*
* Errors can be injected into a particular vdev using the '-d' option. This
* option takes a path or vdev GUID to uniquely identify the device within a
- * pool. There are two types of errors that can be injected, EIO and ENXIO,
- * that can be controlled through the '-e' option. The default is ENXIO. For
- * EIO failures, any attempt to read data from the device will return EIO, but
- * subsequent attempt to reopen the device will succeed. For ENXIO failures,
- * any attempt to read from the device will return EIO, but any attempt to
- * reopen the device will also return ENXIO.
+ * pool. There are four types of errors that can be injected, IO, ENXIO,
+ * ECHILD, and EILSEQ. These can be controlled through the '-e' option and the
+ * default is ENXIO. For EIO failures, any attempt to read data from the device
+ * will return EIO, but a subsequent attempt to reopen the device will succeed.
+ * For ENXIO failures, any attempt to read from the device will return EIO, but
+ * any attempt to reopen the device will also return ENXIO. The EILSEQ failures
+ * only apply to read operations (-T read) and will flip a bit after the device
+ * has read the original data.
+ *
* For label faults, the -L option must be specified. This allows faults
* to be injected into either the nvlist, uberblock, pad1, or pad2 region
* of all the labels for the specified device.
"\t\tspa_vdev_exit() will trigger a panic.\n"
"\n"
"\tzinject -d device [-e errno] [-L <nvlist|uber|pad1|pad2>] [-F]\n"
- "\t [-T <read|write|free|claim|all>] [-f frequency] pool\n"
+ "\t\t[-T <read|write|free|claim|all>] [-f frequency] pool\n\n"
"\t\tInject a fault into a particular device or the device's\n"
"\t\tlabel. Label injection can either be 'nvlist', 'uber',\n "
"\t\t'pad1', or 'pad2'.\n"
- "\t\t'errno' can be 'nxio' (the default), 'io', or 'dtl'.\n"
+ "\t\t'errno' can be 'nxio' (the default), 'io', 'dtl', or\n"
+ "\t\t'corrupt' (bit flip).\n"
"\t\t'frequency' is a value between 0.0001 and 100.0 that limits\n"
"\t\tdevice error injection to a percentage of the IOs.\n"
"\n"
error = ENXIO;
} else if (strcasecmp(optarg, "dtl") == 0) {
error = ECHILD;
+ } else if (strcasecmp(optarg, "corrupt") == 0) {
+ error = EILSEQ;
} else {
(void) fprintf(stderr, "invalid error type "
"'%s': must be 'io', 'checksum' or "
if (error == ECKSUM) {
(void) fprintf(stderr, "device error type must be "
- "'io' or 'nxio'\n");
+ "'io', 'nxio' or 'corrupt'\n");
+ libzfs_fini(g_zfs);
+ return (1);
+ }
+
+ if (error == EILSEQ &&
+ (record.zi_freq == 0 || io_type != ZIO_TYPE_READ)) {
+ (void) fprintf(stderr, "device corrupt errors require "
+ "io type read and a frequency value\n");
libzfs_fini(g_zfs);
return (1);
}
return (2);
}
- if (error == ENXIO) {
+ if (error == ENXIO || error == EILSEQ) {
(void) fprintf(stderr, "data error type must be "
"'checksum' or 'io'\n");
libzfs_fini(g_zfs);
extern void zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type);
extern int zio_handle_fault_injection(zio_t *zio, int error);
extern int zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error);
+extern int zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1,
+ int err2);
extern int zio_handle_label_injection(zio_t *zio, int error);
extern void zio_handle_ignored_writes(zio_t *zio);
extern hrtime_t zio_handle_io_delay(zio_t *zio);
.BI "\-e" " device_error"
Specify
.BR "checksum" " for an ECKSUM error,"
+.BR "corrupt" " to flip a bit in the data after a read,"
.BR "dtl" " for an ECHILD error,"
.BR "io" " for an EIO error where reopening the device will succeed, or"
.BR "nxio" " for an ENXIO error where reopening the device will fail."
vdev_cache_write(zio);
if (zio_injection_enabled && zio->io_error == 0)
- zio->io_error = zio_handle_device_injection(vd,
- zio, EIO);
+ zio->io_error = zio_handle_device_injections(vd, zio,
+ EIO, EILSEQ);
if (zio_injection_enabled && zio->io_error == 0)
zio->io_error = zio_handle_label_injection(zio, EIO);
return (ret);
}
+/*ARGSUSED*/
+static int
+zio_inject_bitflip_cb(void *data, size_t len, void *private)
+{
+ ASSERTV(zio_t *zio = private);
+ uint8_t *buffer = data;
+ uint_t byte = spa_get_random(len);
-int
-zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
+ ASSERT(zio->io_type == ZIO_TYPE_READ);
+
+ /* flip a single random bit in an abd data buffer */
+ buffer[byte] ^= 1 << spa_get_random(8);
+
+ return (1); /* stop after first flip */
+}
+
+static int
+zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
{
inject_handler_t *handler;
int ret = 0;
handler->zi_record.zi_iotype != zio->io_type)
continue;
- if (handler->zi_record.zi_error == error) {
+ if (handler->zi_record.zi_error == err1 ||
+ handler->zi_record.zi_error == err2) {
/*
* limit error injection if requested
*/
* For a failed open, pretend like the device
* has gone away.
*/
- if (error == ENXIO)
+ if (err1 == ENXIO)
vd->vdev_stat.vs_aux =
VDEV_AUX_OPEN_FAILED;
zio != NULL)
zio->io_flags |= ZIO_FLAG_IO_RETRY;
- ret = error;
+ /*
+ * EILSEQ means flip a bit after a read
+ */
+ if (handler->zi_record.zi_error == EILSEQ) {
+ if (zio == NULL)
+ break;
+
+ /* locate buffer data and flip a bit */
+ (void) abd_iterate_func(zio->io_abd, 0,
+ zio->io_size, zio_inject_bitflip_cb,
+ zio);
+ break;
+ }
+
+ ret = handler->zi_record.zi_error;
break;
}
if (handler->zi_record.zi_error == ENXIO) {
return (ret);
}
+int
+zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
+{
+ return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
+}
+
+int
+zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
+{
+ return (zio_handle_device_injection_impl(vd, zio, err1, err2));
+}
+
/*
* Simulate hardware that ignores cache flushes. For requested number
* of seconds nix the actual writing to disk.