dist((1, 2, 3, 4), (5, 6, 7))
with self.assertRaises(ValueError): # Check dimension agree
dist((1, 2, 3), (4, 5, 6, 7))
+ with self.assertRaises(TypeError): # Rejects invalid types
+ dist("abc", "xyz")
# Verify that the one dimensional case is equivalent to abs()
for i in range(20):
if (!_PyArg_CheckPositional("dist", nargs, 2, 2)) {
goto exit;
}
+ if (!PyTuple_Check(args[0])) {
+ _PyArg_BadArgument("dist", 1, "tuple", args[0]);
+ goto exit;
+ }
p = args[0];
+ if (!PyTuple_Check(args[1])) {
+ _PyArg_BadArgument("dist", 2, "tuple", args[1]);
+ goto exit;
+ }
q = args[1];
return_value = math_dist_impl(module, p, q);
exit:
return return_value;
}
-/*[clinic end generated code: output=f3264ab0ef57ba0a input=a9049054013a1b77]*/
+/*[clinic end generated code: output=0664f30046da09fe input=a9049054013a1b77]*/
/*[clinic input]
math.dist
- p: object
- q: object
+ p: object(subclass_of='&PyTuple_Type')
+ q: object(subclass_of='&PyTuple_Type')
/
Return the Euclidean distance between two points p and q.
static PyObject *
math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
-/*[clinic end generated code: output=56bd9538d06bbcfe input=8c83c07c7a524664]*/
+/*[clinic end generated code: output=56bd9538d06bbcfe input=937122eaa5f19272]*/
{
PyObject *item;
double max = 0.0;
double diffs_on_stack[NUM_STACK_ELEMS];
double *diffs = diffs_on_stack;
- if (!PyTuple_Check(p) || !PyTuple_Check(q)) {
- PyErr_SetString(PyExc_TypeError, "dist argument must be a tuple");
- return NULL;
- }
-
m = PyTuple_GET_SIZE(p);
n = PyTuple_GET_SIZE(q);
if (m != n) {