemplateArgs(), S->getNumTemplateArgs()));
+ }
+ })
+
+DEF_TRAVERSE_STMT(DeclRefExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
+ TRY_TO(TraverseTemplateArgumentLocsHelper(
+ S->getTemplateArgs(), S->getNumTemplateArgs()));
+ })
+
+DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
+ if (S->hasExplicitTemplateArgs()) {
+ TRY_TO(TraverseTemplateArgumentLocsHelper(
+ S->getExplicitTemplateArgs().getTemplateArgs(),
+ S->getNumTemplateArgs()));
+ }
+ })
+
+DEF_TRAVERSE_STMT(MemberExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
+ TRY_TO(TraverseTemplateArgumentLocsHelper(
+ S->getTemplateArgs(), S->getNumTemplateArgs()));
+ })
+
+DEF_TRAVERSE_STMT(ImplicitCastExpr, {
+ // We don't traverse the cast type, as it's not written in the
+ // source code.
+ })
+
+DEF_TRAVERSE_STMT(CStyleCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXConstCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXDynamicCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXStaticCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+ })
+
+// InitListExpr is a tricky one, because we want to do all our work on
+// the syntactic form of the listexpr, but this method takes the
+// semantic form by default. We can't use the macro helper because it
+// calls WalkUp*() on the semantic form, before our code can convert
+// to the syntactic form.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) {
+ if (InitListExpr *Syn = S->getSyntacticForm())
+ S = Syn;
+ TRY_TO(WalkUpFromInitListExpr(S));
+ // All we need are the default actions. FIXME: use a helper function.
+ for (Stmt::child_range range = S->children(); range; ++range) {
+ TRY_TO(TraverseStmt(*range));
+ }
+ return true;
+}
+
+// GenericSelectionExpr is a special case because the types and expressions
+// are interleaved. We also need to watch out for null types (default
+// generic associations).
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::
+TraverseGenericSelectionExpr(GenericSelectionExpr *S) {
+ TRY_TO(WalkUpFromGenericSelectionExpr(S));
+ TRY_TO(TraverseStmt(S->getControllingExpr()));
+ for (unsigned i = 0; i != S->getNumAssocs(); ++i) {
+ if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i))
+ TRY_TO(TraverseTypeLoc(TS->getTypeLoc()));
+ TRY_TO(TraverseStmt(S->getAssocExpr(i)));
+ }
+ return true;
+}
+
+// PseudoObjectExpr is a special case because of the wierdness with
+// syntactic expressions and opaque values.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::
+TraversePseudoObjectExpr(PseudoObjectExpr *S) {
+ TRY_TO(WalkUpFromPseudoObjectExpr(S));
+ TRY_TO(TraverseStmt(S->getSyntacticForm()));
+ for (PseudoObjectExpr::semantics_iterator
+ i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) {
+ Expr *sub = *i;
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
+ sub = OVE->getSourceExpr();
+ TRY_TO(TraverseStmt(sub));
+ }
+ return true;
+}
+
+DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
+ // This is called for code like 'return T()' where T is a built-in
+ // (i.e. non-class) type.
+ TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXNewExpr, {
+ // The child-iterator will pick up the other arguments.
+ TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(OffsetOfExpr, {
+ // The child-iterator will pick up the expression representing
+ // the field.
+ // FIMXE: for code like offsetof(Foo, a.b.c), should we get
+ // making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c?
+ TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, {
+ // The child-iterator will pick up the arg if it's an expression,
+ // but not if it's a type.
+ if (S->isArgumentType())
+ TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXTypeidExpr, {
+ // The child-iterator will pick up the arg if it's an expression,
+ // but not if it's a type.
+ if (S->isTypeOperand())
+ TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXUuidofExpr, {
+ // The child-iterator will pick up the arg if it's an expression,
+ // but not if it's a type.
