C, C + 5);
}
+static Value *EmitCastToInt(CodeGenFunction &CGF,
+ const llvm::Type *ToType, Value *Val) {
+ if (Val->getType()->isPointerTy()) {
+ return CGF.Builder.CreatePtrToInt(Val, ToType);
+ }
+ assert(Val->getType()->isIntegerTy() &&
+ "Used a non-integer and non-pointer type with atomic builtin");
+ assert(Val->getType()->getScalarSizeInBits() <=
+ ToType->getScalarSizeInBits() && "Integer type too small");
+ return CGF.Builder.CreateSExtOrBitCast(Val, ToType);
+}
+
+static Value *EmitCastFromInt(CodeGenFunction &CGF, QualType ToQualType,
+ Value *Val) {
+ const llvm::Type *ToType = CGF.ConvertType(ToQualType);
+ if (ToType->isPointerTy()) {
+ return CGF.Builder.CreateIntToPtr(Val, ToType);
+ }
+ assert(Val->getType()->isIntegerTy() &&
+ "Used a non-integer and non-pointer type with atomic builtin");
+ assert(Val->getType()->getScalarSizeInBits() >=
+ ToType->getScalarSizeInBits() && "Integer type too small");
+ return CGF.Builder.CreateTruncOrBitCast(Val, ToType);
+}
+
// The atomic builtins are also full memory barriers. This is a utility for
// wrapping a call to the builtins with memory barriers.
static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
/// and the expression node.
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
Intrinsic::ID Id, const CallExpr *E) {
- Value *Args[2] = { CGF.EmitScalarExpr(E->getArg(0)),
- CGF.EmitScalarExpr(E->getArg(1)) };
- const llvm::Type *ResType[2];
- ResType[0] = CGF.ConvertType(E->getType());
- ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
- Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
- return RValue::get(EmitCallWithBarrier(CGF, AtomF, Args, Args + 2));
+ const llvm::Type *ValueType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(E->getType()));
+ const llvm::Type *PtrType = ValueType->getPointerTo();
+ const llvm::Type *IntrinsicTypes[2] = { ValueType, PtrType };
+ Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
+
+ Value *Args[2] = { CGF.Builder.CreateBitCast(CGF.EmitScalarExpr(E->getArg(0)),
+ PtrType),
+ EmitCastToInt(CGF, ValueType,
+ CGF.EmitScalarExpr(E->getArg(1))) };
+ return RValue::get(EmitCastFromInt(CGF, E->getType(),
+ EmitCallWithBarrier(CGF, AtomF, Args,
+ Args + 2)));
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
Intrinsic::ID Id, const CallExpr *E,
Instruction::BinaryOps Op) {
- const llvm::Type *ResType[2];
- ResType[0] = CGF.ConvertType(E->getType());
- ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
- Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
- Value *Args[2] = { CGF.EmitScalarExpr(E->getArg(0)),
- CGF.EmitScalarExpr(E->getArg(1)) };
+ const llvm::Type *ValueType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(E->getType()));
+ const llvm::Type *PtrType = ValueType->getPointerTo();
+ const llvm::Type *IntrinsicTypes[2] = { ValueType, PtrType };
+ Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
+
+ Value *Args[2] = { CGF.Builder.CreateBitCast(CGF.EmitScalarExpr(E->getArg(0)),
+ PtrType),
+ EmitCastToInt(CGF, ValueType,
+ CGF.EmitScalarExpr(E->getArg(1))) };
Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
- return RValue::get(CGF.Builder.CreateBinOp(Op, Result, Args[1]));
+ return RValue::get(EmitCastFromInt(CGF, E->getType(),
+ CGF.Builder.CreateBinOp(Op, Result,
+ Args[1])));
}
/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16: {
- const llvm::Type *ResType[2];
- ResType[0]= ConvertType(E->getType());
- ResType[1] = ConvertType(E->getArg(0)->getType());
- Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
- Value *Args[3] = { EmitScalarExpr(E->getArg(0)),
- EmitScalarExpr(E->getArg(1)),
- EmitScalarExpr(E->getArg(2)) };
- return RValue::get(EmitCallWithBarrier(*this, AtomF, Args, Args + 3));
