--- /dev/null
+/* $id: shapes.c,v 1.82 2007/12/24 04:50:36 ellson Exp $ $Revision$ */
+/* vim:set shiftwidth=4 ts=8: */
+
+/*************************************************************************
+ * Copyright (c) 2012 AT&T Intellectual Property
+ * All rights reserved. This program and the accompanying materials
+ * are made available under the terms of the Eclipse Public License v1.0
+ * which accompanies this distribution, and is available at
+ * http://www.eclipse.org/legal/epl-v10.html
+ *
+ * Contributors: See CVS logs. Details at http://www.graphviz.org/
+ *************************************************************************/
+
+/* This code is derived from the Java implementation by Luc Maisonobe */
+/* Copyright (c) 2003-2004, Luc Maisonobe
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with
+ * or without modification, are permitted provided that
+ * the following conditions are met:
+ *
+ * Redistributions of source code must retain the
+ * above copyright notice, this list of conditions and
+ * the following disclaimer.
+ * Redistributions in binary form must reproduce the
+ * above copyright notice, this list of conditions and
+ * the following disclaimer in the documentation
+ * and/or other materials provided with the
+ * distribution.
+ * Neither the names of spaceroots.org, spaceroots.com
+ * nor the names of their contributors may be used to
+ * endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
+ * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+ * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
+ * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
+ * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
+ * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#if STANDALONE
+#include <limits.h>
+#include <math.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+#define MAX(a,b) ((a)>(b)?(a):(b))
+#define MIN(a,b) ((a)<(b)?(a):(b))
+
+#define NEW(t) ((t*)calloc(1,sizeof(t)))
+#define N_NEW(n,t) ((t*)calloc(n,sizeof(t)))
+
+#define PI 3.14159265358979323846
+
+#define TRUE 1
+#define FALSE 0
+typedef unsigned char boolean;
+
+typedef struct pointf_s {
+ double x, y;
+} pointf;
+typedef struct Ppoly_t {
+ pointf *ps;
+ int pn;
+} Ppoly_t;
+
+typedef Ppoly_t Ppolyline_t;
+#else
+#include "render.h"
+#include "pathplan.h"
+#endif
+
+#define TWOPI (2*M_PI)
+
+typedef struct {
+ double cx, cy; /* center */
+ double a, b; /* semi-major and -minor axes */
+
+ /* Orientation of the major axis with respect to the x axis. */
+ double theta, cosTheta, sinTheta;
+
+ /* Start and end angles of the arc. */
+ double eta1, eta2;
+
+ /* Position of the start and end points. */
+ double x1, y1, x2, y2;
+
+ /* Position of the foci. */
+ double xF1, yF1, xF2, yF2;
+
+ /* x of the leftmost point of the arc. */
+ double xLeft;
+
+ /* y of the highest point of the arc. */
+ double yUp;
+
+ /* Horizontal width and vertical height of the arc. */
+ double width, height;
+
+ double f, e2, g, g2;
+} ellipse_t;
+
+static void computeFoci(ellipse_t * ep)
+{
+ double d = sqrt(ep->a * ep->a - ep->b * ep->b);
+ double dx = d * ep->cosTheta;
+ double dy = d * ep->sinTheta;
+