+ if (S->isTypeOperand())
+ TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(UnaryTypeTraitExpr, {
+ TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(BinaryTypeTraitExpr, {
+ TRY_TO(TraverseTypeLoc(S->getLhsTypeSourceInfo()->getTypeLoc()));
+ TRY_TO(TraverseTypeLoc(S->getRhsTypeSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(TypeTraitExpr, {
+ for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
+ TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc()));
+})
+
+DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, {
+ TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(ExpressionTraitExpr, {
+ TRY_TO(TraverseStmt(S->getQueriedExpression()));
+ })
+
+DEF_TRAVERSE_STMT(VAArgExpr, {
+ // The child-iterator will pick up the expression argument.
+ TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc()));
+ })
+
+DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, {
+ // This is called for code like 'return T()' where T is a class type.
+ TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
+ })
+
+// Walk only the visible parts of lambda expressions.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) {
+ for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(),
+ CEnd = S->explicit_capture_end();
+ C != CEnd; ++C) {
+ TRY_TO(TraverseLambdaCapture(*C));
+ }
+
+ if (S->hasExplicitParameters() || S->hasExplicitResultType()) {
+ TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
+ if (S->hasExplicitParameters() && S->hasExplicitResultType()) {
+ // Visit the whole type.
+ TRY_TO(TraverseTypeLoc(TL));
+ } else if (isa<FunctionProtoTypeLoc>(TL)) {
+ FunctionProtoTypeLoc Proto = cast<FunctionProtoTypeLoc>(TL);
+ if (S->hasExplicitParameters()) {
+ // Visit parameters.
+ for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) {
+ TRY_TO(TraverseDecl(Proto.getArg(I)));
+ }
+ } else {
+ TRY_TO(TraverseTypeLoc(Proto.getResultLoc()));
+ }
+ }
+ }
+
+ TRY_TO(TraverseStmt(S->getBody()));
+ return true;
+}
+
+DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, {
+ // This is called for code like 'T()', where T is a template argument.
+ TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
+ })
+
+// These expressions all might take explicit template arguments.
+// We traverse those if so. FIXME: implement these.
+DEF_TRAVERSE_STMT(CXXConstructExpr, { })
+DEF_TRAVERSE_STMT(CallExpr, { })
+DEF_TRAVERSE_STMT(CXXMemberCallExpr, { })
+
+// These exprs (most of them), do not need any action except iterating
+// over the children.
+DEF_TRAVERSE_STMT(AddrLabelExpr, { })
+DEF_TRAVERSE_STMT(ArraySubscriptExpr, { })
+DEF_TRAVERSE_STMT(BlockExpr, {
+ TRY_TO(TraverseDecl(S->getBlockDecl()));
+ return true; // no child statements to loop through.
+})
+DEF_TRAVERSE_STMT(ChooseExpr, { })
+DEF_TRAVERSE_STMT(CompoundLiteralExpr, { })
+DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, { })
+DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, { })
+DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { })
+DEF_TRAVERSE_STMT(CXXDeleteExpr, { })
+DEF_TRAVERSE_STMT(ExprWithCleanups, { })
+DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, { })
+DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo())
+ TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc()));
+ if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo())
+ TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc()));
+})
+DEF_TRAVERSE_STMT(CXXThisExpr, { })
+DEF_TRAVERSE_STMT(CXXThrowExpr, { })
+DEF_TRAVERSE_STMT(UserDefinedLiteral, { })
+DEF_TRAVERSE_STMT(DesignatedInitExpr, { })
+DEF_TRAVERSE_STMT(ExtVectorElementExpr, { })
+DEF_TRAVERSE_STMT(GNUNullExpr, { })
