llvm_unreachable("unexpected BuiltinTemplateDecl!");
}
+/// Determine whether this alias template is "enable_if_t".
+static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
+ return AliasTemplate->getName().equals("enable_if_t");
+}
+
+/// Collect all of the separable terms in the given condition, which
+/// might be a conjunction.
+///
+/// FIXME: The right answer is to convert the logical expression into
+/// disjunctive normal form, so we can find the first failed term
+/// within each possible clause.
+static void collectConjunctionTerms(Expr *Clause,
+ SmallVectorImpl<Expr *> &Terms) {
+ if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
+ if (BinOp->getOpcode() == BO_LAnd) {
+ collectConjunctionTerms(BinOp->getLHS(), Terms);
+ collectConjunctionTerms(BinOp->getRHS(), Terms);
+ }
+
+ return;
+ }
+
+ Terms.push_back(Clause);
+}
+
+/// Find the failed subexpression within enable_if, and describe it
+/// with a string.
+static std::pair<Expr *, std::string>
+findFailedEnableIfCondition(Sema &S, Expr *Cond) {
+ // Separate out all of the terms in a conjunction.
+ SmallVector<Expr *, 4> Terms;
+ collectConjunctionTerms(Cond, Terms);
+
+ // Determine which term failed.
+ Expr *FailedCond = nullptr;
+ for (Expr *Term : Terms) {
+ // The initialization of the parameter from the argument is
+ // a constant-evaluated context.
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ bool Succeeded;
+ if (Term->EvaluateAsBooleanCondition(Succeeded, S.Context) &&
+ !Succeeded) {
+ FailedCond = Term->IgnoreParenImpCasts();
+ break;
+ }
+ }
+
+ if (!FailedCond)
+ FailedCond = Cond->IgnoreParenImpCasts();
+
+ std::string Description;
+ {
+ llvm::raw_string_ostream Out(Description);
+ FailedCond->printPretty(Out, nullptr,
+ PrintingPolicy(S.Context.getLangOpts()));
+ }
+ return { FailedCond, Description };
+}
+
QualType Sema::CheckTemplateIdType(TemplateName Name,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs) {
if (Pattern->isInvalidDecl())
return QualType();
- TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
- Converted);
+ TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
+ Converted);
// Only substitute for the innermost template argument list.
MultiLevelTemplateArgumentList TemplateArgLists;
- TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
for (unsigned I = 0; I < Depth; ++I)
TemplateArgLists.addOuterTemplateArguments(None);
CanonType = SubstType(Pattern->getUnderlyingType(),
TemplateArgLists, AliasTemplate->getLocation(),
AliasTemplate->getDeclName());
- if (CanonType.isNull())
+ if (CanonType.isNull()) {
+ // If this was enable_if and we failed to find the nested type
+ // within enable_if in a SFINAE context, dig out the specific
+ // enable_if condition that failed and present that instead.
+ if (isEnableIfAliasTemplate(AliasTemplate)) {
+ if (auto DeductionInfo = isSFINAEContext()) {
+ if (*DeductionInfo &&
+ (*DeductionInfo)->hasSFINAEDiagnostic() &&
+ (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
+ diag::err_typename_nested_not_found_enable_if &&
+ TemplateArgs[0].getArgument().getKind()
+ == TemplateArgument::Expression) {
+ Expr *FailedCond;
+ std::string FailedDescription;
+ std::tie(FailedCond, FailedDescription) =
+ findFailedEnableIfCondition(
+ *this, TemplateArgs[0].getSourceExpression());
+
+ // Remove the old SFINAE diagnostic.
+ PartialDiagnosticAt OldDiag =
+ {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
+ (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
+
+ // Add a new SFINAE diagnostic specifying which condition
+ // failed.
+ (*DeductionInfo)->addSFINAEDiagnostic(
+ OldDiag.first,
+ PDiag(diag::err_typename_nested_not_found_requirement)
+ << FailedDescription
+ << FailedCond->getSourceRange());
+ }
+ }
+ }
+
return QualType();
+ }
} else if (Name.isDependent() ||
TemplateSpecializationType::anyDependentTemplateArguments(
TemplateArgs, InstantiationDependent)) {
/// Determine whether this failed name lookup should be treated as being
/// disabled by a usage of std::enable_if.
static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
- SourceRange &CondRange) {
+ SourceRange &CondRange, Expr *&Cond) {
// We must be looking for a ::type...
if (!II.isStr("type"))
return false;
// Assume the first template argument is the condition.
CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
+
+ // Dig out the condition.
+ Cond = nullptr;
+ if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
+ != TemplateArgument::Expression)
+ return true;
+
+ Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
+
+ // Ignore Boolean literals; they add no value.
+ if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
+ Cond = nullptr;
+
return true;
}
// If we're looking up 'type' within a template named 'enable_if', produce
// a more specific diagnostic.
SourceRange CondRange;
- if (isEnableIf(QualifierLoc, II, CondRange)) {
+ Expr *Cond = nullptr;
+ if (isEnableIf(QualifierLoc, II, CondRange, Cond)) {
+ // If we have a condition, narrow it down to the specific failed
+ // condition.
+ if (Cond) {
+ Expr *FailedCond;
+ std::string FailedDescription;
+ std::tie(FailedCond, FailedDescription) =
+ findFailedEnableIfCondition(*this, Cond);
+
+ Diag(FailedCond->getExprLoc(),
+ diag::err_typename_nested_not_found_requirement)
+ << FailedDescription
+ << FailedCond->getSourceRange();
+ return QualType();
+ }
+
Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
- << Ctx << CondRange;
+ << Ctx << CondRange;
return QualType();
}
template<bool, typename = void> struct enable_if {};
template<typename T> struct enable_if<true, T> { typedef T type; };
}
-template<typename T> typename boost::enable_if<sizeof(T) == 4, int>::type if_size_4(); // expected-note{{candidate template ignored: disabled by 'enable_if' [with T = char]}}
+template<typename T> typename boost::enable_if<sizeof(T) == 4, int>::type if_size_4(); // expected-note{{candidate template ignored: requirement 'sizeof(char) == 4' was not satisfied [with T = char]}}
int k = if_size_4<char>(); // expected-error{{no matching function}}
namespace llvm {
}
template<typename T> struct NonTemplateFunction {
- typename boost::enable_if<sizeof(T) == 4, int>::type f(); // expected-error{{no type named 'type' in 'boost::enable_if<false, int>'; 'enable_if' cannot be used to disable this declaration}}
+ typename boost::enable_if<sizeof(T) == 4, int>::type f(); // expected-error{{failed requirement 'sizeof(char) == 4'; 'enable_if' cannot be used to disable this declaration}}
};
NonTemplateFunction<char> NTFC; // expected-note{{here}}
#if __cplusplus <= 199711L
// expected-warning@-2 {{default template arguments for a function template are a C++11 extension}}
#endif
- // expected-note@-4 {{candidate template ignored: disabled by 'enable_if' [with T = int]}}
+ // expected-note@+1 {{candidate template ignored: requirement 'a_trait<int>::value' was not satisfied [with T = int]}}
void foo() {}
void bar() { foo<int>(); } // expected-error {{no matching function for call to 'foo'}}
#if __cplusplus <= 199711L
// expected-warning@-2 {{alias declarations are a C++11 extension}}
#endif
- // expected-note@-4 {{candidate template ignored: disabled by 'enable_if' [with T = int]}}
+ // expected-note@+7 {{candidate template ignored: requirement 'some_trait<int>::value' was not satisfied [with T = int]}}
template<typename T,
typename Requires = unicorns<T> >