+ ep->xF1 = ep->cx - dx;
+ ep->yF1 = ep->cy - dy;
+ ep->xF2 = ep->cx + dx;
+ ep->yF2 = ep->cy + dy;
+}
+
+ /* Compute the locations of the endpoints. */
+static void computeEndPoints(ellipse_t * ep)
+{
+ double aCosEta1 = ep->a * cos(ep->eta1);
+ double bSinEta1 = ep->b * sin(ep->eta1);
+ double aCosEta2 = ep->a * cos(ep->eta2);
+ double bSinEta2 = ep->b * sin(ep->eta2);
+
+ // start point
+ ep->x1 = ep->cx + aCosEta1 * ep->cosTheta - bSinEta1 * ep->sinTheta;
+ ep->y1 = ep->cy + aCosEta1 * ep->sinTheta + bSinEta1 * ep->cosTheta;
+
+ // end point
+ ep->x2 = ep->cx + aCosEta2 * ep->cosTheta - bSinEta2 * ep->sinTheta;
+ ep->y2 = ep->cy + aCosEta2 * ep->sinTheta + bSinEta2 * ep->cosTheta;
+}
+
+ /* Compute the bounding box. */
+static void computeBounds(ellipse_t * ep)
+{
+ double bOnA = ep->b / ep->a;
+ double etaXMin, etaXMax, etaYMin, etaYMax;
+
+ if (abs(ep->sinTheta) < 0.1) {
+ double tanTheta = ep->sinTheta / ep->cosTheta;
+ if (ep->cosTheta < 0) {
+ etaXMin = -atan(tanTheta * bOnA);
+ etaXMax = etaXMin + M_PI;
+ etaYMin = 0.5 * M_PI - atan(tanTheta / bOnA);
+ etaYMax = etaYMin + M_PI;
+ } else {
+ etaXMax = -atan(tanTheta * bOnA);
+ etaXMin = etaXMax - M_PI;
+ etaYMax = 0.5 * M_PI - atan(tanTheta / bOnA);
+ etaYMin = etaYMax - M_PI;
+ }
+ } else {
+ double invTanTheta = ep->cosTheta / ep->sinTheta;
+ if (ep->sinTheta < 0) {
+ etaXMax = 0.5 * M_PI + atan(invTanTheta / bOnA);
+ etaXMin = etaXMax - M_PI;
+ etaYMin = atan(invTanTheta * bOnA);
+ etaYMax = etaYMin + M_PI;
+ } else {
+ etaXMin = 0.5 * M_PI + atan(invTanTheta / bOnA);
+ etaXMax = etaXMin + M_PI;
+ etaYMax = atan(invTanTheta * bOnA);
+ etaYMin = etaYMax - M_PI;
+ }
+ }
+
+ etaXMin -= (TWOPI * floor((etaXMin - ep->eta1) / TWOPI));
+ etaYMin -= (TWOPI * floor((etaYMin - ep->eta1) / TWOPI));
+ etaXMax -= (TWOPI * floor((etaXMax - ep->eta1) / TWOPI));
+ etaYMax -= (TWOPI * floor((etaYMax - ep->eta1) / TWOPI));
+
+ ep->xLeft = (etaXMin <= ep->eta2)
+ ? (ep->cx + ep->a * cos(etaXMin) * ep->cosTheta -
+ ep->b * sin(etaXMin) * ep->sinTheta)
+ : MIN(ep->x1, ep->x2);
+ ep->yUp = (etaYMin <= ep->eta2)
+ ? (ep->cy + ep->a * cos(etaYMin) * ep->sinTheta +
+ ep->b * sin(etaYMin) * ep->cosTheta)
+ : MIN(ep->y1, ep->y2);
+ ep->width = ((etaXMax <= ep->eta2)
+ ? (ep->cx + ep->a * cos(etaXMax) * ep->cosTheta -
+ ep->b * sin(etaXMax) * ep->sinTheta)
+ : MAX(ep->x1, ep->x2)) - ep->xLeft;
+ ep->height = ((etaYMax <= ep->eta2)
+ ? (ep->cy + ep->a * cos(etaYMax) * ep->sinTheta +
+ ep->b * sin(etaYMax) * ep->cosTheta)
+ : MAX(ep->y1, ep->y2)) - ep->yUp;
+
+}
+
+static void
+initEllipse(ellipse_t * ep, double cx, double cy, double a, double b,
+ double theta, double lambda1, double lambda2)
+{
+ ep->cx = cx;
+ ep->cy = cy;
+ ep->a = a;
+ ep->b = b;
+ ep->theta = theta;
+
+ ep->eta1 = atan2(sin(lambda1) / b, cos(lambda1) / a);
+ ep->eta2 = atan2(sin(lambda2) / b, cos(lambda2) / a);
+ ep->cosTheta = cos(theta);
+ ep->sinTheta = sin(theta);
+
+ // make sure we have eta1 <= eta2 <= eta1 + 2*PI
+ ep->eta2 -= TWOPI * floor((ep->eta2 - ep->eta1) / TWOPI);
+
+ // the preceding correction fails if we have exactly eta2 - eta1 = 2*PI
+ // it reduces the interval to zero length
