from test.support import run_unittest, verbose, requires_IEEE_754
from test import support
import unittest
+import itertools
import math
import os
import platform
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
+class FMATests(unittest.TestCase):
+ """ Tests for math.fma. """
+
+ def test_fma_nan_results(self):
+ # Selected representative values.
+ values = [
+ -math.inf, -1e300, -2.3, -1e-300, -0.0,
+ 0.0, 1e-300, 2.3, 1e300, math.inf, math.nan
+ ]
+
+ # If any input is a NaN, the result should be a NaN, too.
+ for a, b in itertools.product(values, repeat=2):
+ self.assertIsNaN(math.fma(math.nan, a, b))
+ self.assertIsNaN(math.fma(a, math.nan, b))
+ self.assertIsNaN(math.fma(a, b, math.nan))
+
+ def test_fma_infinities(self):
+ # Cases involving infinite inputs or results.
+ positives = [1e-300, 2.3, 1e300, math.inf]
+ finites = [-1e300, -2.3, -1e-300, -0.0, 0.0, 1e-300, 2.3, 1e300]
+ non_nans = [-math.inf, -2.3, -0.0, 0.0, 2.3, math.inf]
+
+ # ValueError due to inf * 0 computation.
+ for c in non_nans:
+ for infinity in [math.inf, -math.inf]:
+ for zero in [0.0, -0.0]:
+ with self.assertRaises(ValueError):
+ math.fma(infinity, zero, c)
+ with self.assertRaises(ValueError):
+ math.fma(zero, infinity, c)
+
+ # ValueError when a*b and c both infinite of opposite signs.
+ for b in positives:
+ with self.assertRaises(ValueError):
+ math.fma(math.inf, b, -math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(math.inf, -b, math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(-math.inf, -b, -math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(-math.inf, b, math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(b, math.inf, -math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(-b, math.inf, math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(-b, -math.inf, -math.inf)
+ with self.assertRaises(ValueError):
+ math.fma(b, -math.inf, math.inf)
+
+ # Infinite result when a*b and c both infinite of the same sign.
+ for b in positives:
+ self.assertEqual(math.fma(math.inf, b, math.inf), math.inf)
+ self.assertEqual(math.fma(math.inf, -b, -math.inf), -math.inf)
+ self.assertEqual(math.fma(-math.inf, -b, math.inf), math.inf)
+ self.assertEqual(math.fma(-math.inf, b, -math.inf), -math.inf)
+ self.assertEqual(math.fma(b, math.inf, math.inf), math.inf)
+ self.assertEqual(math.fma(-b, math.inf, -math.inf), -math.inf)
+ self.assertEqual(math.fma(-b, -math.inf, math.inf), math.inf)
+ self.assertEqual(math.fma(b, -math.inf, -math.inf), -math.inf)
+
+ # Infinite result when a*b finite, c infinite.
+ for a, b in itertools.product(finites, finites):
+ self.assertEqual(math.fma(a, b, math.inf), math.inf)
+ self.assertEqual(math.fma(a, b, -math.inf), -math.inf)
+
+ # Infinite result when a*b infinite, c finite.
+ for b, c in itertools.product(positives, finites):
+ self.assertEqual(math.fma(math.inf, b, c), math.inf)
+ self.assertEqual(math.fma(-math.inf, b, c), -math.inf)
+ self.assertEqual(math.fma(-math.inf, -b, c), math.inf)
+ self.assertEqual(math.fma(math.inf, -b, c), -math.inf)
+
+ self.assertEqual(math.fma(b, math.inf, c), math.inf)
+ self.assertEqual(math.fma(b, -math.inf, c), -math.inf)
+ self.assertEqual(math.fma(-b, -math.inf, c), math.inf)
+ self.assertEqual(math.fma(-b, math.inf, c), -math.inf)
+
+ def test_fma_zero_result(self):
+ nonnegative_finites = [0.0, 1e-300, 2.3, 1e300]
+
+ # Zero results from exact zero inputs.