+DEF_TRAVERSE_STMT(ImplicitValueInitExpr, { })
+DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, { })
+DEF_TRAVERSE_STMT(ObjCEncodeExpr, { })
+DEF_TRAVERSE_STMT(ObjCIsaExpr, { })
+DEF_TRAVERSE_STMT(ObjCIvarRefExpr, { })
+DEF_TRAVERSE_STMT(ObjCMessageExpr, { })
+DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { })
+DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, { })
+DEF_TRAVERSE_STMT(ObjCProtocolExpr, { })
+DEF_TRAVERSE_STMT(ObjCSelectorExpr, { })
+DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, { })
+DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, {
+ TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
+})
+DEF_TRAVERSE_STMT(ParenExpr, { })
+DEF_TRAVERSE_STMT(ParenListExpr, { })
+DEF_TRAVERSE_STMT(PredefinedExpr, { })
+DEF_TRAVERSE_STMT(ShuffleVectorExpr, { })
+DEF_TRAVERSE_STMT(StmtExpr, { })
+DEF_TRAVERSE_STMT(UnresolvedLookupExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ if (S->hasExplicitTemplateArgs()) {
+ TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
+ S->getNumTemplateArgs()));
+ }
+})
+
+DEF_TRAVERSE_STMT(UnresolvedMemberExpr, {
+ TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
+ if (S->hasExplicitTemplateArgs()) {
+ TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
+ S->getNumTemplateArgs()));
+ }
+})
+
+DEF_TRAVERSE_STMT(SEHTryStmt, {})
+DEF_TRAVERSE_STMT(SEHExceptStmt, {})
+DEF_TRAVERSE_STMT(SEHFinallyStmt,{})
+
+DEF_TRAVERSE_STMT(CXXOperatorCallExpr, { })
+DEF_TRAVERSE_STMT(OpaqueValueExpr, { })
+DEF_TRAVERSE_STMT(CUDAKernelCallExpr, { })
+
+// These operators (all of them) do not need any action except
+// iterating over the children.
+DEF_TRAVERSE_STMT(BinaryConditionalOperator, { })
+DEF_TRAVERSE_STMT(ConditionalOperator, { })
+DEF_TRAVERSE_STMT(UnaryOperator, { })
+DEF_TRAVERSE_STMT(BinaryOperator, { })
+DEF_TRAVERSE_STMT(CompoundAssignOperator, { })
+DEF_TRAVERSE_STMT(CXXNoexceptExpr, { })
+DEF_TRAVERSE_STMT(PackExpansionExpr, { })
+DEF_TRAVERSE_STMT(SizeOfPackExpr, { })
+DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, { })
+DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, { })
+DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { })
+DEF_TRAVERSE_STMT(AtomicExpr, { })
+
+// These literals (all of them) do not need any action.
+DEF_TRAVERSE_STMT(IntegerLiteral, { })
+DEF_TRAVERSE_STMT(CharacterLiteral, { })
+DEF_TRAVERSE_STMT(FloatingLiteral, { })
+DEF_TRAVERSE_STMT(ImaginaryLiteral, { })
+DEF_TRAVERSE_STMT(StringLiteral, { })
+DEF_TRAVERSE_STMT(ObjCStringLiteral, { })
+DEF_TRAVERSE_STMT(ObjCBoxedExpr, { })
+DEF_TRAVERSE_STMT(ObjCArrayLiteral, { })
+DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, { })
+
+// Traverse OpenCL: AsType, Convert.
+DEF_TRAVERSE_STMT(AsTypeExpr, { })
+
+// FIXME: look at the following tricky-seeming exprs to see if we
+// need to recurse on anything. These are ones that have methods
+// returning decls or qualtypes or nestednamespecifier -- though I'm
+// not sure if they own them -- or just seemed very complicated, or
+// had lots of sub-types to explore.
+//
+// VisitOverloadExpr and its children: recurse on template args? etc?
+
+// FIXME: go through all the stmts and exprs again, and see which of them
+// create new types, and recurse on the types (TypeLocs?) of those.
+// Candidates:
+//
+// http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html
+// http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html
+// http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html
+// Every class that has getQualifier.
+
+#undef DEF_TRAVERSE_STMT
+
+#undef TRY_TO
+
+} // end namespace clang
+
+#endif // LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H