+ if ((lambda2 - lambda1 > M_PI) && (ep->eta2 - ep->eta1 < M_PI)) {
+ ep->eta2 += TWOPI;
+ }
+
+ computeFoci(ep);
+ computeEndPoints(ep);
+ computeBounds(ep);
+
+ /* Flatness parameters */
+ ep->f = (ep->a - ep->b) / ep->a;
+ ep->e2 = ep->f * (2.0 - ep->f);
+ ep->g = 1.0 - ep->f;
+ ep->g2 = ep->g * ep->g;
+}
+
+typedef double erray_t[2][4][4];
+
+ // coefficients for error estimation
+ // while using quadratic Bezier curves for approximation
+ // 0 < b/a < 1/4
+static erray_t coeffs2Low = {
+ {
+ {3.92478, -13.5822, -0.233377, 0.0128206},
+ {-1.08814, 0.859987, 0.000362265, 0.000229036},
+ {-0.942512, 0.390456, 0.0080909, 0.00723895},
+ {-0.736228, 0.20998, 0.0129867, 0.0103456}
+ },
+ {
+ {-0.395018, 6.82464, 0.0995293, 0.0122198},
+ {-0.545608, 0.0774863, 0.0267327, 0.0132482},
+ {0.0534754, -0.0884167, 0.012595, 0.0343396},
+ {0.209052, -0.0599987, -0.00723897, 0.00789976}
+ }
+};
+
+ // coefficients for error estimation
+ // while using quadratic Bezier curves for approximation
+ // 1/4 <= b/a <= 1
+static erray_t coeffs2High = {
+ {
+ {0.0863805, -11.5595, -2.68765, 0.181224},
+ {0.242856, -1.81073, 1.56876, 1.68544},
+ {0.233337, -0.455621, 0.222856, 0.403469},
+ {0.0612978, -0.104879, 0.0446799, 0.00867312}
+ },
+ {
+ {0.028973, 6.68407, 0.171472, 0.0211706},
+ {0.0307674, -0.0517815, 0.0216803, -0.0749348},
+ {-0.0471179, 0.1288, -0.0781702, 2.0},
+ {-0.0309683, 0.0531557, -0.0227191, 0.0434511}
+ }
+};
+
+ // safety factor to convert the "best" error approximation
+ // into a "max bound" error
+static double safety2[] = {
+ 0.02, 2.83, 0.125, 0.01
+};
+
+ // coefficients for error estimation
+ // while using cubic Bezier curves for approximation
+ // 0 < b/a < 1/4
+static erray_t coeffs3Low = {
+ {
+ {3.85268, -21.229, -0.330434, 0.0127842},
+ {-1.61486, 0.706564, 0.225945, 0.263682},
+ {-0.910164, 0.388383, 0.00551445, 0.00671814},
+ {-0.630184, 0.192402, 0.0098871, 0.0102527}
+ },
+ {
+ {-0.162211, 9.94329, 0.13723, 0.0124084},
+ {-0.253135, 0.00187735, 0.0230286, 0.01264},
+ {-0.0695069, -0.0437594, 0.0120636, 0.0163087},
+ {-0.0328856, -0.00926032, -0.00173573, 0.00527385}
+ }
+};
+
+ // coefficients for error estimation
+ // while using cubic Bezier curves for approximation
+ // 1/4 <= b/a <= 1
+static erray_t coeffs3High = {
+ {
+ {0.0899116, -19.2349, -4.11711, 0.183362},
+ {0.138148, -1.45804, 1.32044, 1.38474},
+ {0.230903, -0.450262, 0.219963, 0.414038},
+ {0.0590565, -0.101062, 0.0430592, 0.0204699}
+ },
+ {
+ {0.0164649, 9.89394, 0.0919496, 0.00760802},
+ {0.0191603, -0.0322058, 0.0134667, -0.0825018},
+ {0.0156192, -0.017535, 0.00326508, -0.228157},
+ {-0.0236752, 0.0405821, -0.0173086, 0.176187}
+ }
+};
+
+ // safety factor to convert the "best" error approximation
+ // into a "max bound" error
+static double safety3[] = {
+ 0.001, 4.98, 0.207, 0.0067
+};
+
+/* Compute the value of a rational function.
+ * This method handles rational functions where the numerator is
+ * quadratic and the denominator is linear
+ */
+#define RationalFunction(x,c) ((x * (x * c[0] + c[1]) + c[2]) / (x + c[3]))
+
+/* Estimate the approximation error for a sub-arc of the instance.