+ for b in nonnegative_finites:
+ self.assertIsPositiveZero(math.fma(0.0, b, 0.0))
+ self.assertIsPositiveZero(math.fma(0.0, b, -0.0))
+ self.assertIsNegativeZero(math.fma(0.0, -b, -0.0))
+ self.assertIsPositiveZero(math.fma(0.0, -b, 0.0))
+ self.assertIsPositiveZero(math.fma(-0.0, -b, 0.0))
+ self.assertIsPositiveZero(math.fma(-0.0, -b, -0.0))
+ self.assertIsNegativeZero(math.fma(-0.0, b, -0.0))
+ self.assertIsPositiveZero(math.fma(-0.0, b, 0.0))
+
+ self.assertIsPositiveZero(math.fma(b, 0.0, 0.0))
+ self.assertIsPositiveZero(math.fma(b, 0.0, -0.0))
+ self.assertIsNegativeZero(math.fma(-b, 0.0, -0.0))
+ self.assertIsPositiveZero(math.fma(-b, 0.0, 0.0))
+ self.assertIsPositiveZero(math.fma(-b, -0.0, 0.0))
+ self.assertIsPositiveZero(math.fma(-b, -0.0, -0.0))
+ self.assertIsNegativeZero(math.fma(b, -0.0, -0.0))
+ self.assertIsPositiveZero(math.fma(b, -0.0, 0.0))
+
+ # Exact zero result from nonzero inputs.
+ self.assertIsPositiveZero(math.fma(2.0, 2.0, -4.0))
+ self.assertIsPositiveZero(math.fma(2.0, -2.0, 4.0))
+ self.assertIsPositiveZero(math.fma(-2.0, -2.0, -4.0))
+ self.assertIsPositiveZero(math.fma(-2.0, 2.0, 4.0))
+
+ # Underflow to zero.
+ tiny = 1e-300
+ self.assertIsPositiveZero(math.fma(tiny, tiny, 0.0))
+ self.assertIsNegativeZero(math.fma(tiny, -tiny, 0.0))
+ self.assertIsPositiveZero(math.fma(-tiny, -tiny, 0.0))
+ self.assertIsNegativeZero(math.fma(-tiny, tiny, 0.0))
+ self.assertIsPositiveZero(math.fma(tiny, tiny, -0.0))
+ self.assertIsNegativeZero(math.fma(tiny, -tiny, -0.0))
+ self.assertIsPositiveZero(math.fma(-tiny, -tiny, -0.0))
+ self.assertIsNegativeZero(math.fma(-tiny, tiny, -0.0))
+
+ # Corner case where rounding the multiplication would
+ # give the wrong result.
+ x = float.fromhex('0x1p-500')
+ y = float.fromhex('0x1p-550')
+ z = float.fromhex('0x1p-1000')
+ self.assertIsNegativeZero(math.fma(x-y, x+y, -z))
+ self.assertIsPositiveZero(math.fma(y-x, x+y, z))
+ self.assertIsNegativeZero(math.fma(y-x, -(x+y), -z))
+ self.assertIsPositiveZero(math.fma(x-y, -(x+y), z))
+
+ def test_fma_overflow(self):
+ a = b = float.fromhex('0x1p512')
+ c = float.fromhex('0x1p1023')
+ # Overflow from multiplication.
+ with self.assertRaises(OverflowError):
+ math.fma(a, b, 0.0)
+ self.assertEqual(math.fma(a, b/2.0, 0.0), c)
+ # Overflow from the addition.
+ with self.assertRaises(OverflowError):
+ math.fma(a, b/2.0, c)
+ # No overflow, even though a*b overflows a float.
+ self.assertEqual(math.fma(a, b, -c), c)
+
+ # Extreme case: a * b is exactly at the overflow boundary, so the
+ # tiniest offset makes a difference between overflow and a finite
+ # result.
+ a = float.fromhex('0x1.ffffffc000000p+511')
+ b = float.fromhex('0x1.0000002000000p+512')
+ c = float.fromhex('0x0.0000000000001p-1022')
+ with self.assertRaises(OverflowError):
+ math.fma(a, b, 0.0)
+ with self.assertRaises(OverflowError):
+ math.fma(a, b, c)
+ self.assertEqual(math.fma(a, b, -c),
+ float.fromhex('0x1.fffffffffffffp+1023'))
+
+ # Another extreme case: here a*b is about as large as possible subject
+ # to math.fma(a, b, c) being finite.
+ a = float.fromhex('0x1.ae565943785f9p+512')
+ b = float.fromhex('0x1.3094665de9db8p+512')
+ c = float.fromhex('0x1.fffffffffffffp+1023')
+ self.assertEqual(math.fma(a, b, -c), c)
+
+ def test_fma_single_round(self):
+ a = float.fromhex('0x1p-50')
+ self.assertEqual(math.fma(a - 1.0, a + 1.0, 1.0), a*a)
+
+ def test_random(self):
+ # A collection of randomly generated inputs for which the naive FMA
+ # (with two rounds) gives a different result from a singly-rounded FMA.