+ const llvm::Type *ValueType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(E->getType()));
+ const llvm::Type *PtrType = ValueType->getPointerTo();
+ const llvm::Type *IntrinsicTypes[2] = { ValueType, PtrType };
+ Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
+ IntrinsicTypes, 2);
+
+ Value *Args[3] = { Builder.CreateBitCast(CGF.EmitScalarExpr(E->getArg(0)),
+ PtrType),
+ EmitCastToInt(CGF, ValueType,
+ CGF.EmitScalarExpr(E->getArg(1))),
+ EmitCastToInt(CGF, ValueType,
+ CGF.EmitScalarExpr(E->getArg(2))) };
+ return RValue::get(EmitCastFromInt(CGF, E->getType(),
+ EmitCallWithBarrier(CGF, AtomF, Args,
+ Args + 3)));
}
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16: {
- const llvm::Type *ResType[2];
- ResType[0]= ConvertType(E->getArg(1)->getType());
- ResType[1] = llvm::PointerType::getUnqual(ResType[0]);
- Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
- Value *OldVal = EmitScalarExpr(E->getArg(1));
- Value *Args[3] = { EmitScalarExpr(E->getArg(0)),
- OldVal,
- EmitScalarExpr(E->getArg(2)) };
+ const llvm::Type *ValueType =
+ llvm::IntegerType::get(
+ CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(E->getArg(1)->getType()));
+ const llvm::Type *PtrType = ValueType->getPointerTo();
+ const llvm::Type *IntrinsicTypes[2] = { ValueType, PtrType };
+ Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
+ IntrinsicTypes, 2);
+
+ Value *Args[3] = { Builder.CreateBitCast(CGF.EmitScalarExpr(E->getArg(0)),
+ PtrType),
+ EmitCastToInt(CGF, ValueType,
+ CGF.EmitScalarExpr(E->getArg(1))),
+ EmitCastToInt(CGF, ValueType,
+ CGF.EmitScalarExpr(E->getArg(2))) };
+ Value *OldVal = Args[1];
Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
// zext bool to int.
FunctionDecl *NewBuiltinDecl =
cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
TUScope, false, DRE->getLocStart()));
- const FunctionProtoType *BuiltinFT =
- NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
- QualType OrigValType = ValType;
- ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
-
- // If the first type needs to be converted (e.g. void** -> int*), do it now.
- if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
- ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
- TheCall->setArg(0, FirstArg);
- }
-
- // Next, walk the valid ones promoting to the right type.
+ // The first argument is by definition correct, we use it's type as the type
+ // of the entire operation. Walk the remaining arguments promoting them to
+ // the deduced value type.
for (unsigned i = 0; i != NumFixed; ++i) {
Expr *Arg = TheCall->getArg(i+1);
UsualUnaryConversions(PromotedCall);
TheCall->setCallee(PromotedCall);
- // Change the result type of the call to match the result type of the decl.
- TheCall->setType(NewBuiltinDecl->getCallResultType());
-
- // If the value type was converted to an integer when processing the
- // arguments (e.g. void* -> int), we need to convert the result back.
- if (!Context.hasSameUnqualifiedType(ValType, OrigValType)) {
- Expr *E = TheCallResult.takeAs<Expr>();
-
- assert(ValType->isIntegerType() &&
- "We always convert atomic operation values to integers.");
- // FIXME: Handle floating point value type here too.
- CastExpr::CastKind Kind;
- if (OrigValType->isIntegerType())
- Kind = CastExpr::CK_IntegralCast;
- else if (OrigValType->hasPointerRepresentation())
- Kind = CastExpr::CK_IntegralToPointer;
- else
- llvm_unreachable("Unhandled original value type!");
-
- ImpCastExprToType(E, OrigValType, Kind);
- return Owned(E);
- }
+ // Change the result type of the call to match the original value type. This
+ // is arbitrary, but the codegen for these builtins ins design to handle it
+ // gracefully.
+ TheCall->setType(ValType);
return move(TheCallResult);
}