* [including the GNU Public Licence.]
*/
-#ifndef BN_DEBUG
-# undef NDEBUG /* avoid conflicting definitions */
-# define NDEBUG
-#endif
-
#include <stdio.h>
-#include <assert.h>
#include "cryptlib.h"
#include "bn_lcl.h"
-#if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__)) || defined(__DJGPP__) /* Assembler implementation exists only for x86 */
-/* Here follows specialised variants of bn_add_words() and
- bn_sub_words(). They have the property performing operations on
- arrays of different sizes. The sizes of those arrays is expressed through
- cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
- which is the delta between the two lengths, calculated as len(a)-len(b).
- All lengths are the number of BN_ULONGs... For the operations that require
- a result array as parameter, it must have the length cl+abs(dl).
- These functions should probably end up in bn_asm.c as soon as there are
- assembler counterparts for the systems that use assembler files. */
-
-BN_ULONG bn_sub_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
- {
- BN_ULONG c, t;
-
- assert(cl >= 0);
- c = bn_sub_words(r, a, b, cl);
-
- if (dl == 0)
- return c;
-
- r += cl;
- a += cl;
- b += cl;
-
- if (dl < 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
-#endif
- for (;;)
- {
- t = b[0];
- r[0] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- t = b[1];
- r[1] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- t = b[2];
- r[2] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- t = b[3];
- r[3] = (0-t-c)&BN_MASK2;
- if (t != 0) c=1;
- if (++dl >= 0) break;
-
- b += 4;
- r += 4;
- }
- }
- else
- {
- int save_dl = dl;
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
-#endif
- while(c)
- {
- t = a[0];
- r[0] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- t = a[1];
- r[1] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- t = a[2];
- r[2] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- t = a[3];
- r[3] = (t-c)&BN_MASK2;
- if (t != 0) c=0;
- if (--dl <= 0) break;
-
- save_dl = dl;
- a += 4;
- r += 4;
- }
- if (dl > 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
-#endif
- if (save_dl > dl)
- {
- switch (save_dl - dl)
- {
- case 1:
- r[1] = a[1];
- if (--dl <= 0) break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0) break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0) break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
-#endif
- for(;;)
- {
- r[0] = a[0];
- if (--dl <= 0) break;
- r[1] = a[1];
- if (--dl <= 0) break;
- r[2] = a[2];
- if (--dl <= 0) break;
- r[3] = a[3];
- if (--dl <= 0) break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
- }
-#endif
-
-BN_ULONG bn_add_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
- {
- BN_ULONG c, l, t;
-
- assert(cl >= 0);
- c = bn_add_words(r, a, b, cl);
-
- if (dl == 0)
- return c;
-
- r += cl;
- a += cl;
- b += cl;
-
- if (dl < 0)
- {
- int save_dl = dl;
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
-#endif
- while (c)
- {
- l=(c+b[0])&BN_MASK2;
- c=(l < c);
- r[0]=l;
- if (++dl >= 0) break;
-
- l=(c+b[1])&BN_MASK2;
- c=(l < c);
- r[1]=l;
- if (++dl >= 0) break;
-
- l=(c+b[2])&BN_MASK2;
- c=(l < c);
- r[2]=l;
- if (++dl >= 0) break;
-
- l=(c+b[3])&BN_MASK2;
- c=(l < c);
- r[3]=l;
- if (++dl >= 0) break;
-
- save_dl = dl;
- b+=4;
- r+=4;
- }
- if (dl < 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
-#endif
- if (save_dl < dl)
- {
- switch (dl - save_dl)
- {
- case 1:
- r[1] = b[1];
- if (++dl >= 0) break;
- case 2:
- r[2] = b[2];
- if (++dl >= 0) break;
- case 3:
- r[3] = b[3];
- if (++dl >= 0) break;
- }
- b += 4;
- r += 4;
- }
- }
- if (dl < 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
-#endif
- for(;;)
- {
- r[0] = b[0];
- if (++dl >= 0) break;
- r[1] = b[1];
