DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
+ auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ if (MSSAAnalysis) {
+ auto *MSSA = &MSSAAnalysis->getMSSA();
+ MSSAU = make_unique<MemorySSAUpdater>(MSSA);
+ }
+
// Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
- // after simplifying the loops. MemorySSA is not preserved either.
+ // after simplifying the loops. MemorySSA is preserved if it exists.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Changed |=
- simplifyLoop(*I, DT, LI, SE, AC, nullptr, /*PreserveLCSSA*/ false);
+ simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
if (!Changed)
return PreservedAnalyses::all();
PA.preserve<SCEVAA>();
PA.preserve<ScalarEvolutionAnalysis>();
PA.preserve<DependenceAnalysis>();
+ if (MSSAAnalysis)
+ PA.preserve<MemorySSAAnalysis>();
// BPI maps conditional terminators to probabilities, LoopSimplify can insert
// blocks, but it does so only by splitting existing blocks and edges. This
// results in the interesting property that all new terminators inserted are
// those.
FAM.registerPass([&] { return AAManager(); });
FAM.registerPass([&] { return AssumptionAnalysis(); });
- if (EnableMSSALoopDependency)
- FAM.registerPass([&] { return MemorySSAAnalysis(); });
+ FAM.registerPass([&] { return MemorySSAAnalysis(); });
FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
FAM.registerPass([&] { return TargetLibraryAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });