ret i1 %or
}
+define i1 @or_consts(i32 %k, i32 %c1, i32 %c2) {
+; CHECK-LABEL: @or_consts(
+; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[K:%.*]], 12
+; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i32 [[TMP1]], 12
+; CHECK-NEXT: ret i1 [[TMP2]]
+;
+ %tmp1 = and i32 4, %k
+ %tmp2 = icmp ne i32 %tmp1, 0
+ %tmp5 = and i32 8, %k
+ %tmp6 = icmp ne i32 %tmp5, 0
+ %or = and i1 %tmp2, %tmp6
+ ret i1 %or
+}
+
+define i1 @foo1_or(i32 %k, i32 %c1, i32 %c2) {
+; CHECK-LABEL: @foo1_or(
+; CHECK-NEXT: [[TMP:%.*]] = shl i32 1, [[C1:%.*]]
+; CHECK-NEXT: [[TMP4:%.*]] = lshr i32 -2147483648, [[C2:%.*]]
+; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[TMP]], [[K:%.*]]
+; CHECK-NEXT: [[TMP2:%.*]] = icmp ne i32 [[TMP1]], 0
+; CHECK-NEXT: [[TMP5:%.*]] = and i32 [[TMP4]], [[K]]
+; CHECK-NEXT: [[TMP6:%.*]] = icmp ne i32 [[TMP5]], 0
+; CHECK-NEXT: [[OR:%.*]] = and i1 [[TMP2]], [[TMP6]]
+; CHECK-NEXT: ret i1 [[OR]]
+;
+ %tmp = shl i32 1, %c1
+ %tmp4 = lshr i32 -2147483648, %c2
+ %tmp1 = and i32 %tmp, %k
+ %tmp2 = icmp ne i32 %tmp1, 0
+ %tmp5 = and i32 %tmp4, %k
+ %tmp6 = icmp ne i32 %tmp5, 0
+ %or = and i1 %tmp2, %tmp6
+ ret i1 %or
+}
+
+; Same as above but with operands commuted one of the ors, but not the other.
+define i1 @foo1_or_commuted(i32 %k, i32 %c1, i32 %c2) {
+; CHECK-LABEL: @foo1_or_commuted(
+; CHECK-NEXT: [[K2:%.*]] = mul i32 [[K:%.*]], [[K]]
+; CHECK-NEXT: [[TMP:%.*]] = shl i32 1, [[C1:%.*]]
+; CHECK-NEXT: [[TMP4:%.*]] = lshr i32 -2147483648, [[C2:%.*]]
+; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[K2]], [[TMP]]
+; CHECK-NEXT: [[TMP2:%.*]] = icmp ne i32 [[TMP1]], 0
+; CHECK-NEXT: [[TMP5:%.*]] = and i32 [[TMP4]], [[K2]]
+; CHECK-NEXT: [[TMP6:%.*]] = icmp ne i32 [[TMP5]], 0
+; CHECK-NEXT: [[OR:%.*]] = and i1 [[TMP2]], [[TMP6]]
+; CHECK-NEXT: ret i1 [[OR]]
+;
+ %k2 = mul i32 %k, %k ; to trick the complexity sorting
+ %tmp = shl i32 1, %c1
+ %tmp4 = lshr i32 -2147483648, %c2
+ %tmp1 = and i32 %k2, %tmp
+ %tmp2 = icmp ne i32 %tmp1, 0
+ %tmp5 = and i32 %tmp4, %k2
+ %tmp6 = icmp ne i32 %tmp5, 0
+ %or = and i1 %tmp2, %tmp6
+ ret i1 %or
+}