- if (++dl >= 0) break;
- r[2] = b[2];
- if (++dl >= 0) break;
- r[3] = b[3];
- if (++dl >= 0) break;
-
- b += 4;
- r += 4;
- }
- }
- }
- else
- {
- int save_dl = dl;
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
-#endif
- while (c)
- {
- t=(a[0]+c)&BN_MASK2;
- c=(t < c);
- r[0]=t;
- if (--dl <= 0) break;
-
- t=(a[1]+c)&BN_MASK2;
- c=(t < c);
- r[1]=t;
- if (--dl <= 0) break;
-
- t=(a[2]+c)&BN_MASK2;
- c=(t < c);
- r[2]=t;
- if (--dl <= 0) break;
-
- t=(a[3]+c)&BN_MASK2;
- c=(t < c);
- r[3]=t;
- if (--dl <= 0) break;
-
- save_dl = dl;
- a+=4;
- r+=4;
- }
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
-#endif
- if (dl > 0)
- {
- if (save_dl > dl)
- {
- switch (save_dl - dl)
- {
- case 1:
- r[1] = a[1];
- if (--dl <= 0) break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0) break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0) break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0)
- {
-#ifdef BN_COUNT
- fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
-#endif
- for(;;)
- {
- r[0] = a[0];
- if (--dl <= 0) break;
- r[1] = a[1];
- if (--dl <= 0) break;
- r[2] = a[2];
- if (--dl <= 0) break;
- r[3] = a[3];
- if (--dl <= 0) break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
- }
-
#ifdef BN_RECURSION
/* Karatsuba recursive multiplication algorithm
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */
* a[1]*b[1]
*/
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- int dna, int dnb, BN_ULONG *t)
+ BN_ULONG *t)
{
int n=n2/2,c1,c2;
- int tna=n+dna, tnb=n+dnb;
unsigned int neg,zero;
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
+ printf(" bn_mul_recursive %d * %d\n",n2,n2);
# endif
# ifdef BN_MUL_COMBA
# if 0
return;
}
# endif
- /* Only call bn_mul_comba 8 if n2 == 8 and the
- * two arrays are complete [steve]
- */
- if (n2 == 8 && dna == 0 && dnb == 0)
+ if (n2 == 8)
{
bn_mul_comba8(r,a,b);
return;
}
# endif /* BN_MUL_COMBA */
- /* Else do normal multiply */
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
{
- bn_mul_normal(r,a,n2+dna,b,n2+dnb);
- if ((dna + dnb) < 0)
- memset(&r[2*n2 + dna + dnb], 0,
- sizeof(BN_ULONG) * -(dna + dnb));
+ /* This should not happen */
+ bn_mul_normal(r,a,n2,b,n2);
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
- c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
+ c1=bn_cmp_words(a,&(a[n]),n);
+ c2=bn_cmp_words(&(b[n]),b,n);
zero=neg=0;
switch (c1*3+c2)
{
case -4:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
+ bn_sub_words(t, &(a[n]),a, n); /* - */
+ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
break;
case -3:
zero=1;
break;
case -2:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
+ bn_sub_words(t, &(a[n]),a, n); /* - */
+ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
neg=1;
break;
case -1:
zero=1;
break;
case 2:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
+ bn_sub_words(t, a, &(a[n]),n); /* + */
+ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
neg=1;
break;
case 3:
zero=1;
break;
case 4:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
+ bn_sub_words(t, a, &(a[n]),n);
+ bn_sub_words(&(t[n]),&(b[n]),b, n);
break;
}
# ifdef BN_MUL_COMBA
- if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
- extra args to do this well */
+ if (n == 4)
{
if (!zero)
bn_mul_comba4(&(t[n2]),t,&(t[n]));
bn_mul_comba4(r,a,b);
bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
}
- else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
- take extra args to do this
- well */
+ else if (n == 8)
{
if (!zero)
bn_mul_comba8(&(t[n2]),t,&(t[n]));
{
p= &(t[n2*2]);
if (!zero)
- bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
+ bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
else
memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
- bn_mul_recursive(r,a,b,n,0,0,p);
- bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
+ bn_mul_recursive(r,a,b,n,p);
+ bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
}
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
/* n+tn is the word length
* t needs to be n*4 is size, as does r */
-void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
- int tna, int tnb, BN_ULONG *t)
+void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
+ int n, BN_ULONG *t)
{
int i,j,n2=n*2;
unsigned int c1,c2,neg,zero;
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
- tna, n, tnb, n);
+ printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
# endif
if (n < 8)
{
- bn_mul_normal(r,a,n+tna,b,n+tnb);
+ i=tn+n;
+ bn_mul_normal(r,a,i,b,i);
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
- c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
+ c1=bn_cmp_words(a,&(a[n]),n);
+ c2=bn_cmp_words(&(b[n]),b,n);
zero=neg=0;
switch (c1*3+c2)
{
case -4:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
+ bn_sub_words(t, &(a[n]),a, n); /* - */
+ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
break;
case -3:
zero=1;
/* break; */
case -2:
- bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
+ bn_sub_words(t, &(a[n]),a, n); /* - */
+ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
neg=1;
break;
case -1:
zero=1;
/* break; */
case 2:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
- bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
+ bn_sub_words(t, a, &(a[n]),n); /* + */
+ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
neg=1;
break;
case 3:
zero=1;
/* break; */
case 4:
- bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
- bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
+ bn_sub_words(t, a, &(a[n]),n);
+ bn_sub_words(&(t[n]),&(b[n]),b, n);
break;
}
/* The zero case isn't yet implemented here. The speedup
{
bn_mul_comba8(&(t[n2]),t,&(t[n]));
bn_mul_comba8(r,a,b);
- bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
- memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
+ bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
+ memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
}
else
{
p= &(t[n2*2]);
- bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
- bn_mul_recursive(r,a,b,n,0,0,p);
+ bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
+ bn_mul_recursive(r,a,b,n,p);
i=n/2;
/* If there is only a bottom half to the number,
* just do it */
- if (tna > tnb)
- j = tna - i;
- else
- j = tnb - i;
+ j=tn-i;
if (j == 0)
{
- bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
+ bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
}
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
{
bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
- memset(&(r[n2+tna+tnb]),0,
- sizeof(BN_ULONG)*(n2-tna-tnb));
+ j,i,p);
+ memset(&(r[n2+tn*2]),0,
+ sizeof(BN_ULONG)*(n2-tn*2));
}
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
{
memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
- if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
- && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
+ if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
{
- bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
+ bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
}
else
{
for (;;)
{
i/=2;
- if (i < tna && i < tnb)
+ if (i < tn)
{
bn_mul_part_recursive(&(r[n2]),
&(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
+ tn-i,i,p);
break;
}
- else if (i <= tna && i <= tnb)
+ else if (i == tn)
{
bn_mul_recursive(&(r[n2]),
&(a[n]),&(b[n]),
- i,tna-i,tnb-i,p);
+ i,p);
break;
}
}
int n=n2/2;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
+ printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
# endif
- bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
