indices = sorted(random.randrange(n) for i in range(r))
return tuple(pool[i] for i in indices)
+ def nth_combination(iterable, r, index):
+ 'Equivalent to list(combinations(iterable, r))[index]'
+ pool = tuple(iterable)
+ n = len(pool)
+ if r < 0 or r > n:
+ raise ValueError
+ c = 1
+ k = min(r, n-r)
+ for i in range(1, k+1):
+ c = c * (n - k + i) // i
+ if index < 0:
+ index += c
+ if index < 0 or index >= c:
+ raise IndexError
+ result = []
+ while r:
+ c, n, r = c*r//n, n-1, r-1
+ while index >= c:
+ index -= c
+ c, n = c*(n-r)//n, n-1
+ result.append(pool[-1-n])
+ return tuple(result)
+
Note, many of the above recipes can be optimized by replacing global lookups
with local variables defined as default values. For example, the
*dotproduct* recipe can be written as::
... # first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
... return next(filter(pred, iterable), default)
+>>> def nth_combination(iterable, r, index):
+... 'Equivalent to list(combinations(iterable, r))[index]'
+... pool = tuple(iterable)
+... n = len(pool)
+... if r < 0 or r > n:
+... raise ValueError
+... c = 1
+... k = min(r, n-r)
+... for i in range(1, k+1):
+... c = c * (n - k + i) // i
+... if index < 0:
+... index += c
+... if index < 0 or index >= c:
+... raise IndexError
+... result = []
+... while r:
+... c, n, r = c*r//n, n-1, r-1
+... while index >= c:
+... index -= c
+... c, n = c*(n-r)//n, n-1
+... result.append(pool[-1-n])
+... return tuple(result)
+
+
This is not part of the examples but it tests to make sure the definitions
perform as purported.
>>> first_true('ABC0DEF1', '9', str.isdigit)
'0'
+>>> population = 'ABCDEFGH'
+>>> for r in range(len(population) + 1):
+... seq = list(combinations(population, r))
+... for i in range(len(seq)):
+... assert nth_combination(population, r, i) == seq[i]
+... for i in range(-len(seq), 0):
+... assert nth_combination(population, r, i) == seq[i]
+
+
"""
__test__ = {'libreftest' : libreftest}