+ * degree specifies degree of the Bezier curve to use (1, 2 or 3)
+ * tA and tB give the start and end angle of the subarc
+ * Returns upper bound of the approximation error between the Bezier
+ * curve and the real ellipse
+ */
+static double
+estimateError(ellipse_t * ep, int degree, double etaA, double etaB)
+{
+ double eta = 0.5 * (etaA + etaB);
+
+ if (degree < 2) {
+
+ // start point
+ double aCosEtaA = ep->a * cos(etaA);
+ double bSinEtaA = ep->b * sin(etaA);
+ double xA =
+ ep->cx + aCosEtaA * ep->cosTheta - bSinEtaA * ep->sinTheta;
+ double yA =
+ ep->cy + aCosEtaA * ep->sinTheta + bSinEtaA * ep->cosTheta;
+
+ // end point
+ double aCosEtaB = ep->a * cos(etaB);
+ double bSinEtaB = ep->b * sin(etaB);
+ double xB =
+ ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta;
+ double yB =
+ ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta;
+
+ // maximal error point
+ double aCosEta = ep->a * cos(eta);
+ double bSinEta = ep->b * sin(eta);
+ double x =
+ ep->cx + aCosEta * ep->cosTheta - bSinEta * ep->sinTheta;
+ double y =
+ ep->cy + aCosEta * ep->sinTheta + bSinEta * ep->cosTheta;
+
+ double dx = xB - xA;
+ double dy = yB - yA;
+
+ return abs(x * dy - y * dx + xB * yA - xA * yB)
+ / sqrt(dx * dx + dy * dy);
+
+ } else {
+
+ double x = ep->b / ep->a;
+ double dEta = etaB - etaA;
+ double cos2 = cos(2 * eta);
+ double cos4 = cos(4 * eta);
+ double cos6 = cos(6 * eta);
+
+ // select the right coefficient's set according to degree and b/a
+ double (*coeffs)[4][4];
+ double *safety;
+ if (degree == 2) {
+ coeffs = (x < 0.25) ? coeffs2Low : coeffs2High;
+ safety = safety2;
+ } else {
+ coeffs = (x < 0.25) ? coeffs3Low : coeffs3High;
+ safety = safety3;
+ }
+
+ double c0 = RationalFunction(x, coeffs[0][0])
+ + cos2 * RationalFunction(x, coeffs[0][1])
+ + cos4 * RationalFunction(x, coeffs[0][2])
+ + cos6 * RationalFunction(x, coeffs[0][3]);
+
+ double c1 = RationalFunction(x, coeffs[1][0])
+ + cos2 * RationalFunction(x, coeffs[1][1])
+ + cos4 * RationalFunction(x, coeffs[1][2])
+ + cos6 * RationalFunction(x, coeffs[1][3]);
+
+ return RationalFunction(x, safety) * ep->a * exp(c0 + c1 * dEta);
+ }
+}
+
+/* Non-reentrant code to append points to a Bezier path
+ * Assume initial call to moveTo to initialize, followed by
+ * calls to curveTo and lineTo, and finished with endPath.
+ */
+static int bufsize;
+
+static void moveTo(Ppolyline_t * path, double x, double y)
+{
+ bufsize = 100;
+ path->ps = N_NEW(bufsize, pointf);
+ path->ps[0].x = x;
+ path->ps[0].y = y;
+ path->pn = 1;
+}
+
+static void
+curveTo(Ppolyline_t * path, double x1, double y1,
+ double x2, double y2, double x3, double y3)
+{
+ if (path->pn + 3 >= bufsize) {
+ bufsize *= 2;
+ path->ps = realloc(path->ps, bufsize * sizeof(pointf));
+ }
+ path->ps[path->pn].x = x1;
+ path->ps[path->pn++].y = y1;
+ path->ps[path->pn].x = x2;
+ path->ps[path->pn++].y = y2;
+ path->ps[path->pn].x = x3;
+ path->ps[path->pn++].y = y3;
+}
+
+static void lineTo(Ppolyline_t * path, double x, double y)
+{
+ pointf curp = path->ps[path->pn - 1];
+ curveTo(path, curp.x, curp.y, x, y, x, y);
+}
+
+static void endPath(Ppolyline_t * path, boolean close)
+{
+ if (close) {
+ pointf p0 = path->ps[0];
+ lineTo(path, p0.x, p0.y);
+ }
+
+ path->ps = realloc(path->ps, path->pn * sizeof(pointf));
+ bufsize = 0;
+}
+
+/* genEllipticPath:
+ * Approximate an elliptical arc via Beziers of given degree
+ * threshold indicates quality of approximation
+ * if isSlice is true, the path begins and ends with line segments
+ * to the center of the ellipse.
+ * Returned path must be freed by the caller.