+
+ # tuples (a, b, c, expected)
+ test_values = [
+ ('0x1.694adde428b44p-1', '0x1.371b0d64caed7p-1',
+ '0x1.f347e7b8deab8p-4', '0x1.19f10da56c8adp-1'),
+ ('0x1.605401ccc6ad6p-2', '0x1.ce3a40bf56640p-2',
+ '0x1.96e3bf7bf2e20p-2', '0x1.1af6d8aa83101p-1'),
+ ('0x1.e5abd653a67d4p-2', '0x1.a2e400209b3e6p-1',
+ '0x1.a90051422ce13p-1', '0x1.37d68cc8c0fbbp+0'),
+ ('0x1.f94e8efd54700p-2', '0x1.123065c812cebp-1',
+ '0x1.458f86fb6ccd0p-1', '0x1.ccdcee26a3ff3p-1'),
+ ('0x1.bd926f1eedc96p-1', '0x1.eee9ca68c5740p-1',
+ '0x1.960c703eb3298p-2', '0x1.3cdcfb4fdb007p+0'),
+ ('0x1.27348350fbccdp-1', '0x1.3b073914a53f1p-1',
+ '0x1.e300da5c2b4cbp-1', '0x1.4c51e9a3c4e29p+0'),
+ ('0x1.2774f00b3497bp-1', '0x1.7038ec336bff0p-2',
+ '0x1.2f6f2ccc3576bp-1', '0x1.99ad9f9c2688bp-1'),
+ ('0x1.51d5a99300e5cp-1', '0x1.5cd74abd445a1p-1',
+ '0x1.8880ab0bbe530p-1', '0x1.3756f96b91129p+0'),
+ ('0x1.73cb965b821b8p-2', '0x1.218fd3d8d5371p-1',
+ '0x1.d1ea966a1f758p-2', '0x1.5217b8fd90119p-1'),
+ ('0x1.4aa98e890b046p-1', '0x1.954d85dff1041p-1',
+ '0x1.122b59317ebdfp-1', '0x1.0bf644b340cc5p+0'),
+ ('0x1.e28f29e44750fp-1', '0x1.4bcc4fdcd18fep-1',
+ '0x1.fd47f81298259p-1', '0x1.9b000afbc9995p+0'),
+ ('0x1.d2e850717fe78p-3', '0x1.1dd7531c303afp-1',
+ '0x1.e0869746a2fc2p-2', '0x1.316df6eb26439p-1'),
+ ('0x1.cf89c75ee6fbap-2', '0x1.b23decdc66825p-1',
+ '0x1.3d1fe76ac6168p-1', '0x1.00d8ea4c12abbp+0'),
+ ('0x1.3265ae6f05572p-2', '0x1.16d7ec285f7a2p-1',
+ '0x1.0b8405b3827fbp-1', '0x1.5ef33c118a001p-1'),
+ ('0x1.c4d1bf55ec1a5p-1', '0x1.bc59618459e12p-2',
+ '0x1.ce5b73dc1773dp-1', '0x1.496cf6164f99bp+0'),
+ ('0x1.d350026ac3946p-1', '0x1.9a234e149a68cp-2',
+ '0x1.f5467b1911fd6p-2', '0x1.b5cee3225caa5p-1'),
+ ]
+ for a_hex, b_hex, c_hex, expected_hex in test_values:
+ a = float.fromhex(a_hex)
+ b = float.fromhex(b_hex)
+ c = float.fromhex(c_hex)
+ expected = float.fromhex(expected_hex)
+ self.assertEqual(math.fma(a, b, c), expected)
+ self.assertEqual(math.fma(b, a, c), expected)
+
+ # Custom assertions.
+ def assertIsNaN(self, value):
+ self.assertTrue(
+ math.isnan(value),
+ msg="Expected a NaN, got {!r}".format(value)
+ )
+
+ def assertIsPositiveZero(self, value):
+ self.assertTrue(
+ value == 0 and math.copysign(1, value) > 0,
+ msg="Expected a positive zero, got {!r}".format(value)
+ )
+
+ def assertIsNegativeZero(self, value):
+ self.assertTrue(
+ value == 0 and math.copysign(1, value) < 0,
+ msg="Expected a negative zero, got {!r}".format(value)
+ )
+
+
def test_main():
from doctest import DocFileSuite
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(MathTests))
suite.addTest(unittest.makeSuite(IsCloseTests))
+ suite.addTest(unittest.makeSuite(FMATests))
suite.addTest(DocFileSuite("ieee754.txt"))
run_unittest(suite)