OpMask.size() % RootMask.size() == 0) ||
OpMask.size() == RootMask.size()) &&
"The smaller number of elements must divide the larger.");
+ int MaskWidth = std::max<int>(OpMask.size(), RootMask.size());
int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
assert(((RootRatio == 1 && OpRatio == 1) ||
"Must not have a ratio for both incoming and op masks!");
SmallVector<int, 16> Mask;
- Mask.reserve(std::max(OpMask.size(), RootMask.size()));
+ Mask.reserve(MaskWidth);
// Merge this shuffle operation's mask into our accumulated mask. Note that
// this shuffle's mask will be the first applied to the input, followed by the
// root mask to get us all the way to the root value arrangement. The reason
// for this order is that we are recursing up the operation chain.
- for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
+ for (int i = 0; i < MaskWidth; ++i) {
int RootIdx = i / RootRatio;
if (RootMask[RootIdx] < 0) {
// This is a zero or undef lane, we're done.