+ bn_mul_recursive(r,a,b,n,&(t[0]));
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
{
bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
BN_ULONG ll,lc,*lp,*mp;
# ifdef BN_COUNT
- fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
+ printf(" bn_mul_high %d * %d\n",n2,n2);
# endif
n=n2/2;
else
# endif
{
- bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
- bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
+ bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
+ bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
}
/* s0 == low(al*bl)
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
- int ret=0;
int top,al,bl;
BIGNUM *rr;
+ int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
int i;
#endif
#ifdef BN_RECURSION
- BIGNUM *t=NULL;
- int j=0,k;
+ BIGNUM *t;
+ int j,k;
#endif
#ifdef BN_COUNT
- fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
+ printf("BN_mul %d * %d\n",a->top,b->top);
#endif
bn_check_top(a);
#ifdef BN_RECURSION
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
{
- if (i >= -1 && i <= 1)
+ if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax)
{
- int sav_j =0;
- /* Find out the power of two lower or equal
- to the longest of the two numbers */
- if (i >= 0)
- {
- j = BN_num_bits_word((BN_ULONG)al);
- }
- if (i == -1)
- {
- j = BN_num_bits_word((BN_ULONG)bl);
- }
- sav_j = j;
- j = 1<<(j-1);
- assert(j <= al || j <= bl);
- k = j+j;
- t = BN_CTX_get(ctx);
- if (al > j || bl > j)
- {
- bn_wexpand(t,k*4);
- bn_wexpand(rr,k*4);
- bn_mul_part_recursive(rr->d,a->d,b->d,
- j,al-j,bl-j,t->d);
- }
- else /* al <= j || bl <= j */
- {
- bn_wexpand(t,k*2);
- bn_wexpand(rr,k*2);
- bn_mul_recursive(rr->d,a->d,b->d,
- j,al-j,bl-j,t->d);
- }
- rr->top=top;
- goto end;
- }
-#if 0
- if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
- {
- BIGNUM *tmp_bn = (BIGNUM *)b;
- if (bn_wexpand(tmp_bn,al) == NULL) goto err;
- tmp_bn->d[bl]=0;
+#if 0 /* tribute to const-ification, bl<b->dmax above covers for this */
+ if (bn_wexpand(b,al) == NULL) goto err;
+#endif
+ b->d[bl]=0;
bl++;
i--;
}
- else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
+ else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax)
{
- BIGNUM *tmp_bn = (BIGNUM *)a;
- if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
- tmp_bn->d[al]=0;
+#if 0 /* tribute to const-ification, al<a->dmax above covers for this */
+ if (bn_wexpand(a,bl) == NULL) goto err;
+#endif
+ a->d[al]=0;
al++;
i++;
}
if (bn_wexpand(t,k*2) == NULL) goto err;
if (bn_wexpand(rr,k*2) == NULL) goto err;
bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
+ rr->top=top;
+ goto end;
}
+#if 0 /* tribute to const-ification, rsa/dsa performance is not affected */
else
{
- if (bn_wexpand(t,k*4) == NULL) goto err;
- if (bn_wexpand(rr,k*4) == NULL) goto err;
+ if (bn_wexpand(a,k) == NULL ) goto err;
+ if (bn_wexpand(b,k) == NULL ) goto err;
+ if (bn_wexpand(t,k*4) == NULL ) goto err;
+ if (bn_wexpand(rr,k*4) == NULL ) goto err;
+ for (i=a->top; i<k; i++)
+ a->d[i]=0;
+ for (i=b->top; i<k; i++)
+ b->d[i]=0;
bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
}
rr->top=top;
goto end;
- }
#endif
+ }
}
#endif /* BN_RECURSION */
if (bn_wexpand(rr,top) == NULL) goto err;
BN_ULONG *rr;
#ifdef BN_COUNT
- fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
+ printf(" bn_mul_normal %d * %d\n",na,nb);
#endif
if (na < nb)
}
rr= &(r[na]);
- if (nb <= 0)
- {
- (void)bn_mul_words(r,a,na,0);
- return;
- }
- else
- rr[0]=bn_mul_words(r,a,na,b[0]);
+ rr[0]=bn_mul_words(r,a,na,b[0]);
for (;;)
{
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
{
#ifdef BN_COUNT
- fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
+ printf(" bn_mul_low_normal %d * %d\n",n,n);
#endif
bn_mul_words(r,a,n,b[0]);