+ */
+static Ppolyline_t *genEllipticPath(ellipse_t * ep, int degree,
+ double threshold, boolean isSlice)
+{
+ double dEta;
+ double etaB;
+ double cosEtaB;
+ double sinEtaB;
+ double aCosEtaB;
+ double bSinEtaB;
+ double aSinEtaB;
+ double bCosEtaB;
+ double xB;
+ double yB;
+ double xBDot;
+ double yBDot;
+ double t;
+ double alpha;
+ Ppolyline_t *path = NEW(Ppolyline_t);
+
+ // find the number of Bezier curves needed
+ boolean found = FALSE;
+ int i, n = 1;
+ while ((!found) && (n < 1024)) {
+ double dEta = (ep->eta2 - ep->eta1) / n;
+ if (dEta <= 0.5 * M_PI) {
+ double etaB = ep->eta1;
+ found = TRUE;
+ for (i = 0; found && (i < n); ++i) {
+ double etaA = etaB;
+ etaB += dEta;
+ found =
+ (estimateError(ep, degree, etaA, etaB) <= threshold);
+ }
+ }
+ n = n << 1;
+ }
+
+ dEta = (ep->eta2 - ep->eta1) / n;
+ etaB = ep->eta1;
+
+ cosEtaB = cos(etaB);
+ sinEtaB = sin(etaB);
+ aCosEtaB = ep->a * cosEtaB;
+ bSinEtaB = ep->b * sinEtaB;
+ aSinEtaB = ep->a * sinEtaB;
+ bCosEtaB = ep->b * cosEtaB;
+ xB = ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta;
+ yB = ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta;
+ xBDot = -aSinEtaB * ep->cosTheta - bCosEtaB * ep->sinTheta;
+ yBDot = -aSinEtaB * ep->sinTheta + bCosEtaB * ep->cosTheta;
+
+ if (isSlice) {
+ moveTo(path, ep->cx, ep->cy);
+ lineTo(path, xB, yB);
+ } else {
+ moveTo(path, xB, yB);
+ }
+
+ t = tan(0.5 * dEta);
+ alpha = sin(dEta) * (sqrt(4 + 3 * t * t) - 1) / 3;
+
+ for (i = 0; i < n; ++i) {
+
+ double xA = xB;
+ double yA = yB;
+ double xADot = xBDot;
+ double yADot = yBDot;
+
+ etaB += dEta;
+ cosEtaB = cos(etaB);
+ sinEtaB = sin(etaB);
+ aCosEtaB = ep->a * cosEtaB;
+ bSinEtaB = ep->b * sinEtaB;
+ aSinEtaB = ep->a * sinEtaB;
+ bCosEtaB = ep->b * cosEtaB;
+ xB = ep->cx + aCosEtaB * ep->cosTheta - bSinEtaB * ep->sinTheta;
+ yB = ep->cy + aCosEtaB * ep->sinTheta + bSinEtaB * ep->cosTheta;
+ xBDot = -aSinEtaB * ep->cosTheta - bCosEtaB * ep->sinTheta;
+ yBDot = -aSinEtaB * ep->sinTheta + bCosEtaB * ep->cosTheta;
+
+ if (degree == 1) {
+ lineTo(path, xB, yB);
+#if DO_QUAD
+ } else if (degree == 2) {
+ double k = (yBDot * (xB - xA) - xBDot * (yB - yA))
+ / (xADot * yBDot - yADot * xBDot);
+ quadTo(path, (xA + k * xADot), (yA + k * yADot), xB, yB);
+#endif
+ } else {
+ curveTo(path, (xA + alpha * xADot), (yA + alpha * yADot),
+ (xB - alpha * xBDot), (yB - alpha * yBDot), xB, yB);
+ }
+
+ }
+
+ endPath(path, isSlice);
+
+ return path;
+}
+
+/* ellipticWedge:
+ * Return a cubic Bezier for an elliptical wedge, with center ctr, x and y
+ * semi-axes xsemi and ysemi, start angle angle0 and end angle angle1.
+ * This includes beginning and ending line segments to the ellipse center.
+ * Calling function must free storage of returned path.
+ */
+Ppolyline_t *ellipticWedge(pointf ctr, double xsemi, double ysemi,
+ double angle0, double angle1)
+{
+ ellipse_t ell;
+ Ppolyline_t *pp;
+
+ initEllipse(&ell, ctr.x, ctr.y, xsemi, ysemi, 0, angle0, angle1);
+ pp = genEllipticPath(&ell, 3, 0.00001, 1);
+ return pp;
+}
+
+#ifdef STANDALONE
+main()
+{
+ ellipse_t ell;
+ Ppolyline_t *pp;
+ int i;
+
+ initEllipse(&ell, 200, 200, 100, 50, 0, M_PI / 4, 3 * M_PI / 2);
+ pp = genEllipticPath(&ell, 3, 0.00001, 1);
+
+ printf("newpath %.02lf %.02lf moveto\n", pp->ps[0].x, pp->ps[0].y);
+ for (i = 1; i < pp->pn; i += 3) {
+ printf("%.02lf %.02lf %.02lf %.02lf %.02lf %.02lf curveto\n",
+ pp->ps[i].x, pp->ps[i].y,
+ pp->ps[i + 1].x, pp->ps[i + 1].y,
+ pp->ps[i + 2].x, pp->ps[i + 2].y);
+ }
+ printf("stroke showpage\n");
+
+}
+#endif